sched.c 217.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937
	struct rq *rq;

938
	for (;;) {
939 940 941
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
942
		raw_spin_lock(&rq->lock);
943
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
944
			return rq;
945
		raw_spin_unlock(&rq->lock);
946 947 948
	}
}

L
Linus Torvalds 已提交
949 950
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
951
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
952 953
 * explicitly disabling preemption.
 */
954
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958

959
	for (;;) {
960 961
		while (task_is_waking(p))
			cpu_relax();
962 963
		local_irq_save(*flags);
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
965
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
966
			return rq;
967
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
	}
}

971 972 973 974 975
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976
	raw_spin_unlock_wait(&rq->lock);
977 978
}

A
Alexey Dobriyan 已提交
979
static void __task_rq_unlock(struct rq *rq)
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock(&rq->lock);
983 984
}

985
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
986 987
	__releases(rq->lock)
{
988
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
989 990 991
}

/*
992
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
993
 */
A
Alexey Dobriyan 已提交
994
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998 999 1000

	local_irq_disable();
	rq = this_rq();
1001
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1002 1003 1004 1005

	return rq;
}

P
Peter Zijlstra 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1027
	if (!cpu_active(cpu_of(rq)))
1028
		return 0;
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1048
	raw_spin_lock(&rq->lock);
1049
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1050
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1052 1053 1054 1055

	return HRTIMER_NORESTART;
}

1056
#ifdef CONFIG_SMP
1057 1058 1059 1060
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1061
{
1062
	struct rq *rq = arg;
1063

1064
	raw_spin_lock(&rq->lock);
1065 1066
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1067
	raw_spin_unlock(&rq->lock);
1068 1069
}

1070 1071 1072 1073 1074 1075
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1076
{
1077 1078
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079

1080
	hrtimer_set_expires(timer, time);
1081 1082 1083 1084

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1085
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 1087
		rq->hrtick_csd_pending = 1;
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1102
		hrtick_clear(cpu_rq(cpu));
1103 1104 1105 1106 1107 1108
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1109
static __init void init_hrtick(void)
1110 1111 1112
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1113 1114 1115 1116 1117 1118 1119 1120
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1121
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122
			HRTIMER_MODE_REL_PINNED, 0);
1123
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1142
}
A
Andrew Morton 已提交
1143
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1144 1145 1146 1147 1148 1149 1150 1151
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1152 1153 1154
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1155
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1156

I
Ingo Molnar 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1170
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1171 1172 1173
{
	int cpu;

1174
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1175

1176
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1177 1178
		return;

1179
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1196
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1197 1198
		return;
	resched_task(cpu_curr(cpu));
1199
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1200
}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1253
#endif /* CONFIG_NO_HZ */
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1276
#else /* !CONFIG_SMP */
1277
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1278
{
1279
	assert_raw_spin_locked(&task_rq(p)->lock);
1280
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1281
}
1282 1283 1284 1285

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

1396 1397 1398 1399 1400 1401 1402 1403
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1404 1405
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 1407
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1408 1409
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 1411
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1412 1413
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1424
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1425
typedef int (*tg_visitor)(struct task_group *, void *);
1426 1427 1428 1429 1430

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1431
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 1433
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1434
	int ret;
1435 1436 1437 1438

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1449 1450 1451
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1452 1453 1454 1455 1456

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1457
out_unlock:
1458
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1459 1460

	return ret;
1461 1462
}

P
Peter Zijlstra 已提交
1463 1464 1465
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1466
}
P
Peter Zijlstra 已提交
1467 1468 1469
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1509 1510
static struct sched_group *group_of(int cpu)
{
1511
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1534
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1535

1536 1537
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1538 1539
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1545

1546
static __read_mostly unsigned long __percpu *update_shares_data;
1547

1548 1549 1550 1551 1552
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1553 1554 1555
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1556
				    unsigned long *usd_rq_weight)
1557
{
1558
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1559
	int boost = 0;
1560

1561
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1562 1563 1564 1565
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1566

1567
	/*
P
Peter Zijlstra 已提交
1568 1569 1570
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1571
	 */
1572
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1573
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574

1575 1576 1577 1578
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1579

1580
		raw_spin_lock_irqsave(&rq->lock, flags);
1581
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1582
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583
		__set_se_shares(tg->se[cpu], shares);
1584
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1585
	}
1586
}
1587 1588

/*
1589 1590 1591
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1592
 */
P
Peter Zijlstra 已提交
1593
static int tg_shares_up(struct task_group *tg, void *data)
1594
{
1595
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1597
	struct sched_domain *sd = data;
1598
	unsigned long flags;
1599
	int i;
1600

1601 1602 1603 1604
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1605
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606

1607
	for_each_cpu(i, sched_domain_span(sd)) {
1608
		weight = tg->cfs_rq[i]->load.weight;
1609
		usd_rq_weight[i] = weight;
1610

1611
		rq_weight += weight;
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1620
		sum_weight += weight;
1621
		shares += tg->cfs_rq[i]->shares;
1622 1623
	}

1624 1625 1626
	if (!rq_weight)
		rq_weight = sum_weight;

1627 1628 1629 1630 1631
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1632

1633
	for_each_cpu(i, sched_domain_span(sd))
1634
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 1636

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1637 1638

	return 0;
1639 1640 1641
}

/*
1642 1643 1644
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1645
 */
P
Peter Zijlstra 已提交
1646
static int tg_load_down(struct task_group *tg, void *data)
1647
{
1648
	unsigned long load;
P
Peter Zijlstra 已提交
1649
	long cpu = (long)data;
1650

1651 1652 1653 1654 1655 1656 1657
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1658

1659
	tg->cfs_rq[cpu]->h_load = load;
1660

P
Peter Zijlstra 已提交
1661
	return 0;
1662 1663
}

1664
static void update_shares(struct sched_domain *sd)
1665
{
1666 1667 1668 1669 1670 1671 1672 1673
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1674 1675 1676

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1677
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1678
	}
1679 1680
}

P
Peter Zijlstra 已提交
1681
static void update_h_load(long cpu)
1682
{
1683 1684 1685
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1686
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 1688 1689 1690
}

#else

1691
static inline void update_shares(struct sched_domain *sd)
1692 1693 1694
{
}

1695 1696
#endif

1697 1698
#ifdef CONFIG_PREEMPT

1699 1700
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1701
/*
1702 1703 1704 1705 1706 1707
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1708
 */
1709 1710 1711 1712 1713
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1714
	raw_spin_unlock(&this_rq->lock);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 1730 1731 1732 1733 1734
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1735
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736
		if (busiest < this_rq) {
1737 1738 1739 1740
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742
			ret = 1;
		} else
1743 1744
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1745 1746 1747 1748
	}
	return ret;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1758
		raw_spin_unlock(&this_rq->lock);
1759 1760 1761 1762 1763 1764
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1765 1766 1767
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1768
	raw_spin_unlock(&busiest->lock);
1769 1770
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1814 1815
#endif

V
Vegard Nossum 已提交
1816
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1817 1818
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1819
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1820 1821 1822
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1823
#endif
1824

1825
static void calc_load_account_active(struct rq *this_rq);
1826
static void update_sysctl(void);
1827
static int get_update_sysctl_factor(void);
1828

P
Peter Zijlstra 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1842

1843
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1844 1845

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849 1850
#include "sched_stats.h"

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882 1883 1884 1885 1886 1887
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1888 1889
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1890
{
1891
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1892
	sched_info_queued(p);
1893
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 1;
1895 1896
}

1897
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898
{
1899
	update_rq_clock(rq);
1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1913
	enqueue_task(rq, p, wakeup, false);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1936
/*
I
Ingo Molnar 已提交
1937
 * __normal_prio - return the priority that is based on the static prio
1938 1939 1940
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1941
	return p->static_prio;
1942 1943
}

1944 1945 1946 1947 1948 1949 1950
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1951
static inline int normal_prio(struct task_struct *p)
1952 1953 1954
{
	int prio;

1955
	if (task_has_rt_policy(p))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1969
static int effective_prio(struct task_struct *p)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1982 1983 1984 1985
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1986
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990
{
	return cpu_curr(task_cpu(p)) == p;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2003
#ifdef CONFIG_SMP
2004 2005 2006
/*
 * Is this task likely cache-hot:
 */
2007
static int
2008 2009 2010 2011
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2012 2013 2014
	if (p->sched_class != &fair_sched_class)
		return 0;

2015 2016 2017
	/*
	 * Buddy candidates are cache hot:
	 */
2018
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2019 2020
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2021 2022
		return 1;

2023 2024 2025 2026 2027
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2028 2029 2030 2031 2032
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2033
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2034
{
2035 2036 2037 2038 2039
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2040 2041
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 2043
#endif

2044
	trace_sched_migrate_task(p, new_cpu);
2045

2046 2047 2048 2049
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2050 2051

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2052 2053
}

2054
struct migration_req {
L
Linus Torvalds 已提交
2055 2056
	struct list_head list;

2057
	struct task_struct *task;
L
Linus Torvalds 已提交
2058 2059 2060
	int dest_cpu;

	struct completion done;
2061
};
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2067
static int
2068
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2071 2072 2073

	/*
	 * If the task is not on a runqueue (and not running), then
2074
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2075
	 */
2076
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2083

L
Linus Torvalds 已提交
2084 2085 2086
	return 1;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2130 2131 2132
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138 2139
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2146
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2147 2148
{
	unsigned long flags;
I
Ingo Molnar 已提交
2149
	int running, on_rq;
R
Roland McGrath 已提交
2150
	unsigned long ncsw;
2151
	struct rq *rq;
L
Linus Torvalds 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2173 2174 2175
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2176
			cpu_relax();
R
Roland McGrath 已提交
2177
		}
2178

2179 2180 2181 2182 2183 2184
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2185
		trace_sched_wait_task(rq, p);
2186 2187
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2188
		ncsw = 0;
2189
		if (!match_state || p->state == match_state)
2190
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191
		task_rq_unlock(rq, &flags);
2192

R
Roland McGrath 已提交
2193 2194 2195 2196 2197 2198
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2209

2210 2211 2212 2213 2214
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2215
		 * So if it was still runnable (but just not actively
2216 2217 2218 2219 2220 2221 2222
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2223

2224 2225 2226 2227 2228 2229 2230
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2231 2232

	return ncsw;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2248
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2258
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2259
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2260

T
Thomas Gleixner 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2282
#ifdef CONFIG_SMP
2283 2284 2285
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2302 2303 2304
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
		cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
		dest_cpu = cpumask_any(cpu_active_mask);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2321
/*
2322
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2323
 */
2324 2325 2326
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2340
		     !cpu_online(cpu)))
2341
		cpu = select_fallback_rq(task_cpu(p), p);
2342 2343

	return cpu;
2344 2345 2346
}
#endif

L
Linus Torvalds 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2361 2362
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2363
{
2364
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2365
	unsigned long flags;
2366
	struct rq *rq;
L
Linus Torvalds 已提交
2367

P
Peter Zijlstra 已提交
2368
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2369

2370
	smp_wmb();
2371
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2372
	if (!(p->state & state))
L
Linus Torvalds 已提交
2373 2374
		goto out;

I
Ingo Molnar 已提交
2375
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2376 2377 2378
		goto out_running;

	cpu = task_cpu(p);
2379
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2380 2381 2382 2383 2384

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2385 2386 2387
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2388 2389
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2390
	 */
2391 2392
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2393
	p->state = TASK_WAKING;
2394 2395 2396 2397

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2398
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2399

2400
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 2402 2403 2404 2405 2406
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2407
		set_task_cpu(p, cpu);
2408
	}
P
Peter Zijlstra 已提交
2409

2410 2411
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2412

2413 2414 2415 2416 2417 2418 2419
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2420
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2421

2422 2423 2424 2425 2426 2427 2428
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2429
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2430 2431 2432 2433 2434
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2435
#endif /* CONFIG_SCHEDSTATS */
2436

L
Linus Torvalds 已提交
2437 2438
out_activate:
#endif /* CONFIG_SMP */
2439
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2440
	if (wake_flags & WF_SYNC)
2441
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2442
	if (orig_cpu != cpu)
2443
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2444
	if (cpu == this_cpu)
2445
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2446
	else
2447
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2448
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2449 2450 2451
	success = 1;

out_running:
2452
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2453
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2454

L
Linus Torvalds 已提交
2455
	p->state = TASK_RUNNING;
2456
#ifdef CONFIG_SMP
2457 2458
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2470
#endif
L
Linus Torvalds 已提交
2471 2472
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2473
	put_cpu();
L
Linus Torvalds 已提交
2474 2475 2476 2477

	return success;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2489
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2490
{
2491
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2492 2493 2494
}
EXPORT_SYMBOL(wake_up_process);

2495
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2496 2497 2498 2499 2500 2501 2502
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2503 2504 2505 2506 2507 2508 2509
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2510
	p->se.prev_sum_exec_runtime	= 0;
2511
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2512 2513

#ifdef CONFIG_SCHEDSTATS
2514
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2515
#endif
N
Nick Piggin 已提交
2516

P
Peter Zijlstra 已提交
2517
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2518
	p->se.on_rq = 0;
2519
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2520

2521 2522 2523
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2534 2535 2536 2537 2538 2539
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2540

2541 2542 2543 2544
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2545
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2546
			p->policy = SCHED_NORMAL;
2547 2548
			p->normal_prio = p->static_prio;
		}
2549

2550 2551
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2552
			p->normal_prio = p->static_prio;
2553 2554 2555
			set_load_weight(p);
		}

2556 2557 2558 2559 2560 2561
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2562

2563 2564 2565 2566 2567
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2568 2569
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2570

P
Peter Zijlstra 已提交
2571 2572 2573
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2574 2575
	set_task_cpu(p, cpu);

2576
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2577
	if (likely(sched_info_on()))
2578
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2579
#endif
2580
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2581 2582
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2583
#ifdef CONFIG_PREEMPT
2584
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2585
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2586
#endif
2587 2588
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2589
	put_cpu();
L
Linus Torvalds 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2599
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2600 2601
{
	unsigned long flags;
I
Ingo Molnar 已提交
2602
	struct rq *rq;
2603
	int cpu __maybe_unused = get_cpu();
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2618

2619 2620 2621 2622 2623 2624 2625
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2626 2627
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
P
Peter Zijlstra 已提交
2628
	activate_task(rq, p, 0);
2629
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2630
	check_preempt_curr(rq, p, WF_FORK);
2631
#ifdef CONFIG_SMP
2632 2633
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2634
#endif
I
Ingo Molnar 已提交
2635
	task_rq_unlock(rq, &flags);
2636
	put_cpu();
L
Linus Torvalds 已提交
2637 2638
}

2639 2640 2641
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2642
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2643
 * @notifier: notifier struct to register
2644 2645 2646 2647 2648 2649 2650 2651 2652
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2653
 * @notifier: notifier struct to unregister
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2683
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2695
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2696

2697 2698 2699
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2700
 * @prev: the current task that is being switched out
2701 2702 2703 2704 2705 2706 2707 2708 2709
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2710 2711 2712
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2713
{
2714
	fire_sched_out_preempt_notifiers(prev, next);
2715 2716 2717 2718
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2719 2720
/**
 * finish_task_switch - clean up after a task-switch
2721
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2722 2723
 * @prev: the thread we just switched away from.
 *
2724 2725 2726 2727
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2728 2729
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2730
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2731 2732 2733
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2734
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2735 2736 2737
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2738
	long prev_state;
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2744
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2745 2746
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2747
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2753
	prev_state = prev->state;
2754
	finish_arch_switch(prev);
2755 2756 2757
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2758
	perf_event_task_sched_in(current);
2759 2760 2761
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2762
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2763

2764
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2765 2766
	if (mm)
		mmdrop(mm);
2767
	if (unlikely(prev_state == TASK_DEAD)) {
2768 2769 2770
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2771
		 */
2772
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2773
		put_task_struct(prev);
2774
	}
L
Linus Torvalds 已提交
2775 2776
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2792
		raw_spin_lock_irqsave(&rq->lock, flags);
2793 2794
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2795
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2796 2797 2798 2799 2800 2801

		rq->post_schedule = 0;
	}
}

#else
2802

2803 2804 2805 2806 2807 2808
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2809 2810
}

2811 2812
#endif

L
Linus Torvalds 已提交
2813 2814 2815 2816
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2817
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2818 2819
	__releases(rq->lock)
{
2820 2821
	struct rq *rq = this_rq();

2822
	finish_task_switch(rq, prev);
2823

2824 2825 2826 2827 2828
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2829

2830 2831 2832 2833
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2834
	if (current->set_child_tid)
2835
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2842
static inline void
2843
context_switch(struct rq *rq, struct task_struct *prev,
2844
	       struct task_struct *next)
L
Linus Torvalds 已提交
2845
{
I
Ingo Molnar 已提交
2846
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2847

2848
	prepare_task_switch(rq, prev, next);
2849
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2850 2851
	mm = next->mm;
	oldmm = prev->active_mm;
2852 2853 2854 2855 2856
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2857
	arch_start_context_switch(prev);
2858

2859
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2866
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2867 2868 2869
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2870 2871 2872 2873 2874 2875 2876
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2877
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2878
#endif
L
Linus Torvalds 已提交
2879 2880 2881 2882

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2883 2884 2885 2886 2887 2888 2889
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2907
}
L
Linus Torvalds 已提交
2908 2909

unsigned long nr_uninterruptible(void)
2910
{
L
Linus Torvalds 已提交
2911
	unsigned long i, sum = 0;
2912

2913
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2914
		sum += cpu_rq(i)->nr_uninterruptible;
2915 2916

	/*
L
Linus Torvalds 已提交
2917 2918
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2919
	 */
L
Linus Torvalds 已提交
2920 2921
	if (unlikely((long)sum < 0))
		sum = 0;
2922

L
Linus Torvalds 已提交
2923
	return sum;
2924 2925
}

L
Linus Torvalds 已提交
2926
unsigned long long nr_context_switches(void)
2927
{
2928 2929
	int i;
	unsigned long long sum = 0;
2930

2931
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2932
		sum += cpu_rq(i)->nr_switches;
2933

L
Linus Torvalds 已提交
2934 2935
	return sum;
}
2936

L
Linus Torvalds 已提交
2937 2938 2939
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2940

2941
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2942
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2943

L
Linus Torvalds 已提交
2944 2945
	return sum;
}
2946

2947 2948 2949 2950 2951
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2952

2953 2954 2955 2956 2957
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2958

2959

2960 2961 2962 2963 2964
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2979 2980
}

2981 2982
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2983
{
2984 2985 2986 2987
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2988 2989

/*
2990 2991
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2992
 */
2993
void calc_global_load(void)
2994
{
2995 2996
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2997

2998 2999
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3000

3001 3002
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3003

3004 3005 3006
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3007

3008 3009
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3010

3011 3012 3013 3014 3015 3016
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3017

3018 3019
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3020

3021 3022 3023 3024
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3025
	}
3026 3027 3028
}

/*
I
Ingo Molnar 已提交
3029 3030
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3031
 */
I
Ingo Molnar 已提交
3032
static void update_cpu_load(struct rq *this_rq)
3033
{
3034
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3035
	int i, scale;
3036

I
Ingo Molnar 已提交
3037
	this_rq->nr_load_updates++;
3038

I
Ingo Molnar 已提交
3039 3040 3041
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3042

I
Ingo Molnar 已提交
3043
		/* scale is effectively 1 << i now, and >> i divides by scale */
3044

I
Ingo Molnar 已提交
3045 3046
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3047 3048 3049 3050 3051 3052 3053
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3054 3055
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3056

3057 3058 3059
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3060 3061 3062
	}
}

I
Ingo Molnar 已提交
3063
#ifdef CONFIG_SMP
3064

3065
/*
P
Peter Zijlstra 已提交
3066 3067
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3068
 */
P
Peter Zijlstra 已提交
3069
void sched_exec(void)
3070
{
P
Peter Zijlstra 已提交
3071
	struct task_struct *p = current;
3072
	struct migration_req req;
P
Peter Zijlstra 已提交
3073
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3074
	unsigned long flags;
3075
	struct rq *rq;
3076

P
Peter Zijlstra 已提交
3077
	this_cpu = get_cpu();
3078
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
P
Peter Zijlstra 已提交
3079 3080 3081
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3082 3083
	}

L
Linus Torvalds 已提交
3084
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3085
	put_cpu();
3086
	/*
P
Peter Zijlstra 已提交
3087
	 * select_task_rq() can race against ->cpus_allowed
3088
	 */
3089 3090 3091
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3092 3093
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3094

L
Linus Torvalds 已提交
3095 3096 3097 3098 3099
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3100

L
Linus Torvalds 已提交
3101 3102 3103 3104
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3105

L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3113
 * Return any ns on the sched_clock that have not yet been accounted in
3114
 * @p in case that task is currently running.
3115 3116
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3117
 */
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3132
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3133 3134
{
	unsigned long flags;
3135
	struct rq *rq;
3136
	u64 ns = 0;
3137

3138
	rq = task_rq_lock(p, &flags);
3139 3140
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3141

3142 3143
	return ns;
}
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3182
	task_rq_unlock(rq, &flags);
3183

L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189 3190
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3191
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3192
 */
3193 3194
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3195 3196 3197 3198
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3199
	/* Add user time to process. */
L
Linus Torvalds 已提交
3200
	p->utime = cputime_add(p->utime, cputime);
3201
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3202
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208 3209

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3210 3211

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3212 3213
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3214 3215
}

3216 3217 3218 3219
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3220
 * @cputime_scaled: cputime scaled by cpu frequency
3221
 */
3222 3223
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3224 3225 3226 3227 3228 3229
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3230
	/* Add guest time to process. */
3231
	p->utime = cputime_add(p->utime, cputime);
3232
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3233
	account_group_user_time(p, cputime);
3234 3235
	p->gtime = cputime_add(p->gtime, cputime);

3236
	/* Add guest time to cpustat. */
3237 3238 3239 3240 3241 3242 3243
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3244 3245
}

L
Linus Torvalds 已提交
3246 3247 3248 3249 3250
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3251
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3252 3253
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3254
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3255 3256 3257 3258
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3259
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3260
		account_guest_time(p, cputime, cputime_scaled);
3261 3262
		return;
	}
3263

3264
	/* Add system time to process. */
L
Linus Torvalds 已提交
3265
	p->stime = cputime_add(p->stime, cputime);
3266
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3267
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273 3274 3275

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3276 3277
		cpustat->system = cputime64_add(cpustat->system, tmp);

3278 3279
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3280 3281 3282 3283
	/* Account for system time used */
	acct_update_integrals(p);
}

3284
/*
L
Linus Torvalds 已提交
3285 3286
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3287
 */
3288
void account_steal_time(cputime_t cputime)
3289
{
3290 3291 3292 3293
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3294 3295
}

L
Linus Torvalds 已提交
3296
/*
3297 3298
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3299
 */
3300
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3301 3302
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3303
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3304
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3305

3306 3307 3308 3309
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3310 3311
}

3312 3313 3314 3315 3316 3317 3318 3319 3320
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3321
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3322 3323 3324
	struct rq *rq = this_rq();

	if (user_tick)
3325
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3326
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3327
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3328 3329
				    one_jiffy_scaled);
	else
3330
		account_idle_time(cputime_one_jiffy);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3350 3351
}

3352 3353
#endif

3354 3355 3356 3357
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3358
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3359
{
3360 3361
	*ut = p->utime;
	*st = p->stime;
3362 3363
}

3364
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3365
{
3366 3367 3368 3369 3370 3371
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3372 3373
}
#else
3374 3375

#ifndef nsecs_to_cputime
3376
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3377 3378
#endif

3379
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3380
{
3381
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3382 3383 3384 3385

	/*
	 * Use CFS's precise accounting:
	 */
3386
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3387 3388

	if (total) {
3389 3390 3391
		u64 temp;

		temp = (u64)(rtime * utime);
3392
		do_div(temp, total);
3393 3394 3395
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3396

3397 3398 3399
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3400
	p->prev_utime = max(p->prev_utime, utime);
3401
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3402

3403 3404
	*ut = p->prev_utime;
	*st = p->prev_stime;
3405 3406
}

3407 3408 3409 3410
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3411
{
3412 3413 3414
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3415

3416
	thread_group_cputime(p, &cputime);
3417

3418 3419
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3420

3421 3422
	if (total) {
		u64 temp;
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3436 3437 3438
}
#endif

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3450
	struct task_struct *curr = rq->curr;
3451 3452

	sched_clock_tick();
I
Ingo Molnar 已提交
3453

3454
	raw_spin_lock(&rq->lock);
3455
	update_rq_clock(rq);
3456
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3457
	curr->sched_class->task_tick(rq, curr, 0);
3458
	raw_spin_unlock(&rq->lock);
3459

3460
	perf_event_task_tick(curr);
3461

3462
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3463 3464
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3465
#endif
L
Linus Torvalds 已提交
3466 3467
}

3468
notrace unsigned long get_parent_ip(unsigned long addr)
3469 3470 3471 3472 3473 3474 3475 3476
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3477

3478 3479 3480
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3481
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3482
{
3483
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3484 3485 3486
	/*
	 * Underflow?
	 */
3487 3488
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3489
#endif
L
Linus Torvalds 已提交
3490
	preempt_count() += val;
3491
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3492 3493 3494
	/*
	 * Spinlock count overflowing soon?
	 */
3495 3496
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3497 3498 3499
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3500 3501 3502
}
EXPORT_SYMBOL(add_preempt_count);

3503
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3504
{
3505
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3506 3507 3508
	/*
	 * Underflow?
	 */
3509
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3510
		return;
L
Linus Torvalds 已提交
3511 3512 3513
	/*
	 * Is the spinlock portion underflowing?
	 */
3514 3515 3516
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3517
#endif
3518

3519 3520
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526 3527
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3528
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3529
 */
I
Ingo Molnar 已提交
3530
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3531
{
3532 3533
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3534 3535
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3536

I
Ingo Molnar 已提交
3537
	debug_show_held_locks(prev);
3538
	print_modules();
I
Ingo Molnar 已提交
3539 3540
	if (irqs_disabled())
		print_irqtrace_events(prev);
3541 3542 3543 3544 3545

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3546
}
L
Linus Torvalds 已提交
3547

I
Ingo Molnar 已提交
3548 3549 3550 3551 3552
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3553
	/*
I
Ingo Molnar 已提交
3554
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3555 3556 3557
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3558
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3559 3560
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3561 3562
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3563
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3564 3565
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3566 3567
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3568 3569
	}
#endif
I
Ingo Molnar 已提交
3570 3571
}

P
Peter Zijlstra 已提交
3572
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3573
{
3574 3575 3576
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3577
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3578 3579
}

I
Ingo Molnar 已提交
3580 3581 3582 3583
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3584
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3585
{
3586
	const struct sched_class *class;
I
Ingo Molnar 已提交
3587
	struct task_struct *p;
L
Linus Torvalds 已提交
3588 3589

	/*
I
Ingo Molnar 已提交
3590 3591
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3592
	 */
I
Ingo Molnar 已提交
3593
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3594
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3595 3596
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3597 3598
	}

I
Ingo Molnar 已提交
3599 3600
	class = sched_class_highest;
	for ( ; ; ) {
3601
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3611

I
Ingo Molnar 已提交
3612 3613 3614
/*
 * schedule() is the main scheduler function.
 */
3615
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3616 3617
{
	struct task_struct *prev, *next;
3618
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3619
	struct rq *rq;
3620
	int cpu;
I
Ingo Molnar 已提交
3621

3622 3623
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3624 3625
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3626
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3627 3628 3629 3630 3631 3632 3633
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3634

3635
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3636
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3637

3638
	raw_spin_lock_irq(&rq->lock);
3639
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3640 3641

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3642
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3643
			prev->state = TASK_RUNNING;
3644
		else
3645
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3646
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3647 3648
	}

3649
	pre_schedule(rq, prev);
3650

I
Ingo Molnar 已提交
3651
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3652 3653
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3654
	put_prev_task(rq, prev);
3655
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3656 3657

	if (likely(prev != next)) {
3658
		sched_info_switch(prev, next);
3659
		perf_event_task_sched_out(prev, next);
3660

L
Linus Torvalds 已提交
3661 3662 3663 3664
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3665
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3666 3667 3668 3669 3670 3671
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3672
	} else
3673
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3674

3675
	post_schedule(rq);
L
Linus Torvalds 已提交
3676

3677 3678 3679
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3680
		goto need_resched_nonpreemptible;
3681
	}
P
Peter Zijlstra 已提交
3682

L
Linus Torvalds 已提交
3683
	preempt_enable_no_resched();
3684
	if (need_resched())
L
Linus Torvalds 已提交
3685 3686 3687 3688
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3689
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3750 3751
#ifdef CONFIG_PREEMPT
/*
3752
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3753
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3759

L
Linus Torvalds 已提交
3760 3761
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3762
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3763
	 */
N
Nick Piggin 已提交
3764
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3765 3766
		return;

3767 3768 3769 3770
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3771

3772 3773 3774 3775 3776
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3777
	} while (need_resched());
L
Linus Torvalds 已提交
3778 3779 3780 3781
}
EXPORT_SYMBOL(preempt_schedule);

/*
3782
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788 3789
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3790

3791
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3792 3793
	BUG_ON(ti->preempt_count || !irqs_disabled());

3794 3795 3796 3797 3798 3799
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3800

3801 3802 3803 3804 3805
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3806
	} while (need_resched());
L
Linus Torvalds 已提交
3807 3808 3809 3810
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3811
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3812
			  void *key)
L
Linus Torvalds 已提交
3813
{
P
Peter Zijlstra 已提交
3814
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3815 3816 3817 3818
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3819 3820
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3821 3822 3823
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3824
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3825 3826
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3827
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3828
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3829
{
3830
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3831

3832
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3833 3834
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3835
		if (curr->func(curr, mode, wake_flags, key) &&
3836
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3846
 * @key: is directly passed to the wakeup function
3847 3848 3849
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3850
 */
3851
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3852
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3865
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3866 3867 3868 3869
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3870 3871 3872 3873 3874
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3875
/**
3876
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3877 3878 3879
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3880
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3881 3882 3883 3884 3885 3886 3887
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3888 3889 3890
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3891
 */
3892 3893
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3894 3895
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3896
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3902
		wake_flags = 0;
L
Linus Torvalds 已提交
3903 3904

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3905
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3906 3907
	spin_unlock_irqrestore(&q->lock, flags);
}
3908 3909 3910 3911 3912 3913 3914 3915 3916
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3917 3918
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3919 3920 3921 3922 3923 3924 3925 3926
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3927 3928 3929
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3930
 */
3931
void complete(struct completion *x)
L
Linus Torvalds 已提交
3932 3933 3934 3935 3936
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3937
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3938 3939 3940 3941
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3942 3943 3944 3945 3946
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3947 3948 3949
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3950
 */
3951
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3957
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3958 3959 3960 3961
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3962 3963
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968 3969 3970
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3971
			if (signal_pending_state(state, current)) {
3972 3973
				timeout = -ERESTARTSYS;
				break;
3974 3975
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3976 3977 3978
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3979
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3980
		__remove_wait_queue(&x->wait, &wait);
3981 3982
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3983 3984
	}
	x->done--;
3985
	return timeout ?: 1;
L
Linus Torvalds 已提交
3986 3987
}

3988 3989
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3990 3991 3992 3993
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3994
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3995
	spin_unlock_irq(&x->wait.lock);
3996 3997
	return timeout;
}
L
Linus Torvalds 已提交
3998

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4009
void __sched wait_for_completion(struct completion *x)
4010 4011
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4012
}
4013
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4014

4015 4016 4017 4018 4019 4020 4021 4022 4023
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4024
unsigned long __sched
4025
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4026
{
4027
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4028
}
4029
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4030

4031 4032 4033 4034 4035 4036 4037
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4038
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4039
{
4040 4041 4042 4043
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4044
}
4045
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4046

4047 4048 4049 4050 4051 4052 4053 4054
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4055
unsigned long __sched
4056 4057
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4058
{
4059
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4060
}
4061
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4062

4063 4064 4065 4066 4067 4068 4069
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4093
	unsigned long flags;
4094 4095
	int ret = 1;

4096
	spin_lock_irqsave(&x->wait.lock, flags);
4097 4098 4099 4100
	if (!x->done)
		ret = 0;
	else
		x->done--;
4101
	spin_unlock_irqrestore(&x->wait.lock, flags);
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4116
	unsigned long flags;
4117 4118
	int ret = 1;

4119
	spin_lock_irqsave(&x->wait.lock, flags);
4120 4121
	if (!x->done)
		ret = 0;
4122
	spin_unlock_irqrestore(&x->wait.lock, flags);
4123 4124 4125 4126
	return ret;
}
EXPORT_SYMBOL(completion_done);

4127 4128
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4129
{
I
Ingo Molnar 已提交
4130 4131 4132 4133
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4134

4135
	__set_current_state(state);
L
Linus Torvalds 已提交
4136

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4151 4152 4153
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4154
long __sched
I
Ingo Molnar 已提交
4155
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4156
{
4157
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4158 4159 4160
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4161
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4162
{
4163
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4164 4165 4166
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4167
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4168
{
4169
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4170 4171 4172
}
EXPORT_SYMBOL(sleep_on_timeout);

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4185
void rt_mutex_setprio(struct task_struct *p, int prio)
4186 4187
{
	unsigned long flags;
4188
	int oldprio, on_rq, running;
4189
	struct rq *rq;
4190
	const struct sched_class *prev_class;
4191 4192 4193 4194 4195

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4196
	oldprio = p->prio;
4197
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4198
	on_rq = p->se.on_rq;
4199
	running = task_current(rq, p);
4200
	if (on_rq)
4201
		dequeue_task(rq, p, 0);
4202 4203
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4204 4205 4206 4207 4208 4209

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4210 4211
	p->prio = prio;

4212 4213
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4214
	if (on_rq) {
4215
		enqueue_task(rq, p, 0, oldprio < prio);
4216 4217

		check_class_changed(rq, p, prev_class, oldprio, running);
4218 4219 4220 4221 4222 4223
	}
	task_rq_unlock(rq, &flags);
}

#endif

4224
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4225
{
I
Ingo Molnar 已提交
4226
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4227
	unsigned long flags;
4228
	struct rq *rq;
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4241
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4242
	 */
4243
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4244 4245 4246
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4247
	on_rq = p->se.on_rq;
4248
	if (on_rq)
4249
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4250 4251

	p->static_prio = NICE_TO_PRIO(nice);
4252
	set_load_weight(p);
4253 4254 4255
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4256

I
Ingo Molnar 已提交
4257
	if (on_rq) {
4258
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4259
		/*
4260 4261
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4262
		 */
4263
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269 4270
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4271 4272 4273 4274 4275
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4276
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4277
{
4278 4279
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4280

4281
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4282 4283 4284
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4294
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4295
{
4296
	long nice, retval;
L
Linus Torvalds 已提交
4297 4298 4299 4300 4301 4302

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4303 4304
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4305 4306 4307
	if (increment > 40)
		increment = 40;

4308
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4314 4315 4316
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4335
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4336 4337 4338 4339 4340 4341 4342 4343
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4344
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4345 4346 4347
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4348
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4363
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4364 4365 4366 4367 4368 4369 4370 4371
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4372
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4373
{
4374
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4375 4376 4377
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4378 4379
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4380
{
I
Ingo Molnar 已提交
4381
	BUG_ON(p->se.on_rq);
4382

L
Linus Torvalds 已提交
4383 4384
	p->policy = policy;
	p->rt_priority = prio;
4385 4386 4387
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4388 4389 4390 4391
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4392
	set_load_weight(p);
L
Linus Torvalds 已提交
4393 4394
}

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4411 4412
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4413
{
4414
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4415
	unsigned long flags;
4416
	const struct sched_class *prev_class;
4417
	struct rq *rq;
4418
	int reset_on_fork;
L
Linus Torvalds 已提交
4419

4420 4421
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4422 4423
recheck:
	/* double check policy once rq lock held */
4424 4425
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4426
		policy = oldpolicy = p->policy;
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4437 4438
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4439 4440
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4441 4442
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4443
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4444
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4445
		return -EINVAL;
4446
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4447 4448
		return -EINVAL;

4449 4450 4451
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4452
	if (user && !capable(CAP_SYS_NICE)) {
4453
		if (rt_policy(policy)) {
4454 4455 4456 4457
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4458
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4470 4471 4472 4473 4474 4475
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4476

4477
		/* can't change other user's priorities */
4478
		if (!check_same_owner(p))
4479
			return -EPERM;
4480 4481 4482 4483

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4484
	}
L
Linus Torvalds 已提交
4485

4486
	if (user) {
4487
#ifdef CONFIG_RT_GROUP_SCHED
4488 4489 4490 4491
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4492 4493
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4494
			return -EPERM;
4495 4496
#endif

4497 4498 4499 4500 4501
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4502 4503 4504 4505
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4506
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4507 4508 4509 4510
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4511
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4512 4513 4514
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4515
		__task_rq_unlock(rq);
4516
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4517 4518
		goto recheck;
	}
I
Ingo Molnar 已提交
4519
	on_rq = p->se.on_rq;
4520
	running = task_current(rq, p);
4521
	if (on_rq)
4522
		deactivate_task(rq, p, 0);
4523 4524
	if (running)
		p->sched_class->put_prev_task(rq, p);
4525

4526 4527
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4528
	oldprio = p->prio;
4529
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4530
	__setscheduler(rq, p, policy, param->sched_priority);
4531

4532 4533
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4534 4535
	if (on_rq) {
		activate_task(rq, p, 0);
4536 4537

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4538
	}
4539
	__task_rq_unlock(rq);
4540
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4541

4542 4543
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4544 4545
	return 0;
}
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4560 4561
EXPORT_SYMBOL_GPL(sched_setscheduler);

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4579 4580
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4581 4582 4583
{
	struct sched_param lparam;
	struct task_struct *p;
4584
	int retval;
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4590 4591 4592

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4593
	p = find_process_by_pid(pid);
4594 4595 4596
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4597

L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4607 4608
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4609
{
4610 4611 4612 4613
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4614 4615 4616 4617 4618 4619 4620 4621
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4622
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629 4630
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4631
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4632
{
4633
	struct task_struct *p;
4634
	int retval;
L
Linus Torvalds 已提交
4635 4636

	if (pid < 0)
4637
		return -EINVAL;
L
Linus Torvalds 已提交
4638 4639

	retval = -ESRCH;
4640
	rcu_read_lock();
L
Linus Torvalds 已提交
4641 4642 4643 4644
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4645 4646
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4647
	}
4648
	rcu_read_unlock();
L
Linus Torvalds 已提交
4649 4650 4651 4652
	return retval;
}

/**
4653
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4654 4655 4656
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4657
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4658 4659
{
	struct sched_param lp;
4660
	struct task_struct *p;
4661
	int retval;
L
Linus Torvalds 已提交
4662 4663

	if (!param || pid < 0)
4664
		return -EINVAL;
L
Linus Torvalds 已提交
4665

4666
	rcu_read_lock();
L
Linus Torvalds 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4677
	rcu_read_unlock();
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4687
	rcu_read_unlock();
L
Linus Torvalds 已提交
4688 4689 4690
	return retval;
}

4691
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4692
{
4693
	cpumask_var_t cpus_allowed, new_mask;
4694 4695
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4696

4697
	get_online_cpus();
4698
	rcu_read_lock();
L
Linus Torvalds 已提交
4699 4700 4701

	p = find_process_by_pid(pid);
	if (!p) {
4702
		rcu_read_unlock();
4703
		put_online_cpus();
L
Linus Torvalds 已提交
4704 4705 4706
		return -ESRCH;
	}

4707
	/* Prevent p going away */
L
Linus Torvalds 已提交
4708
	get_task_struct(p);
4709
	rcu_read_unlock();
L
Linus Torvalds 已提交
4710

4711 4712 4713 4714 4715 4716 4717 4718
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4719
	retval = -EPERM;
4720
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4721 4722
		goto out_unlock;

4723 4724 4725 4726
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4727 4728
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4729
 again:
4730
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4731

P
Paul Menage 已提交
4732
	if (!retval) {
4733 4734
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4735 4736 4737 4738 4739
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4740
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4741 4742 4743
			goto again;
		}
	}
L
Linus Torvalds 已提交
4744
out_unlock:
4745 4746 4747 4748
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4749
	put_task_struct(p);
4750
	put_online_cpus();
L
Linus Torvalds 已提交
4751 4752 4753 4754
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4755
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4756
{
4757 4758 4759 4760 4761
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4771 4772
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4773
{
4774
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4775 4776
	int retval;

4777 4778
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4779

4780 4781 4782 4783 4784
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4785 4786
}

4787
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4788
{
4789
	struct task_struct *p;
4790 4791
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4792 4793
	int retval;

4794
	get_online_cpus();
4795
	rcu_read_lock();
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4802 4803 4804 4805
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4806
	rq = task_rq_lock(p, &flags);
4807
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4808
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4809 4810

out_unlock:
4811
	rcu_read_unlock();
4812
	put_online_cpus();
L
Linus Torvalds 已提交
4813

4814
	return retval;
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4823 4824
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4825 4826
{
	int ret;
4827
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4828

4829 4830 4831
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4832 4833
		return -EINVAL;

4834 4835
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4836

4837 4838
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4839
		size_t retlen = min_t(size_t, len, cpumask_size());
4840 4841

		if (copy_to_user(user_mask_ptr, mask, retlen))
4842 4843
			ret = -EFAULT;
		else
4844
			ret = retlen;
4845 4846
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4847

4848
	return ret;
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4854 4855
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4856
 */
4857
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4858
{
4859
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4860

4861
	schedstat_inc(rq, yld_count);
4862
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4869
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4870
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4878 4879 4880 4881 4882
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4883
static void __cond_resched(void)
L
Linus Torvalds 已提交
4884
{
4885 4886 4887
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4888 4889
}

4890
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4891
{
P
Peter Zijlstra 已提交
4892
	if (should_resched()) {
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897
		__cond_resched();
		return 1;
	}
	return 0;
}
4898
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4899 4900

/*
4901
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4902 4903
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4904
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4905 4906 4907
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4908
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4909
{
P
Peter Zijlstra 已提交
4910
	int resched = should_resched();
J
Jan Kara 已提交
4911 4912
	int ret = 0;

4913 4914
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4915
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4916
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4917
		if (resched)
N
Nick Piggin 已提交
4918 4919 4920
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4921
		ret = 1;
L
Linus Torvalds 已提交
4922 4923
		spin_lock(lock);
	}
J
Jan Kara 已提交
4924
	return ret;
L
Linus Torvalds 已提交
4925
}
4926
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4927

4928
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4929 4930 4931
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4932
	if (should_resched()) {
4933
		local_bh_enable();
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938 4939
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4940
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4941 4942 4943 4944

/**
 * yield - yield the current processor to other threads.
 *
4945
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4956
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4957 4958 4959 4960
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4961
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4962

4963
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4964
	atomic_inc(&rq->nr_iowait);
4965
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4966
	schedule();
4967
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4968
	atomic_dec(&rq->nr_iowait);
4969
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4975
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4976 4977
	long ret;

4978
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4979
	atomic_inc(&rq->nr_iowait);
4980
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4981
	ret = schedule_timeout(timeout);
4982
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4983
	atomic_dec(&rq->nr_iowait);
4984
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4995
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5005
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5006
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5020
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5030
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5031
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5045
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5046
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5047
{
5048
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5049
	unsigned int time_slice;
5050 5051
	unsigned long flags;
	struct rq *rq;
5052
	int retval;
L
Linus Torvalds 已提交
5053 5054 5055
	struct timespec t;

	if (pid < 0)
5056
		return -EINVAL;
L
Linus Torvalds 已提交
5057 5058

	retval = -ESRCH;
5059
	rcu_read_lock();
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065 5066 5067
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5068 5069 5070
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5071

5072
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5073
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5074 5075
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5076

L
Linus Torvalds 已提交
5077
out_unlock:
5078
	rcu_read_unlock();
L
Linus Torvalds 已提交
5079 5080 5081
	return retval;
}

5082
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5083

5084
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5085 5086
{
	unsigned long free = 0;
5087
	unsigned state;
L
Linus Torvalds 已提交
5088 5089

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5090
	printk(KERN_INFO "%-13.13s %c", p->comm,
5091
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5092
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5093
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5094
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5095
	else
P
Peter Zijlstra 已提交
5096
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5097 5098
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5099
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5100
	else
P
Peter Zijlstra 已提交
5101
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5102 5103
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5104
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5105
#endif
P
Peter Zijlstra 已提交
5106
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5107 5108
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5109

5110
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5111 5112
}

I
Ingo Molnar 已提交
5113
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5114
{
5115
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5116

5117
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5118 5119
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5120
#else
P
Peter Zijlstra 已提交
5121 5122
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127 5128 5129 5130
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5131
		if (!state_filter || (p->state & state_filter))
5132
			sched_show_task(p);
L
Linus Torvalds 已提交
5133 5134
	} while_each_thread(g, p);

5135 5136
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5137 5138 5139
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5140
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5141 5142 5143
	/*
	 * Only show locks if all tasks are dumped:
	 */
5144
	if (!state_filter)
I
Ingo Molnar 已提交
5145
		debug_show_all_locks();
L
Linus Torvalds 已提交
5146 5147
}

I
Ingo Molnar 已提交
5148 5149
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5150
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5151 5152
}

5153 5154 5155 5156 5157 5158 5159 5160
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5161
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5162
{
5163
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5164 5165
	unsigned long flags;

5166
	raw_spin_lock_irqsave(&rq->lock, flags);
5167

I
Ingo Molnar 已提交
5168
	__sched_fork(idle);
5169
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5170 5171
	idle->se.exec_start = sched_clock();

5172
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5173
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5174 5175

	rq->curr = rq->idle = idle;
5176 5177 5178
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5179
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5180 5181

	/* Set the preempt count _outside_ the spinlocks! */
5182 5183 5184
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5185
	task_thread_info(idle)->preempt_count = 0;
5186
#endif
I
Ingo Molnar 已提交
5187 5188 5189 5190
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5191
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5192 5193 5194 5195 5196 5197 5198
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5199
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5200
 */
5201
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5202

I
Ingo Molnar 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5212
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5213
{
5214
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5229

5230 5231
	return factor;
}
I
Ingo Molnar 已提交
5232

5233 5234 5235
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5236

5237 5238 5239 5240 5241 5242 5243 5244
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5245

5246 5247 5248
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5249 5250
}

L
Linus Torvalds 已提交
5251 5252 5253 5254
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5255
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5274
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5275 5276
 * call is not atomic; no spinlocks may be held.
 */
5277
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5278
{
5279
	struct migration_req req;
L
Linus Torvalds 已提交
5280
	unsigned long flags;
5281
	struct rq *rq;
5282
	int ret = 0;
L
Linus Torvalds 已提交
5283 5284

	rq = task_rq_lock(p, &flags);
5285

5286
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5287 5288 5289 5290
		ret = -EINVAL;
		goto out;
	}

5291
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5292
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5293 5294 5295 5296
		ret = -EINVAL;
		goto out;
	}

5297
	if (p->sched_class->set_cpus_allowed)
5298
		p->sched_class->set_cpus_allowed(p, new_mask);
5299
	else {
5300 5301
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5302 5303
	}

L
Linus Torvalds 已提交
5304
	/* Can the task run on the task's current CPU? If so, we're done */
5305
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5306 5307
		goto out;

5308
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5309
		/* Need help from migration thread: drop lock and wait. */
5310 5311 5312
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5313 5314
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5315
		put_task_struct(mt);
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5322

L
Linus Torvalds 已提交
5323 5324
	return ret;
}
5325
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5326 5327

/*
I
Ingo Molnar 已提交
5328
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5329 5330 5331 5332 5333 5334
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5335 5336
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5337
 */
5338
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5339
{
5340
	struct rq *rq_dest, *rq_src;
5341
	int ret = 0;
L
Linus Torvalds 已提交
5342

5343
	if (unlikely(!cpu_active(dest_cpu)))
5344
		return ret;
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349 5350 5351

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5352
		goto done;
L
Linus Torvalds 已提交
5353
	/* Affinity changed (again). */
5354
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5355
		goto fail;
L
Linus Torvalds 已提交
5356

5357 5358 5359 5360 5361
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5362
		deactivate_task(rq_src, p, 0);
5363
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5364
		activate_task(rq_dest, p, 0);
5365
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5366
	}
L
Linus Torvalds 已提交
5367
done:
5368
	ret = 1;
L
Linus Torvalds 已提交
5369
fail:
L
Linus Torvalds 已提交
5370
	double_rq_unlock(rq_src, rq_dest);
5371
	return ret;
L
Linus Torvalds 已提交
5372 5373
}

5374 5375 5376 5377 5378
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5379 5380 5381 5382 5383
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5384
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5385
{
5386
	int badcpu;
L
Linus Torvalds 已提交
5387
	int cpu = (long)data;
5388
	struct rq *rq;
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5395
		struct migration_req *req;
L
Linus Torvalds 已提交
5396 5397
		struct list_head *head;

5398
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5399 5400

		if (cpu_is_offline(cpu)) {
5401
			raw_spin_unlock_irq(&rq->lock);
5402
			break;
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5413
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5414 5415 5416 5417
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5418
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5419 5420
		list_del_init(head->next);

5421
		if (req->task != NULL) {
5422
			raw_spin_unlock(&rq->lock);
5423 5424 5425
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5426
			raw_spin_unlock(&rq->lock);
5427 5428
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5429
			raw_spin_unlock(&rq->lock);
5430 5431
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5432
		local_irq_enable();
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5442
/*
5443
 * Figure out where task on dead CPU should go, use force if necessary.
5444
 */
5445
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5446
{
5447 5448 5449
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5450

5451 5452 5453 5454 5455 5456 5457
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5458 5459 5460 5461
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5462
	if (needs_cpu)
5463
		__migrate_task(p, dead_cpu, dest_cpu);
5464
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5474
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5475
{
5476
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5490
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5491

5492
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5493

5494 5495
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5496 5497
			continue;

5498 5499 5500
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5501

5502
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5503 5504
}

I
Ingo Molnar 已提交
5505 5506
/*
 * Schedules idle task to be the next runnable task on current CPU.
5507 5508
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5509 5510 5511
 */
void sched_idle_next(void)
{
5512
	int this_cpu = smp_processor_id();
5513
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5514 5515 5516 5517
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5518
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5519

5520 5521 5522
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5523
	 */
5524
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5525

I
Ingo Molnar 已提交
5526
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5527

5528
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5529

5530
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5531 5532
}

5533 5534
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5548
/* called under rq->lock with disabled interrupts */
5549
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5550
{
5551
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5552 5553

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5554
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5555 5556

	/* Cannot have done final schedule yet: would have vanished. */
5557
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5558

5559
	get_task_struct(p);
L
Linus Torvalds 已提交
5560 5561 5562

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5563
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5564 5565
	 * fine.
	 */
5566
	raw_spin_unlock_irq(&rq->lock);
5567
	move_task_off_dead_cpu(dead_cpu, p);
5568
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5569

5570
	put_task_struct(p);
L
Linus Torvalds 已提交
5571 5572 5573 5574 5575
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5576
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5577
	struct task_struct *next;
5578

I
Ingo Molnar 已提交
5579 5580 5581
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5582
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5583 5584
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5585
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5586
		migrate_dead(dead_cpu, next);
5587

L
Linus Torvalds 已提交
5588 5589
	}
}
5590 5591 5592 5593 5594 5595 5596

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5597
	rq->calc_load_active = 0;
5598
}
L
Linus Torvalds 已提交
5599 5600
#endif /* CONFIG_HOTPLUG_CPU */

5601 5602 5603
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5604 5605
	{
		.procname	= "sched_domain",
5606
		.mode		= 0555,
5607
	},
5608
	{}
5609 5610 5611
};

static struct ctl_table sd_ctl_root[] = {
5612 5613
	{
		.procname	= "kernel",
5614
		.mode		= 0555,
5615 5616
		.child		= sd_ctl_dir,
	},
5617
	{}
5618 5619 5620 5621 5622
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5623
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5624 5625 5626 5627

	return entry;
}

5628 5629
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5630
	struct ctl_table *entry;
5631

5632 5633 5634
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5635
	 * will always be set. In the lowest directory the names are
5636 5637 5638
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5639 5640
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5641 5642 5643
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5644 5645 5646 5647 5648

	kfree(*tablep);
	*tablep = NULL;
}

5649
static void
5650
set_table_entry(struct ctl_table *entry,
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5664
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5665

5666 5667 5668
	if (table == NULL)
		return NULL;

5669
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5670
		sizeof(long), 0644, proc_doulongvec_minmax);
5671
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5672
		sizeof(long), 0644, proc_doulongvec_minmax);
5673
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5674
		sizeof(int), 0644, proc_dointvec_minmax);
5675
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5676
		sizeof(int), 0644, proc_dointvec_minmax);
5677
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5678
		sizeof(int), 0644, proc_dointvec_minmax);
5679
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5680
		sizeof(int), 0644, proc_dointvec_minmax);
5681
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5682
		sizeof(int), 0644, proc_dointvec_minmax);
5683
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5684
		sizeof(int), 0644, proc_dointvec_minmax);
5685
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5686
		sizeof(int), 0644, proc_dointvec_minmax);
5687
	set_table_entry(&table[9], "cache_nice_tries",
5688 5689
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5690
	set_table_entry(&table[10], "flags", &sd->flags,
5691
		sizeof(int), 0644, proc_dointvec_minmax);
5692 5693 5694
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5695 5696 5697 5698

	return table;
}

5699
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5700 5701 5702 5703 5704 5705 5706 5707 5708
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5709 5710
	if (table == NULL)
		return NULL;
5711 5712 5713 5714 5715

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5716
		entry->mode = 0555;
5717 5718 5719 5720 5721 5722 5723 5724
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5725
static void register_sched_domain_sysctl(void)
5726
{
5727
	int i, cpu_num = num_possible_cpus();
5728 5729 5730
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5731 5732 5733
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5734 5735 5736
	if (entry == NULL)
		return;

5737
	for_each_possible_cpu(i) {
5738 5739
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5740
		entry->mode = 0555;
5741
		entry->child = sd_alloc_ctl_cpu_table(i);
5742
		entry++;
5743
	}
5744 5745

	WARN_ON(sd_sysctl_header);
5746 5747
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5748

5749
/* may be called multiple times per register */
5750 5751
static void unregister_sched_domain_sysctl(void)
{
5752 5753
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5754
	sd_sysctl_header = NULL;
5755 5756
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5757
}
5758
#else
5759 5760 5761 5762
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5763 5764 5765 5766
{
}
#endif

5767 5768 5769 5770 5771
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5772
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5792
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5793 5794 5795 5796
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5797 5798 5799 5800
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5801 5802
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5803 5804
{
	struct task_struct *p;
5805
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5806
	unsigned long flags;
5807
	struct rq *rq;
L
Linus Torvalds 已提交
5808 5809

	switch (action) {
5810

L
Linus Torvalds 已提交
5811
	case CPU_UP_PREPARE:
5812
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5813
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5814 5815 5816 5817 5818
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5819
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5820
		task_rq_unlock(rq, &flags);
5821
		get_task_struct(p);
L
Linus Torvalds 已提交
5822
		cpu_rq(cpu)->migration_thread = p;
5823
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5824
		break;
5825

L
Linus Torvalds 已提交
5826
	case CPU_ONLINE:
5827
	case CPU_ONLINE_FROZEN:
5828
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5829
		wake_up_process(cpu_rq(cpu)->migration_thread);
5830 5831 5832

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5833
		raw_spin_lock_irqsave(&rq->lock, flags);
5834
		if (rq->rd) {
5835
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5836 5837

			set_rq_online(rq);
5838
		}
5839
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5840
		break;
5841

L
Linus Torvalds 已提交
5842 5843
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5844
	case CPU_UP_CANCELED_FROZEN:
5845 5846
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5847
		/* Unbind it from offline cpu so it can run. Fall thru. */
5848
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5849
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5850
		kthread_stop(cpu_rq(cpu)->migration_thread);
5851
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5852 5853
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5854

L
Linus Torvalds 已提交
5855
	case CPU_DEAD:
5856
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5857 5858 5859
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5860
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5861 5862
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5863
		raw_spin_lock_irq(&rq->lock);
5864
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5865 5866
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5867
		migrate_dead_tasks(cpu);
5868
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5869 5870
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5871
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5872 5873 5874 5875 5876
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5877
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5878
		while (!list_empty(&rq->migration_queue)) {
5879 5880
			struct migration_req *req;

L
Linus Torvalds 已提交
5881
			req = list_entry(rq->migration_queue.next,
5882
					 struct migration_req, list);
L
Linus Torvalds 已提交
5883
			list_del_init(&req->list);
5884
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5885
			complete(&req->done);
5886
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5887
		}
5888
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5889
		break;
G
Gregory Haskins 已提交
5890

5891 5892
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5893 5894
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5895
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5896
		if (rq->rd) {
5897
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5898
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5899
		}
5900
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5901
		break;
L
Linus Torvalds 已提交
5902 5903 5904 5905 5906
#endif
	}
	return NOTIFY_OK;
}

5907 5908 5909
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5910
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5911
 */
5912
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5913 5914 5915 5916
	.notifier_call = migration_call,
	.priority = 10
};

5917
static int __init migration_init(void)
L
Linus Torvalds 已提交
5918 5919
{
	void *cpu = (void *)(long)smp_processor_id();
5920
	int err;
5921 5922

	/* Start one for the boot CPU: */
5923 5924
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5925 5926
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5927

5928
	return 0;
L
Linus Torvalds 已提交
5929
}
5930
early_initcall(migration_init);
L
Linus Torvalds 已提交
5931 5932 5933
#endif

#ifdef CONFIG_SMP
5934

5935
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5947
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5948
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5949
{
I
Ingo Molnar 已提交
5950
	struct sched_group *group = sd->groups;
5951
	char str[256];
L
Linus Torvalds 已提交
5952

R
Rusty Russell 已提交
5953
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5954
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5955 5956 5957 5958

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5959
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5960
		if (sd->parent)
P
Peter Zijlstra 已提交
5961 5962
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5963
		return -1;
N
Nick Piggin 已提交
5964 5965
	}

P
Peter Zijlstra 已提交
5966
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5967

5968
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5969 5970
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5971
	}
5972
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5973 5974
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5975
	}
L
Linus Torvalds 已提交
5976

I
Ingo Molnar 已提交
5977
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5978
	do {
I
Ingo Molnar 已提交
5979
		if (!group) {
P
Peter Zijlstra 已提交
5980 5981
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5982 5983 5984
			break;
		}

5985
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5986 5987 5988
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5989 5990
			break;
		}
L
Linus Torvalds 已提交
5991

5992
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5993 5994
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5995 5996
			break;
		}
L
Linus Torvalds 已提交
5997

5998
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5999 6000
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6001 6002
			break;
		}
L
Linus Torvalds 已提交
6003

6004
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6005

R
Rusty Russell 已提交
6006
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6007

P
Peter Zijlstra 已提交
6008
		printk(KERN_CONT " %s", str);
6009
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6010 6011
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6012
		}
L
Linus Torvalds 已提交
6013

I
Ingo Molnar 已提交
6014 6015
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6016
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6017

6018
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6019
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6020

6021 6022
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6023 6024
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6025 6026
	return 0;
}
L
Linus Torvalds 已提交
6027

I
Ingo Molnar 已提交
6028 6029
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6030
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6031
	int level = 0;
L
Linus Torvalds 已提交
6032

6033 6034 6035
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6036 6037 6038 6039
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6040

I
Ingo Molnar 已提交
6041 6042
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6043
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6044 6045 6046 6047
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6048
	for (;;) {
6049
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6050
			break;
L
Linus Torvalds 已提交
6051 6052
		level++;
		sd = sd->parent;
6053
		if (!sd)
I
Ingo Molnar 已提交
6054 6055
			break;
	}
6056
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6057
}
6058
#else /* !CONFIG_SCHED_DEBUG */
6059
# define sched_domain_debug(sd, cpu) do { } while (0)
6060
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6061

6062
static int sd_degenerate(struct sched_domain *sd)
6063
{
6064
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6065 6066 6067 6068 6069 6070
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6071 6072 6073
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6074 6075 6076 6077 6078
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6079
	if (sd->flags & (SD_WAKE_AFFINE))
6080 6081 6082 6083 6084
		return 0;

	return 1;
}

6085 6086
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6087 6088 6089 6090 6091 6092
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6093
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6094 6095 6096 6097 6098 6099 6100
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6101 6102 6103
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6104 6105
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6106 6107 6108 6109 6110 6111 6112
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6113 6114
static void free_rootdomain(struct root_domain *rd)
{
6115 6116
	synchronize_sched();

6117 6118
	cpupri_cleanup(&rd->cpupri);

6119 6120 6121 6122 6123 6124
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6125 6126
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6127
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6128 6129
	unsigned long flags;

6130
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6131 6132

	if (rq->rd) {
I
Ingo Molnar 已提交
6133
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6134

6135
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6136
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6137

6138
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6139

I
Ingo Molnar 已提交
6140 6141 6142 6143 6144 6145 6146
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6147 6148 6149 6150 6151
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6152
	cpumask_set_cpu(rq->cpu, rd->span);
6153
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6154
		set_rq_online(rq);
G
Gregory Haskins 已提交
6155

6156
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6157 6158 6159

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6160 6161
}

L
Li Zefan 已提交
6162
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6163
{
6164 6165
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6166 6167
	memset(rd, 0, sizeof(*rd));

6168 6169
	if (bootmem)
		gfp = GFP_NOWAIT;
6170

6171
	if (!alloc_cpumask_var(&rd->span, gfp))
6172
		goto out;
6173
	if (!alloc_cpumask_var(&rd->online, gfp))
6174
		goto free_span;
6175
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6176
		goto free_online;
6177

P
Pekka Enberg 已提交
6178
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6179
		goto free_rto_mask;
6180
	return 0;
6181

6182 6183
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6184 6185 6186 6187
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6188
out:
6189
	return -ENOMEM;
G
Gregory Haskins 已提交
6190 6191 6192 6193
}

static void init_defrootdomain(void)
{
6194 6195
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6196 6197 6198
	atomic_set(&def_root_domain.refcount, 1);
}

6199
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6200 6201 6202 6203 6204 6205 6206
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6207 6208 6209 6210
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6211 6212 6213 6214

	return rd;
}

L
Linus Torvalds 已提交
6215
/*
I
Ingo Molnar 已提交
6216
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6217 6218
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6219 6220
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6221
{
6222
	struct rq *rq = cpu_rq(cpu);
6223 6224 6225
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6226
	for (tmp = sd; tmp; ) {
6227 6228 6229
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6230

6231
		if (sd_parent_degenerate(tmp, parent)) {
6232
			tmp->parent = parent->parent;
6233 6234
			if (parent->parent)
				parent->parent->child = tmp;
6235 6236
		} else
			tmp = tmp->parent;
6237 6238
	}

6239
	if (sd && sd_degenerate(sd)) {
6240
		sd = sd->parent;
6241 6242 6243
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6244 6245 6246

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6247
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6248
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6249 6250 6251
}

/* cpus with isolated domains */
6252
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6253 6254 6255 6256

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6257
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6258
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6259 6260 6261
	return 1;
}

I
Ingo Molnar 已提交
6262
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6263 6264

/*
6265 6266
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6267 6268
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6269 6270 6271 6272 6273
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6274
static void
6275 6276 6277
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6278
					struct sched_group **sg,
6279 6280
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6281 6282 6283 6284
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6285
	cpumask_clear(covered);
6286

6287
	for_each_cpu(i, span) {
6288
		struct sched_group *sg;
6289
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6290 6291
		int j;

6292
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6293 6294
			continue;

6295
		cpumask_clear(sched_group_cpus(sg));
6296
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6297

6298
		for_each_cpu(j, span) {
6299
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6300 6301
				continue;

6302
			cpumask_set_cpu(j, covered);
6303
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6314
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6315

6316
#ifdef CONFIG_NUMA
6317

6318 6319 6320 6321 6322
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6323
 * Find the next node to include in a given scheduling domain. Simply
6324 6325 6326 6327
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6328
static int find_next_best_node(int node, nodemask_t *used_nodes)
6329 6330 6331 6332 6333
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6334
	for (i = 0; i < nr_node_ids; i++) {
6335
		/* Start at @node */
6336
		n = (node + i) % nr_node_ids;
6337 6338 6339 6340 6341

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6342
		if (node_isset(n, *used_nodes))
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6354
	node_set(best_node, *used_nodes);
6355 6356 6357 6358 6359 6360
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6361
 * @span: resulting cpumask
6362
 *
I
Ingo Molnar 已提交
6363
 * Given a node, construct a good cpumask for its sched_domain to span. It
6364 6365 6366
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6367
static void sched_domain_node_span(int node, struct cpumask *span)
6368
{
6369
	nodemask_t used_nodes;
6370
	int i;
6371

6372
	cpumask_clear(span);
6373
	nodes_clear(used_nodes);
6374

6375
	cpumask_or(span, span, cpumask_of_node(node));
6376
	node_set(node, used_nodes);
6377 6378

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6379
		int next_node = find_next_best_node(node, &used_nodes);
6380

6381
		cpumask_or(span, span, cpumask_of_node(next_node));
6382 6383
	}
}
6384
#endif /* CONFIG_NUMA */
6385

6386
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6387

6388 6389
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6390 6391 6392
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6437
/*
6438
 * SMT sched-domains:
6439
 */
L
Linus Torvalds 已提交
6440
#ifdef CONFIG_SCHED_SMT
6441
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6442
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6443

I
Ingo Molnar 已提交
6444
static int
6445 6446
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6447
{
6448
	if (sg)
6449
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6450 6451
	return cpu;
}
6452
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6453

6454 6455 6456
/*
 * multi-core sched-domains:
 */
6457
#ifdef CONFIG_SCHED_MC
6458 6459
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6460
#endif /* CONFIG_SCHED_MC */
6461 6462

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6463
static int
6464 6465
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6466
{
6467
	int group;
6468

6469
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6470
	group = cpumask_first(mask);
6471
	if (sg)
6472
		*sg = &per_cpu(sched_group_core, group).sg;
6473
	return group;
6474 6475
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6476
static int
6477 6478
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6479
{
6480
	if (sg)
6481
		*sg = &per_cpu(sched_group_core, cpu).sg;
6482 6483 6484 6485
	return cpu;
}
#endif

6486 6487
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6488

I
Ingo Molnar 已提交
6489
static int
6490 6491
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6492
{
6493
	int group;
6494
#ifdef CONFIG_SCHED_MC
6495
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6496
	group = cpumask_first(mask);
6497
#elif defined(CONFIG_SCHED_SMT)
6498
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6499
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6500
#else
6501
	group = cpu;
L
Linus Torvalds 已提交
6502
#endif
6503
	if (sg)
6504
		*sg = &per_cpu(sched_group_phys, group).sg;
6505
	return group;
L
Linus Torvalds 已提交
6506 6507 6508 6509
}

#ifdef CONFIG_NUMA
/*
6510 6511 6512
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6513
 */
6514
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6515
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6516

6517
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6518
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6519

6520 6521 6522
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6523
{
6524 6525
	int group;

6526
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6527
	group = cpumask_first(nodemask);
6528 6529

	if (sg)
6530
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6531
	return group;
L
Linus Torvalds 已提交
6532
}
6533

6534 6535 6536 6537 6538 6539 6540
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6541
	do {
6542
		for_each_cpu(j, sched_group_cpus(sg)) {
6543
			struct sched_domain *sd;
6544

6545
			sd = &per_cpu(phys_domains, j).sd;
6546
			if (j != group_first_cpu(sd->groups)) {
6547 6548 6549 6550 6551 6552
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6553

6554
			sg->cpu_power += sd->groups->cpu_power;
6555 6556 6557
		}
		sg = sg->next;
	} while (sg != group_head);
6558
}
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6580 6581
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6582 6583 6584 6585 6586 6587 6588 6589 6590
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6591
	sg->cpu_power = 0;
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6610 6611
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6612 6613
			return -ENOMEM;
		}
6614
		sg->cpu_power = 0;
6615 6616 6617 6618 6619 6620 6621 6622 6623
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6624
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6625

6626
#ifdef CONFIG_NUMA
6627
/* Free memory allocated for various sched_group structures */
6628 6629
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6630
{
6631
	int cpu, i;
6632

6633
	for_each_cpu(cpu, cpu_map) {
6634 6635 6636 6637 6638 6639
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6640
		for (i = 0; i < nr_node_ids; i++) {
6641 6642
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6643
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6644
			if (cpumask_empty(nodemask))
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6661
#else /* !CONFIG_NUMA */
6662 6663
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6664 6665
{
}
6666
#endif /* CONFIG_NUMA */
6667

6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6682 6683
	long power;
	int weight;
6684 6685 6686

	WARN_ON(!sd || !sd->groups);

6687
	if (cpu != group_first_cpu(sd->groups))
6688 6689 6690 6691
		return;

	child = sd->child;

6692
	sd->groups->cpu_power = 0;
6693

6694 6695 6696 6697 6698
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6699 6700 6701
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6702
		 */
P
Peter Zijlstra 已提交
6703 6704
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6705
			power /= weight;
P
Peter Zijlstra 已提交
6706 6707
			power >>= SCHED_LOAD_SHIFT;
		}
6708
		sd->groups->cpu_power += power;
6709 6710 6711 6712
		return;
	}

	/*
6713
	 * Add cpu_power of each child group to this groups cpu_power.
6714 6715 6716
	 */
	group = child->groups;
	do {
6717
		sd->groups->cpu_power += group->cpu_power;
6718 6719 6720 6721
		group = group->next;
	} while (group != child->groups);
}

6722 6723 6724 6725 6726
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6727 6728 6729 6730 6731 6732
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6733
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6734

6735 6736 6737 6738 6739
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6740
	sd->level = SD_LV_##type;				\
6741
	SD_INIT_NAME(sd, type);					\
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6756 6757 6758 6759
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6760 6761 6762 6763 6764 6765
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6784
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6785 6786
	} else {
		/* turn on idle balance on this domain */
6787
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6788 6789 6790
	}
}

6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6811
#ifdef CONFIG_NUMA
6812 6813 6814 6815 6816 6817 6818
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6819
#endif
6820 6821 6822 6823
	case sa_none:
		break;
	}
}
6824

6825 6826 6827
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6828
#ifdef CONFIG_NUMA
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6839
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6840
		return sa_notcovered;
6841
	}
6842
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6843
#endif
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6856
		printk(KERN_WARNING "Cannot alloc root domain\n");
6857
		return sa_tmpmask;
G
Gregory Haskins 已提交
6858
	}
6859 6860
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6861

6862 6863 6864 6865
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6866
#ifdef CONFIG_NUMA
6867
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6868

6869 6870 6871 6872 6873
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6874
		set_domain_attribute(sd, attr);
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6889
#endif
6890 6891
	return sd;
}
L
Linus Torvalds 已提交
6892

6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6908

6909 6910 6911 6912 6913
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6914
#ifdef CONFIG_SCHED_MC
6915 6916 6917 6918 6919 6920 6921
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6922
#endif
6923 6924
	return sd;
}
6925

6926 6927 6928 6929 6930
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6931
#ifdef CONFIG_SCHED_SMT
6932 6933 6934 6935 6936 6937 6938
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6939
#endif
6940 6941
	return sd;
}
L
Linus Torvalds 已提交
6942

6943 6944 6945 6946
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6947
#ifdef CONFIG_SCHED_SMT
6948 6949 6950 6951 6952 6953 6954 6955
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6956
#endif
6957
#ifdef CONFIG_SCHED_MC
6958 6959 6960 6961 6962 6963 6964
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6965
#endif
6966 6967 6968 6969 6970 6971 6972
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6973
#ifdef CONFIG_NUMA
6974 6975 6976 6977 6978
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6979 6980
	default:
		break;
6981
	}
6982
}
6983

6984 6985 6986 6987 6988 6989 6990 6991 6992
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6993
	struct sched_domain *sd;
6994
	int i;
6995
#ifdef CONFIG_NUMA
6996
	d.sd_allnodes = 0;
6997
#endif
6998

6999 7000 7001 7002
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7003

L
Linus Torvalds 已提交
7004
	/*
7005
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7006
	 */
7007
	for_each_cpu(i, cpu_map) {
7008 7009
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7010

7011
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7012
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7013
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7014
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7015
	}
7016

7017
	for_each_cpu(i, cpu_map) {
7018
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7019
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7020
	}
7021

L
Linus Torvalds 已提交
7022
	/* Set up physical groups */
7023 7024
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7025

L
Linus Torvalds 已提交
7026 7027
#ifdef CONFIG_NUMA
	/* Set up node groups */
7028 7029
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7030

7031 7032
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7033
			goto error;
L
Linus Torvalds 已提交
7034 7035 7036
#endif

	/* Calculate CPU power for physical packages and nodes */
7037
#ifdef CONFIG_SCHED_SMT
7038
	for_each_cpu(i, cpu_map) {
7039
		sd = &per_cpu(cpu_domains, i).sd;
7040
		init_sched_groups_power(i, sd);
7041
	}
L
Linus Torvalds 已提交
7042
#endif
7043
#ifdef CONFIG_SCHED_MC
7044
	for_each_cpu(i, cpu_map) {
7045
		sd = &per_cpu(core_domains, i).sd;
7046
		init_sched_groups_power(i, sd);
7047 7048
	}
#endif
7049

7050
	for_each_cpu(i, cpu_map) {
7051
		sd = &per_cpu(phys_domains, i).sd;
7052
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7053 7054
	}

7055
#ifdef CONFIG_NUMA
7056
	for (i = 0; i < nr_node_ids; i++)
7057
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7058

7059
	if (d.sd_allnodes) {
7060
		struct sched_group *sg;
7061

7062
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7063
								d.tmpmask);
7064 7065
		init_numa_sched_groups_power(sg);
	}
7066 7067
#endif

L
Linus Torvalds 已提交
7068
	/* Attach the domains */
7069
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7070
#ifdef CONFIG_SCHED_SMT
7071
		sd = &per_cpu(cpu_domains, i).sd;
7072
#elif defined(CONFIG_SCHED_MC)
7073
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7074
#else
7075
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7076
#endif
7077
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7078
	}
7079

7080 7081 7082
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7083 7084

error:
7085 7086
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7087
}
P
Paul Jackson 已提交
7088

7089
static int build_sched_domains(const struct cpumask *cpu_map)
7090 7091 7092 7093
{
	return __build_sched_domains(cpu_map, NULL);
}

7094
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7095
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7096 7097
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7098 7099 7100

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7101 7102
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7103
 */
7104
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7105

7106 7107 7108 7109 7110 7111
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7112
{
7113
	return 0;
7114 7115
}

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7141
/*
I
Ingo Molnar 已提交
7142
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7143 7144
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7145
 */
7146
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7147
{
7148 7149
	int err;

7150
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7151
	ndoms_cur = 1;
7152
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7153
	if (!doms_cur)
7154 7155
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7156
	dattr_cur = NULL;
7157
	err = build_sched_domains(doms_cur[0]);
7158
	register_sched_domain_sysctl();
7159 7160

	return err;
7161 7162
}

7163 7164
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7165
{
7166
	free_sched_groups(cpu_map, tmpmask);
7167
}
L
Linus Torvalds 已提交
7168

7169 7170 7171 7172
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7173
static void detach_destroy_domains(const struct cpumask *cpu_map)
7174
{
7175 7176
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7177 7178
	int i;

7179
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7180
		cpu_attach_domain(NULL, &def_root_domain, i);
7181
	synchronize_sched();
7182
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7183 7184
}

7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7201 7202
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7203
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7204 7205 7206
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7207
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7208 7209 7210
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7211 7212 7213
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7214 7215 7216 7217 7218 7219
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7220
 *
7221
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7222 7223
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7224
 *
P
Paul Jackson 已提交
7225 7226
 * Call with hotplug lock held
 */
7227
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7228
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7229
{
7230
	int i, j, n;
7231
	int new_topology;
P
Paul Jackson 已提交
7232

7233
	mutex_lock(&sched_domains_mutex);
7234

7235 7236 7237
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7238 7239 7240
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7241
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7242 7243 7244

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7245
		for (j = 0; j < n && !new_topology; j++) {
7246
			if (cpumask_equal(doms_cur[i], doms_new[j])
7247
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7248 7249 7250
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7251
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7252 7253 7254 7255
match1:
		;
	}

7256 7257
	if (doms_new == NULL) {
		ndoms_cur = 0;
7258
		doms_new = &fallback_doms;
7259
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7260
		WARN_ON_ONCE(dattr_new);
7261 7262
	}

P
Paul Jackson 已提交
7263 7264
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7265
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7266
			if (cpumask_equal(doms_new[i], doms_cur[j])
7267
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7268 7269 7270
				goto match2;
		}
		/* no match - add a new doms_new */
7271
		__build_sched_domains(doms_new[i],
7272
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7273 7274 7275 7276 7277
match2:
		;
	}

	/* Remember the new sched domains */
7278 7279
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7280
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7281
	doms_cur = doms_new;
7282
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7283
	ndoms_cur = ndoms_new;
7284 7285

	register_sched_domain_sysctl();
7286

7287
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7288 7289
}

7290
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7291
static void arch_reinit_sched_domains(void)
7292
{
7293
	get_online_cpus();
7294 7295 7296 7297

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7298
	rebuild_sched_domains();
7299
	put_online_cpus();
7300 7301 7302 7303
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7304
	unsigned int level = 0;
7305

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7317 7318 7319
		return -EINVAL;

	if (smt)
7320
		sched_smt_power_savings = level;
7321
	else
7322
		sched_mc_power_savings = level;
7323

7324
	arch_reinit_sched_domains();
7325

7326
	return count;
7327 7328 7329
}

#ifdef CONFIG_SCHED_MC
7330
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7331
					   struct sysdev_class_attribute *attr,
7332
					   char *page)
7333 7334 7335
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7336
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7337
					    struct sysdev_class_attribute *attr,
7338
					    const char *buf, size_t count)
7339 7340 7341
{
	return sched_power_savings_store(buf, count, 0);
}
7342 7343 7344
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7345 7346 7347
#endif

#ifdef CONFIG_SCHED_SMT
7348
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7349
					    struct sysdev_class_attribute *attr,
7350
					    char *page)
7351 7352 7353
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7354
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7355
					     struct sysdev_class_attribute *attr,
7356
					     const char *buf, size_t count)
7357 7358 7359
{
	return sched_power_savings_store(buf, count, 1);
}
7360 7361
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7362 7363 7364
		   sched_smt_power_savings_store);
#endif

7365
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7381
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7382

7383
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7384
/*
7385 7386
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7387 7388 7389
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7390 7391 7392 7393
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7394 7395 7396 7397
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7398
		partition_sched_domains(1, NULL, NULL);
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7409
{
P
Peter Zijlstra 已提交
7410 7411
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7412 7413
	switch (action) {
	case CPU_DOWN_PREPARE:
7414
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7415
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7416 7417 7418
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7419
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7420
	case CPU_ONLINE:
7421
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7422
		enable_runtime(cpu_rq(cpu));
7423 7424
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7425 7426 7427 7428 7429 7430 7431
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7432 7433 7434
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7435
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7436

7437 7438 7439 7440 7441
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7442
	get_online_cpus();
7443
	mutex_lock(&sched_domains_mutex);
7444
	arch_init_sched_domains(cpu_active_mask);
7445 7446 7447
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7448
	mutex_unlock(&sched_domains_mutex);
7449
	put_online_cpus();
7450 7451

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7452 7453
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7454 7455 7456 7457 7458
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7459
	init_hrtick();
7460 7461

	/* Move init over to a non-isolated CPU */
7462
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7463
		BUG();
I
Ingo Molnar 已提交
7464
	sched_init_granularity();
7465
	free_cpumask_var(non_isolated_cpus);
7466

7467
	init_sched_rt_class();
L
Linus Torvalds 已提交
7468 7469 7470 7471
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7472
	sched_init_granularity();
L
Linus Torvalds 已提交
7473 7474 7475
}
#endif /* CONFIG_SMP */

7476 7477
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7478 7479 7480 7481 7482 7483 7484
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7485
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7486 7487
{
	cfs_rq->tasks_timeline = RB_ROOT;
7488
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7489 7490 7491
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7492
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7493 7494
}

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7508
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7509
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7510
#ifdef CONFIG_SMP
7511
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7512 7513
#endif
#endif
P
Peter Zijlstra 已提交
7514 7515 7516
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7517
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7518 7519 7520 7521
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7522
	rt_rq->rt_runtime = 0;
7523
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7524

7525
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7526
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7527 7528
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7529 7530
}

P
Peter Zijlstra 已提交
7531
#ifdef CONFIG_FAIR_GROUP_SCHED
7532 7533 7534
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7535
{
7536
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7537 7538 7539 7540 7541 7542 7543
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7544 7545 7546 7547
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7548 7549 7550 7551 7552
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7553 7554
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7555
	se->load.inv_weight = 0;
7556
	se->parent = parent;
P
Peter Zijlstra 已提交
7557
}
7558
#endif
P
Peter Zijlstra 已提交
7559

7560
#ifdef CONFIG_RT_GROUP_SCHED
7561 7562 7563
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7564
{
7565 7566
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7567 7568 7569
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7570
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7571 7572 7573 7574
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7575 7576 7577
	if (!rt_se)
		return;

7578 7579 7580 7581 7582
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7583
	rt_se->my_q = rt_rq;
7584
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7585 7586 7587 7588
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7589 7590
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7591
	int i, j;
7592 7593 7594 7595 7596 7597 7598
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7599
#endif
7600
#ifdef CONFIG_CPUMASK_OFFSTACK
7601
	alloc_size += num_possible_cpus() * cpumask_size();
7602 7603
#endif
	if (alloc_size) {
7604
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7605 7606 7607 7608 7609 7610 7611

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7612

7613
#endif /* CONFIG_FAIR_GROUP_SCHED */
7614 7615 7616 7617 7618
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7619 7620
		ptr += nr_cpu_ids * sizeof(void **);

7621
#endif /* CONFIG_RT_GROUP_SCHED */
7622 7623 7624 7625 7626 7627
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7628
	}
I
Ingo Molnar 已提交
7629

G
Gregory Haskins 已提交
7630 7631 7632 7633
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7634 7635 7636 7637 7638 7639
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7640
#endif /* CONFIG_RT_GROUP_SCHED */
7641

D
Dhaval Giani 已提交
7642
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7643
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7644 7645
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7646
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7647

7648 7649 7650 7651
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7652
	for_each_possible_cpu(i) {
7653
		struct rq *rq;
L
Linus Torvalds 已提交
7654 7655

		rq = cpu_rq(i);
7656
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7657
		rq->nr_running = 0;
7658 7659
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7660
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7661
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7662
#ifdef CONFIG_FAIR_GROUP_SCHED
7663
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7664
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7680
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7681 7682 7683 7684
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7685
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7686
#endif
D
Dhaval Giani 已提交
7687 7688 7689
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7690
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7691
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7692
#ifdef CONFIG_CGROUP_SCHED
7693
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7694
#endif
I
Ingo Molnar 已提交
7695
#endif
L
Linus Torvalds 已提交
7696

I
Ingo Molnar 已提交
7697 7698
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7699
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7700
		rq->sd = NULL;
G
Gregory Haskins 已提交
7701
		rq->rd = NULL;
7702
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7703
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7704
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7705
		rq->push_cpu = 0;
7706
		rq->cpu = i;
7707
		rq->online = 0;
L
Linus Torvalds 已提交
7708
		rq->migration_thread = NULL;
7709 7710
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7711
		INIT_LIST_HEAD(&rq->migration_queue);
7712
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7713
#endif
P
Peter Zijlstra 已提交
7714
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7715 7716 7717
		atomic_set(&rq->nr_iowait, 0);
	}

7718
	set_load_weight(&init_task);
7719

7720 7721 7722 7723
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7724
#ifdef CONFIG_SMP
7725
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7726 7727
#endif

7728
#ifdef CONFIG_RT_MUTEXES
7729
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7730 7731
#endif

L
Linus Torvalds 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7745 7746 7747

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7748 7749 7750 7751
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7752

7753
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7754
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7755
#ifdef CONFIG_SMP
7756
#ifdef CONFIG_NO_HZ
7757
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7758
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7759
#endif
R
Rusty Russell 已提交
7760 7761 7762
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7763
#endif /* SMP */
7764

7765
	perf_event_init();
7766

7767
	scheduler_running = 1;
L
Linus Torvalds 已提交
7768 7769 7770
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7771 7772
static inline int preempt_count_equals(int preempt_offset)
{
7773
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7774 7775 7776 7777

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7778
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7779
{
7780
#ifdef in_atomic
L
Linus Torvalds 已提交
7781 7782
	static unsigned long prev_jiffy;	/* ratelimiting */

7783 7784
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7785 7786 7787 7788 7789
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7790 7791 7792 7793 7794 7795 7796
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7797 7798 7799 7800 7801

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7802 7803 7804 7805 7806 7807
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7808 7809 7810
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7811

7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7822 7823
void normalize_rt_tasks(void)
{
7824
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7825
	unsigned long flags;
7826
	struct rq *rq;
L
Linus Torvalds 已提交
7827

7828
	read_lock_irqsave(&tasklist_lock, flags);
7829
	do_each_thread(g, p) {
7830 7831 7832 7833 7834 7835
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7836 7837
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7838 7839 7840
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7841
#endif
I
Ingo Molnar 已提交
7842 7843 7844 7845 7846 7847 7848 7849

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7850
			continue;
I
Ingo Molnar 已提交
7851
		}
L
Linus Torvalds 已提交
7852

7853
		raw_spin_lock(&p->pi_lock);
7854
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7855

7856
		normalize_task(rq, p);
7857

7858
		__task_rq_unlock(rq);
7859
		raw_spin_unlock(&p->pi_lock);
7860 7861
	} while_each_thread(g, p);

7862
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7863 7864 7865
}

#endif /* CONFIG_MAGIC_SYSRQ */
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7884
struct task_struct *curr_task(int cpu)
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7895 7896
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7897 7898 7899 7900 7901 7902 7903
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7904
void set_curr_task(int cpu, struct task_struct *p)
7905 7906 7907 7908 7909
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7910

7911 7912
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7927 7928
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7929 7930
{
	struct cfs_rq *cfs_rq;
7931
	struct sched_entity *se;
7932
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7933 7934
	int i;

7935
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7936 7937
	if (!tg->cfs_rq)
		goto err;
7938
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7939 7940
	if (!tg->se)
		goto err;
7941 7942

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7943 7944

	for_each_possible_cpu(i) {
7945
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7946

7947 7948
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7949 7950 7951
		if (!cfs_rq)
			goto err;

7952 7953
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7954
		if (!se)
7955
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7956

7957
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7958 7959 7960 7961
	}

	return 1;

7962 7963
 err_free_rq:
	kfree(cfs_rq);
7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7978
#else /* !CONFG_FAIR_GROUP_SCHED */
7979 7980 7981 7982
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7983 7984
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7996
#endif /* CONFIG_FAIR_GROUP_SCHED */
7997 7998

#ifdef CONFIG_RT_GROUP_SCHED
7999 8000 8001 8002
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8003 8004
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8016 8017
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8018 8019
{
	struct rt_rq *rt_rq;
8020
	struct sched_rt_entity *rt_se;
8021 8022 8023
	struct rq *rq;
	int i;

8024
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8025 8026
	if (!tg->rt_rq)
		goto err;
8027
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8028 8029 8030
	if (!tg->rt_se)
		goto err;

8031 8032
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8033 8034 8035 8036

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8037 8038
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8039 8040
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8041

8042 8043
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8044
		if (!rt_se)
8045
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8046

8047
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8048 8049
	}

8050 8051
	return 1;

8052 8053
 err_free_rq:
	kfree(rt_rq);
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8068
#else /* !CONFIG_RT_GROUP_SCHED */
8069 8070 8071 8072
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8073 8074
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8086
#endif /* CONFIG_RT_GROUP_SCHED */
8087

D
Dhaval Giani 已提交
8088
#ifdef CONFIG_CGROUP_SCHED
8089 8090 8091 8092 8093 8094 8095 8096
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8097
struct task_group *sched_create_group(struct task_group *parent)
8098 8099 8100 8101 8102 8103 8104 8105 8106
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8107
	if (!alloc_fair_sched_group(tg, parent))
8108 8109
		goto err;

8110
	if (!alloc_rt_sched_group(tg, parent))
8111 8112
		goto err;

8113
	spin_lock_irqsave(&task_group_lock, flags);
8114
	for_each_possible_cpu(i) {
8115 8116
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8117
	}
P
Peter Zijlstra 已提交
8118
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8119 8120 8121 8122 8123

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8124
	list_add_rcu(&tg->siblings, &parent->children);
8125
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8126

8127
	return tg;
S
Srivatsa Vaddagiri 已提交
8128 8129

err:
P
Peter Zijlstra 已提交
8130
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8131 8132 8133
	return ERR_PTR(-ENOMEM);
}

8134
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8135
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8136 8137
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8138
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8139 8140
}

8141
/* Destroy runqueue etc associated with a task group */
8142
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8143
{
8144
	unsigned long flags;
8145
	int i;
S
Srivatsa Vaddagiri 已提交
8146

8147
	spin_lock_irqsave(&task_group_lock, flags);
8148
	for_each_possible_cpu(i) {
8149 8150
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8151
	}
P
Peter Zijlstra 已提交
8152
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8153
	list_del_rcu(&tg->siblings);
8154
	spin_unlock_irqrestore(&task_group_lock, flags);
8155 8156

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8157
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8158 8159
}

8160
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8161 8162 8163
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8164 8165
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8166 8167 8168 8169 8170 8171 8172
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8173
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8174 8175
	on_rq = tsk->se.on_rq;

8176
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8177
		dequeue_task(rq, tsk, 0);
8178 8179
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8180

P
Peter Zijlstra 已提交
8181
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8182

P
Peter Zijlstra 已提交
8183 8184
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8185
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8186 8187
#endif

8188 8189 8190
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8191
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8192 8193 8194

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8195
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8196

8197
#ifdef CONFIG_FAIR_GROUP_SCHED
8198
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8199 8200 8201 8202 8203
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8204
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8205 8206 8207
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8208
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8209

8210
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8211
		enqueue_entity(cfs_rq, se, 0);
8212
}
8213

8214 8215 8216 8217 8218 8219
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8220
	raw_spin_lock_irqsave(&rq->lock, flags);
8221
	__set_se_shares(se, shares);
8222
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8223 8224
}

8225 8226
static DEFINE_MUTEX(shares_mutex);

8227
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8228 8229
{
	int i;
8230
	unsigned long flags;
8231

8232 8233 8234 8235 8236 8237
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8238 8239
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8240 8241
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8242

8243
	mutex_lock(&shares_mutex);
8244
	if (tg->shares == shares)
8245
		goto done;
S
Srivatsa Vaddagiri 已提交
8246

8247
	spin_lock_irqsave(&task_group_lock, flags);
8248 8249
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8250
	list_del_rcu(&tg->siblings);
8251
	spin_unlock_irqrestore(&task_group_lock, flags);
8252 8253 8254 8255 8256 8257 8258 8259

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8260
	tg->shares = shares;
8261 8262 8263 8264 8265
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8266
		set_se_shares(tg->se[i], shares);
8267
	}
S
Srivatsa Vaddagiri 已提交
8268

8269 8270 8271 8272
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8273
	spin_lock_irqsave(&task_group_lock, flags);
8274 8275
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8276
	list_add_rcu(&tg->siblings, &tg->parent->children);
8277
	spin_unlock_irqrestore(&task_group_lock, flags);
8278
done:
8279
	mutex_unlock(&shares_mutex);
8280
	return 0;
S
Srivatsa Vaddagiri 已提交
8281 8282
}

8283 8284 8285 8286
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8287
#endif
8288

8289
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8290
/*
P
Peter Zijlstra 已提交
8291
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8292
 */
P
Peter Zijlstra 已提交
8293 8294 8295 8296 8297
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8298
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8299

P
Peter Zijlstra 已提交
8300
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8301 8302
}

P
Peter Zijlstra 已提交
8303 8304
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8305
{
P
Peter Zijlstra 已提交
8306
	struct task_struct *g, *p;
8307

P
Peter Zijlstra 已提交
8308 8309 8310 8311
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8312

P
Peter Zijlstra 已提交
8313 8314
	return 0;
}
8315

P
Peter Zijlstra 已提交
8316 8317 8318 8319 8320
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8321

P
Peter Zijlstra 已提交
8322 8323 8324 8325 8326 8327
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8328

P
Peter Zijlstra 已提交
8329 8330
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8331

P
Peter Zijlstra 已提交
8332 8333 8334
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8335 8336
	}

8337 8338 8339 8340 8341
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8342

8343 8344 8345
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8346 8347
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8348

P
Peter Zijlstra 已提交
8349
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8350

8351 8352 8353 8354 8355
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8356

8357 8358 8359
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8360 8361 8362
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8363

P
Peter Zijlstra 已提交
8364 8365 8366 8367
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8368

P
Peter Zijlstra 已提交
8369
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8370
	}
P
Peter Zijlstra 已提交
8371

P
Peter Zijlstra 已提交
8372 8373 8374 8375
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8376 8377
}

P
Peter Zijlstra 已提交
8378
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8379
{
P
Peter Zijlstra 已提交
8380 8381 8382 8383 8384 8385 8386
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8387 8388
}

8389 8390
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8391
{
P
Peter Zijlstra 已提交
8392
	int i, err = 0;
P
Peter Zijlstra 已提交
8393 8394

	mutex_lock(&rt_constraints_mutex);
8395
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8396 8397
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8398
		goto unlock;
P
Peter Zijlstra 已提交
8399

8400
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8401 8402
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8403 8404 8405 8406

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8407
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8408
		rt_rq->rt_runtime = rt_runtime;
8409
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8410
	}
8411
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8412
 unlock:
8413
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8414 8415 8416
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8417 8418
}

8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8431 8432 8433 8434
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8435
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8436 8437
		return -1;

8438
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8439 8440 8441
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8442 8443 8444 8445 8446 8447 8448 8449

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8450 8451 8452
	if (rt_period == 0)
		return -EINVAL;

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8467
	u64 runtime, period;
8468 8469
	int ret = 0;

8470 8471 8472
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8473 8474 8475 8476 8477 8478 8479 8480
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8481

8482
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8483
	read_lock(&tasklist_lock);
8484
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8485
	read_unlock(&tasklist_lock);
8486 8487 8488 8489
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8500
#else /* !CONFIG_RT_GROUP_SCHED */
8501 8502
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8503 8504 8505
	unsigned long flags;
	int i;

8506 8507 8508
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8509 8510 8511 8512 8513 8514 8515
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8516
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8517 8518 8519
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8520
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8521
		rt_rq->rt_runtime = global_rt_runtime();
8522
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8523
	}
8524
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8525

8526 8527
	return 0;
}
8528
#endif /* CONFIG_RT_GROUP_SCHED */
8529 8530

int sched_rt_handler(struct ctl_table *table, int write,
8531
		void __user *buffer, size_t *lenp,
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8542
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8559

8560
#ifdef CONFIG_CGROUP_SCHED
8561 8562

/* return corresponding task_group object of a cgroup */
8563
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8564
{
8565 8566
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8567 8568 8569
}

static struct cgroup_subsys_state *
8570
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8571
{
8572
	struct task_group *tg, *parent;
8573

8574
	if (!cgrp->parent) {
8575 8576 8577 8578
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8579 8580
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8581 8582 8583 8584 8585 8586
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8587 8588
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8589
{
8590
	struct task_group *tg = cgroup_tg(cgrp);
8591 8592 8593 8594

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8595
static int
8596
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8597
{
8598
#ifdef CONFIG_RT_GROUP_SCHED
8599
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8600 8601
		return -EINVAL;
#else
8602 8603 8604
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8605
#endif
8606 8607
	return 0;
}
8608

8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8628 8629 8630 8631
	return 0;
}

static void
8632
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8633 8634
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8635 8636
{
	sched_move_task(tsk);
8637 8638 8639 8640 8641 8642 8643 8644
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8645 8646
}

8647
#ifdef CONFIG_FAIR_GROUP_SCHED
8648
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8649
				u64 shareval)
8650
{
8651
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8652 8653
}

8654
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8655
{
8656
	struct task_group *tg = cgroup_tg(cgrp);
8657 8658 8659

	return (u64) tg->shares;
}
8660
#endif /* CONFIG_FAIR_GROUP_SCHED */
8661

8662
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8663
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8664
				s64 val)
P
Peter Zijlstra 已提交
8665
{
8666
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8667 8668
}

8669
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8670
{
8671
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8672
}
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8684
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8685

8686
static struct cftype cpu_files[] = {
8687
#ifdef CONFIG_FAIR_GROUP_SCHED
8688 8689
	{
		.name = "shares",
8690 8691
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8692
	},
8693 8694
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8695
	{
P
Peter Zijlstra 已提交
8696
		.name = "rt_runtime_us",
8697 8698
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8699
	},
8700 8701
	{
		.name = "rt_period_us",
8702 8703
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8704
	},
8705
#endif
8706 8707 8708 8709
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8710
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8711 8712 8713
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8714 8715 8716 8717 8718 8719 8720
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8721 8722 8723
	.early_init	= 1,
};

8724
#endif	/* CONFIG_CGROUP_SCHED */
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8735
/* track cpu usage of a group of tasks and its child groups */
8736 8737 8738
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8739
	u64 __percpu *cpuusage;
8740
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8741
	struct cpuacct *parent;
8742 8743 8744 8745 8746
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8747
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8748
{
8749
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8762
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8763 8764
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8765
	int i;
8766 8767

	if (!ca)
8768
		goto out;
8769 8770

	ca->cpuusage = alloc_percpu(u64);
8771 8772 8773 8774 8775 8776
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8777

8778 8779 8780
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8781
	return &ca->css;
8782 8783 8784 8785 8786 8787 8788 8789 8790

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8791 8792 8793
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8794
static void
8795
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8796
{
8797
	struct cpuacct *ca = cgroup_ca(cgrp);
8798
	int i;
8799

8800 8801
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8802 8803 8804 8805
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8806 8807
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8808
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8809 8810 8811 8812 8813 8814
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8815
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8816
	data = *cpuusage;
8817
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8818 8819 8820 8821 8822 8823 8824 8825 8826
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8827
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8828 8829 8830 8831 8832

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8833
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8834
	*cpuusage = val;
8835
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8836 8837 8838 8839 8840
#else
	*cpuusage = val;
#endif
}

8841
/* return total cpu usage (in nanoseconds) of a group */
8842
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8843
{
8844
	struct cpuacct *ca = cgroup_ca(cgrp);
8845 8846 8847
	u64 totalcpuusage = 0;
	int i;

8848 8849
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8850 8851 8852 8853

	return totalcpuusage;
}

8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8866 8867
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8868 8869 8870 8871 8872

out:
	return err;
}

8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8907 8908 8909
static struct cftype files[] = {
	{
		.name = "usage",
8910 8911
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8912
	},
8913 8914 8915 8916
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8917 8918 8919 8920
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8921 8922
};

8923
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8924
{
8925
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8936
	int cpu;
8937

L
Li Zefan 已提交
8938
	if (unlikely(!cpuacct_subsys.active))
8939 8940
		return;

8941
	cpu = task_cpu(tsk);
8942 8943 8944

	rcu_read_lock();

8945 8946
	ca = task_ca(tsk);

8947
	for (; ca; ca = ca->parent) {
8948
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8949 8950
		*cpuusage += cputime;
	}
8951 8952

	rcu_read_unlock();
8953 8954
}

8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8972 8973 8974 8975 8976 8977 8978
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8979
	int batch = CPUACCT_BATCH;
8980 8981 8982 8983 8984 8985 8986 8987

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8988
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8989 8990 8991 8992 8993
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8994 8995 8996 8997 8998 8999 9000 9001
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9087
		raw_spin_lock_irqsave(&rq->lock, flags);
9088
		list_add(&req->list, &rq->migration_queue);
9089
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9090 9091 9092 9093 9094 9095 9096
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9097
		raw_spin_lock_irqsave(&rq->lock, flags);
9098 9099 9100
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9101
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9102 9103
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9104
	synchronize_sched_expedited_count++;
9105 9106 9107 9108 9109 9110 9111 9112
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */