sched.c 269.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
473
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527
	/* runqueue lock: */
528
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
817
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

826 827 828 829 830 831 832 833
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
887
	rq->lock.owner = current;
888
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896
	raw_spin_unlock_irq(&rq->lock);
897 898 899
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920
	raw_spin_unlock_irq(&rq->lock);
921
#else
922
	raw_spin_unlock(&rq->lock);
923 924 925
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951
	for (;;) {
		struct rq *rq = task_rq(p);
952
		raw_spin_lock(&rq->lock);
953 954
		if (likely(rq == task_rq(p)))
			return rq;
955
		raw_spin_unlock(&rq->lock);
956 957 958
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
972
		raw_spin_lock(&rq->lock);
973 974
		if (likely(rq == task_rq(p)))
			return rq;
975
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
976 977 978
	}
}

979 980 981 982 983
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984
	raw_spin_unlock_wait(&rq->lock);
985 986
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989
	__releases(rq->lock)
{
990
	raw_spin_unlock(&rq->lock);
991 992
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995
	__releases(rq->lock)
{
996
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
997 998 999
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008

	local_irq_disable();
	rq = this_rq();
1009
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1010 1011 1012 1013

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1056
	raw_spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1060 1061 1062 1063

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072
	raw_spin_lock(&rq->lock);
1073 1074
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1075
	raw_spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1093
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 1095
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1129
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130
			HRTIMER_MODE_REL_PINNED, 0);
1131
}
1132

A
Andrew Morton 已提交
1133
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1134 1135
{
}
1136
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1137

1138
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1139
{
1140 1141
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1142

1143 1144 1145 1146
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1147

1148 1149
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181
{
	int cpu;

1182
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1183

1184
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1204
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1205 1206
		return;
	resched_task(cpu_curr(cpu));
1207
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1208
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1243
	set_tsk_need_resched(rq->idle);
1244 1245 1246 1247 1248 1249

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1273
#else /* !CONFIG_SMP */
1274
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1275
{
1276
	assert_raw_spin_locked(&task_rq(p)->lock);
1277
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1278
}
1279 1280 1281 1282

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1283
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1293 1294 1295
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1296
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1297

1298 1299 1300
/*
 * delta *= weight / lw
 */
1301
static unsigned long
1302 1303 1304 1305 1306
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1307 1308 1309 1310 1311 1312 1313
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1314 1315 1316 1317 1318

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1319
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1320
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1321 1322
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1323
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324

1325
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 1327
}

1328
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 1330
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 1336
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340 1341 1342 1343
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1344
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 1346 1347 1348
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1349 1350
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 1361 1362
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1363 1364
 */
static const int prio_to_weight[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1373 1374
};

1375 1376 1377 1378 1379 1380 1381
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1382
static const u32 prio_to_wmult[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1391
};
1392

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1427 1428
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 1430
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1431 1432
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 1434
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1435 1436
#endif

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1447
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1448
typedef int (*tg_visitor)(struct task_group *, void *);
1449 1450 1451 1452 1453

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1454
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 1456
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1457
	int ret;
1458 1459 1460 1461

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469 1470 1471
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1472 1473 1474
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1475 1476 1477 1478 1479

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1480
out_unlock:
1481
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1482 1483

	return ret;
1484 1485
}

P
Peter Zijlstra 已提交
1486 1487 1488
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1489
}
P
Peter Zijlstra 已提交
1490 1491 1492
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1557
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1558

1559 1560
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1561 1562
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1568

1569
static __read_mostly unsigned long *update_shares_data;
1570

1571 1572 1573 1574 1575
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1576 1577 1578
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1579
				    unsigned long *usd_rq_weight)
1580
{
1581
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1582
	int boost = 0;
1583

1584
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1585 1586 1587 1588
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1589

1590
	/*
P
Peter Zijlstra 已提交
1591 1592 1593
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1594
	 */
1595
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1596
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597

1598 1599 1600 1601
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1602

1603
		raw_spin_lock_irqsave(&rq->lock, flags);
1604
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1605
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606
		__set_se_shares(tg->se[cpu], shares);
1607
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1608
	}
1609
}
1610 1611

/*
1612 1613 1614
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1615
 */
P
Peter Zijlstra 已提交
1616
static int tg_shares_up(struct task_group *tg, void *data)
1617
{
1618
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1620
	struct sched_domain *sd = data;
1621
	unsigned long flags;
1622
	int i;
1623

1624 1625 1626 1627
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1628
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629

1630
	for_each_cpu(i, sched_domain_span(sd)) {
1631
		weight = tg->cfs_rq[i]->load.weight;
1632
		usd_rq_weight[i] = weight;
1633

1634
		rq_weight += weight;
1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1643
		sum_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649
	if (!rq_weight)
		rq_weight = sum_weight;

1650 1651 1652 1653 1654
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1655

1656
	for_each_cpu(i, sched_domain_span(sd))
1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658 1659

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1660 1661

	return 0;
1662 1663 1664
}

/*
1665 1666 1667
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1668
 */
P
Peter Zijlstra 已提交
1669
static int tg_load_down(struct task_group *tg, void *data)
1670
{
1671
	unsigned long load;
P
Peter Zijlstra 已提交
1672
	long cpu = (long)data;
1673

1674 1675 1676 1677 1678 1679 1680
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1681

1682
	tg->cfs_rq[cpu]->h_load = load;
1683

P
Peter Zijlstra 已提交
1684
	return 0;
1685 1686
}

1687
static void update_shares(struct sched_domain *sd)
1688
{
1689 1690 1691 1692 1693 1694 1695 1696
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1697 1698 1699

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1700
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704 1705
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1706 1707 1708
	if (root_task_group_empty())
		return;

1709
	raw_spin_unlock(&rq->lock);
1710
	update_shares(sd);
1711
	raw_spin_lock(&rq->lock);
1712 1713
}

P
Peter Zijlstra 已提交
1714
static void update_h_load(long cpu)
1715
{
1716 1717 1718
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1719
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 1721 1722 1723
}

#else

1724
static inline void update_shares(struct sched_domain *sd)
1725 1726 1727
{
}

1728 1729 1730 1731
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1732 1733
#endif

1734 1735
#ifdef CONFIG_PREEMPT

1736 1737
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1738
/*
1739 1740 1741 1742 1743 1744
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1745
 */
1746 1747 1748 1749 1750
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1751
	raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 1767 1768 1769 1770 1771
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1772
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773
		if (busiest < this_rq) {
1774 1775 1776 1777
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1778 1779
			ret = 1;
		} else
1780 1781
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1782 1783 1784 1785
	}
	return ret;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1795
		raw_spin_unlock(&this_rq->lock);
1796 1797 1798 1799 1800 1801
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1802 1803 1804
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1805
	raw_spin_unlock(&busiest->lock);
1806 1807
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1808 1809
#endif

V
Vegard Nossum 已提交
1810
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1811 1812
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1813
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1814 1815 1816
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1817
#endif
1818

1819
static void calc_load_account_active(struct rq *this_rq);
1820
static void update_sysctl(void);
1821
static int get_update_sysctl_factor(void);
1822

P
Peter Zijlstra 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1836

I
Ingo Molnar 已提交
1837 1838
#include "sched_stats.h"
#include "sched_idletask.c"
1839 1840
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1841 1842 1843 1844 1845
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849
static void inc_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running++;
}

1854
static void dec_nr_running(struct rq *rq)
1855 1856 1857 1858
{
	rq->nr_running--;
}

1859 1860 1861
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1862 1863 1864 1865
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1875

I
Ingo Molnar 已提交
1876 1877
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 1879
}

1880 1881 1882 1883 1884 1885
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1886
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887
{
P
Peter Zijlstra 已提交
1888 1889 1890
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1891
	sched_info_queued(p);
1892
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1893
	p->se.on_rq = 1;
1894 1895
}

1896
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897
{
P
Peter Zijlstra 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1907 1908
	}

1909
	sched_info_dequeued(p);
1910
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1911
	p->se.on_rq = 0;
1912 1913
}

1914
/*
I
Ingo Molnar 已提交
1915
 * __normal_prio - return the priority that is based on the static prio
1916 1917 1918
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1919
	return p->static_prio;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1929
static inline int normal_prio(struct task_struct *p)
1930 1931 1932
{
	int prio;

1933
	if (task_has_rt_policy(p))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1947
static int effective_prio(struct task_struct *p)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1960
/*
I
Ingo Molnar 已提交
1961
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1962
 */
I
Ingo Molnar 已提交
1963
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1964
{
1965
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1966
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1967

1968
	enqueue_task(rq, p, wakeup);
1969
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1975
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1976
{
1977
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1978 1979
		rq->nr_uninterruptible++;

1980
	dequeue_task(rq, p, sleep);
1981
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1988
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1989 1990 1991 1992
{
	return cpu_curr(task_cpu(p)) == p;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2005 2006
/**
 * kthread_bind - bind a just-created kthread to a cpu.
2007
 * @p: thread created by kthread_create().
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

2028
	raw_spin_lock_irqsave(&rq->lock, flags);
2029
	update_rq_clock(rq);
2030 2031 2032 2033
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
2034
	raw_spin_unlock_irqrestore(&rq->lock, flags);
2035 2036 2037
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2038
#ifdef CONFIG_SMP
2039 2040 2041
/*
 * Is this task likely cache-hot:
 */
2042
static int
2043 2044 2045 2046
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2047 2048 2049
	/*
	 * Buddy candidates are cache hot:
	 */
2050
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2051 2052
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2053 2054
		return 1;

2055 2056 2057
	if (p->sched_class != &fair_sched_class)
		return 0;

2058 2059 2060 2061 2062
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2063 2064 2065 2066 2067 2068
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2069
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2070
{
I
Ingo Molnar 已提交
2071
	int old_cpu = task_cpu(p);
2072 2073
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
I
Ingo Molnar 已提交
2074

2075
	trace_sched_migrate_task(p, new_cpu);
2076

2077
	if (old_cpu != new_cpu) {
2078
		p->se.nr_migrations++;
2079
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2080
				     1, 1, NULL, 0);
2081
	}
2082 2083
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2084 2085

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2086 2087
}

2088
struct migration_req {
L
Linus Torvalds 已提交
2089 2090
	struct list_head list;

2091
	struct task_struct *task;
L
Linus Torvalds 已提交
2092 2093 2094
	int dest_cpu;

	struct completion done;
2095
};
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2101
static int
2102
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2103
{
2104
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2110
	if (!p->se.on_rq && !task_running(rq, p)) {
2111
		update_rq_clock(rq);
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2120

L
Linus Torvalds 已提交
2121 2122 2123
	return 1;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2167 2168 2169
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2170 2171 2172 2173 2174 2175 2176
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2183
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2184 2185
{
	unsigned long flags;
I
Ingo Molnar 已提交
2186
	int running, on_rq;
R
Roland McGrath 已提交
2187
	unsigned long ncsw;
2188
	struct rq *rq;
L
Linus Torvalds 已提交
2189

2190 2191 2192 2193 2194 2195 2196 2197
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2210 2211 2212
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2213
			cpu_relax();
R
Roland McGrath 已提交
2214
		}
2215

2216 2217 2218 2219 2220 2221
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2222
		trace_sched_wait_task(rq, p);
2223 2224
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2225
		ncsw = 0;
2226
		if (!match_state || p->state == match_state)
2227
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2228
		task_rq_unlock(rq, &flags);
2229

R
Roland McGrath 已提交
2230 2231 2232 2233 2234 2235
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2246

2247 2248 2249 2250 2251
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2252
		 * So if it was still runnable (but just not actively
2253 2254 2255 2256 2257 2258 2259
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2260

2261 2262 2263 2264 2265 2266 2267
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2268 2269

	return ncsw;
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2285
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2295
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2296
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2297

T
Thomas Gleixner 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2319 2320 2321 2322 2323 2324 2325 2326
#ifdef CONFIG_SMP
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
	return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
}
#endif

L
Linus Torvalds 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2341 2342
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2343
{
2344
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2345
	unsigned long flags;
2346
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2347

2348
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2349
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2350

P
Peter Zijlstra 已提交
2351
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2352

2353
	smp_wmb();
2354
	rq = orig_rq = task_rq_lock(p, &flags);
2355
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2356
	if (!(p->state & state))
L
Linus Torvalds 已提交
2357 2358
		goto out;

I
Ingo Molnar 已提交
2359
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2360 2361 2362
		goto out_running;

	cpu = task_cpu(p);
2363
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2369 2370 2371
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2372 2373
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2374
	 */
2375 2376
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2377
	p->state = TASK_WAKING;
P
Peter Zijlstra 已提交
2378
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2379

2380
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2381
	if (cpu != orig_cpu)
2382
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2383 2384 2385

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2386

P
Peter Zijlstra 已提交
2387 2388
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2389

2390 2391 2392 2393 2394 2395 2396
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2397
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398 2399 2400 2401 2402
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2403
#endif /* CONFIG_SCHEDSTATS */
2404

L
Linus Torvalds 已提交
2405 2406
out_activate:
#endif /* CONFIG_SMP */
2407
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2408
	if (wake_flags & WF_SYNC)
2409 2410 2411 2412 2413 2414 2415
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2416
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2417 2418
	success = 1;

P
Peter Zijlstra 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2435
out_running:
2436
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2437
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2438

L
Linus Torvalds 已提交
2439
	p->state = TASK_RUNNING;
2440 2441 2442
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2454
#endif
L
Linus Torvalds 已提交
2455 2456
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2457
	put_cpu();
L
Linus Torvalds 已提交
2458 2459 2460 2461

	return success;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2473
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2474
{
2475
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2476 2477 2478
}
EXPORT_SYMBOL(wake_up_process);

2479
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2480 2481 2482 2483 2484 2485 2486
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2487 2488 2489 2490 2491 2492 2493
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2494
	p->se.prev_sum_exec_runtime	= 0;
2495
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2496 2497
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2498 2499
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2500 2501

#ifdef CONFIG_SCHEDSTATS
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2532
#endif
N
Nick Piggin 已提交
2533

P
Peter Zijlstra 已提交
2534
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2535
	p->se.on_rq = 0;
2536
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2537

2538 2539 2540 2541
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2560 2561 2562 2563
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2564
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2565
			p->policy = SCHED_NORMAL;
2566 2567
			p->normal_prio = p->static_prio;
		}
2568

2569 2570
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2571
			p->normal_prio = p->static_prio;
2572 2573 2574
			set_load_weight(p);
		}

2575 2576 2577 2578 2579 2580
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2581

2582 2583 2584 2585 2586
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2587 2588
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2589

P
Peter Zijlstra 已提交
2590 2591 2592
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2593
#ifdef CONFIG_SMP
2594
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2595 2596 2597
#endif
	set_task_cpu(p, cpu);

2598
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2599
	if (likely(sched_info_on()))
2600
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2601
#endif
2602
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2603 2604
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2605
#ifdef CONFIG_PREEMPT
2606
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2607
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2608
#endif
2609 2610
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2611
	put_cpu();
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2621
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2622 2623
{
	unsigned long flags;
I
Ingo Molnar 已提交
2624
	struct rq *rq;
L
Linus Torvalds 已提交
2625 2626

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2627
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2628
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2629
	activate_task(rq, p, 0);
2630
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2631
	check_preempt_curr(rq, p, WF_FORK);
2632 2633 2634 2635
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2636
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2637 2638
}

2639 2640 2641
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2642
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2643
 * @notifier: notifier struct to register
2644 2645 2646 2647 2648 2649 2650 2651 2652
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2653
 * @notifier: notifier struct to unregister
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2683
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2695
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2696

2697 2698 2699
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2700
 * @prev: the current task that is being switched out
2701 2702 2703 2704 2705 2706 2707 2708 2709
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2710 2711 2712
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2713
{
2714
	fire_sched_out_preempt_notifiers(prev, next);
2715 2716 2717 2718
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2719 2720
/**
 * finish_task_switch - clean up after a task-switch
2721
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2722 2723
 * @prev: the thread we just switched away from.
 *
2724 2725 2726 2727
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2728 2729
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2730
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2731 2732 2733
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2734
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2735 2736 2737
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2738
	long prev_state;
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2744
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2745 2746
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2747
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2753
	prev_state = prev->state;
2754
	finish_arch_switch(prev);
2755
	perf_event_task_sched_in(current, cpu_of(rq));
2756
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2757

2758
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2759 2760
	if (mm)
		mmdrop(mm);
2761
	if (unlikely(prev_state == TASK_DEAD)) {
2762 2763 2764
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2765
		 */
2766
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2767
		put_task_struct(prev);
2768
	}
L
Linus Torvalds 已提交
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2786
		raw_spin_lock_irqsave(&rq->lock, flags);
2787 2788
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2789
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2790 2791 2792 2793 2794 2795

		rq->post_schedule = 0;
	}
}

#else
2796

2797 2798 2799 2800 2801 2802
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2803 2804
}

2805 2806
#endif

L
Linus Torvalds 已提交
2807 2808 2809 2810
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2811
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2812 2813
	__releases(rq->lock)
{
2814 2815
	struct rq *rq = this_rq();

2816
	finish_task_switch(rq, prev);
2817

2818 2819 2820 2821 2822
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2823

2824 2825 2826 2827
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2828
	if (current->set_child_tid)
2829
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2836
static inline void
2837
context_switch(struct rq *rq, struct task_struct *prev,
2838
	       struct task_struct *next)
L
Linus Torvalds 已提交
2839
{
I
Ingo Molnar 已提交
2840
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2841

2842
	prepare_task_switch(rq, prev, next);
2843
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2844 2845
	mm = next->mm;
	oldmm = prev->active_mm;
2846 2847 2848 2849 2850
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2851
	arch_start_context_switch(prev);
2852

2853
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2860
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2861 2862 2863
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2864 2865 2866 2867 2868 2869 2870
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2871
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2872
#endif
L
Linus Torvalds 已提交
2873 2874 2875 2876

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2877 2878 2879 2880 2881 2882 2883
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2907
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2922 2923
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2924

2925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2935
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2954 2955 2956 2957 2958 2959
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2975 2976
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2977
{
2978 2979 2980 2981
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2994

2995 2996
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3020 3021
}

3022
/*
I
Ingo Molnar 已提交
3023 3024
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3025
 */
I
Ingo Molnar 已提交
3026
static void update_cpu_load(struct rq *this_rq)
3027
{
3028
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3041 3042 3043 3044 3045 3046 3047
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3048 3049
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3050 3051 3052 3053 3054

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3055 3056
}

I
Ingo Molnar 已提交
3057 3058
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3065
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3066 3067 3068
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3069
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3070
	if (rq1 == rq2) {
3071
		raw_spin_lock(&rq1->lock);
L
Linus Torvalds 已提交
3072 3073
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3074
		if (rq1 < rq2) {
3075 3076
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3077
		} else {
3078 3079
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3080 3081
		}
	}
3082 3083
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3084 3085 3086 3087 3088 3089 3090 3091
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3092
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3093 3094 3095
	__releases(rq1->lock)
	__releases(rq2->lock)
{
3096
	raw_spin_unlock(&rq1->lock);
L
Linus Torvalds 已提交
3097
	if (rq1 != rq2)
3098
		raw_spin_unlock(&rq2->lock);
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3106
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3107 3108
 * the cpu_allowed mask is restored.
 */
3109
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3110
{
3111
	struct migration_req req;
L
Linus Torvalds 已提交
3112
	unsigned long flags;
3113
	struct rq *rq;
L
Linus Torvalds 已提交
3114 3115

	rq = task_rq_lock(p, &flags);
3116
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122 3123
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3124

L
Linus Torvalds 已提交
3125 3126 3127 3128 3129
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3130

L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3138 3139
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3140 3141 3142 3143
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3144
	new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3145
	put_cpu();
N
Nick Piggin 已提交
3146 3147
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3154 3155
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3156
{
3157
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3158
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3159
	activate_task(this_rq, p, 0);
3160
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3166
static
3167
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3168
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3169
		     int *all_pinned)
L
Linus Torvalds 已提交
3170
{
3171
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3178
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3179
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3180
		return 0;
3181
	}
3182 3183
	*all_pinned = 0;

3184 3185
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3186
		return 0;
3187
	}
L
Linus Torvalds 已提交
3188

3189 3190 3191 3192 3193 3194
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3195 3196 3197
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3198
#ifdef CONFIG_SCHEDSTATS
3199
		if (tsk_cache_hot) {
3200
			schedstat_inc(sd, lb_hot_gained[idle]);
3201 3202
			schedstat_inc(p, se.nr_forced_migrations);
		}
3203 3204 3205 3206
#endif
		return 1;
	}

3207
	if (tsk_cache_hot) {
3208
		schedstat_inc(p, se.nr_failed_migrations_hot);
3209
		return 0;
3210
	}
L
Linus Torvalds 已提交
3211 3212 3213
	return 1;
}

3214 3215 3216 3217 3218
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3219
{
3220
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3221 3222
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3223

3224
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3225 3226
		goto out;

3227 3228
	pinned = 1;

L
Linus Torvalds 已提交
3229
	/*
I
Ingo Molnar 已提交
3230
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3231
	 */
I
Ingo Molnar 已提交
3232 3233
	p = iterator->start(iterator->arg);
next:
3234
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3235
		goto out;
3236 3237

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3238 3239 3240
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3241 3242
	}

I
Ingo Molnar 已提交
3243
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3244
	pulled++;
I
Ingo Molnar 已提交
3245
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3257
	/*
3258
	 * We only want to steal up to the prescribed amount of weighted load.
3259
	 */
3260
	if (rem_load_move > 0) {
3261 3262
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3263 3264
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3265 3266 3267
	}
out:
	/*
3268
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3269 3270 3271 3272
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3273 3274 3275

	if (all_pinned)
		*all_pinned = pinned;
3276 3277

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3278 3279
}

I
Ingo Molnar 已提交
3280
/*
P
Peter Williams 已提交
3281 3282 3283
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3284 3285 3286 3287
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3288
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3289 3290 3291
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3292
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3293
	unsigned long total_load_moved = 0;
3294
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3295 3296

	do {
P
Peter Williams 已提交
3297 3298
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3299
				max_load_move - total_load_moved,
3300
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3301
		class = class->next;
3302

3303 3304 3305 3306 3307 3308
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3309 3310
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3311
#endif
P
Peter Williams 已提交
3312
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3313

P
Peter Williams 已提交
3314 3315 3316
	return total_load_moved > 0;
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3353
	const struct sched_class *class;
P
Peter Williams 已提交
3354

3355
	for_each_class(class) {
3356
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3357
			return 1;
3358
	}
P
Peter Williams 已提交
3359 3360

	return 0;
I
Ingo Molnar 已提交
3361
}
3362
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3363
/*
3364 3365
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3366
 */
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3385
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3386 3387 3388 3389 3390 3391
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3392
#endif
3393
};
L
Linus Torvalds 已提交
3394

3395
/*
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3428
		load_idx = sd->busy_idx;
3429 3430 3431
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3432
		load_idx = sd->newidle_idx;
3433 3434
		break;
	default:
N
Nick Piggin 已提交
3435
		load_idx = sd->idle_idx;
3436 3437
		break;
	}
L
Linus Torvalds 已提交
3438

3439 3440
	return load_idx;
}
L
Linus Torvalds 已提交
3441 3442


3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3481

3482 3483
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3484

3485 3486 3487 3488 3489 3490 3491
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3492

3493 3494 3495 3496 3497 3498 3499 3500
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3515

3516 3517 3518 3519 3520
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3521
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3522
		return;
L
Linus Torvalds 已提交
3523

3524 3525 3526 3527 3528 3529 3530
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3531

3532
/**
3533
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3534 3535 3536 3537 3538
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3539 3540 3541 3542 3543
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3544 3545 3546 3547 3548 3549 3550 3551
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3552

3553 3554 3555
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3556

3557 3558
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3559

3560
	return 1;
L
Linus Torvalds 已提交
3561

3562 3563 3564 3565 3566 3567 3568
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3595 3596 3597 3598 3599 3600 3601 3602 3603
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3604 3605 3606 3607 3608
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3627 3628 3629 3630 3631 3632
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3633 3634 3635 3636 3637
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3638
	power >>= SCHED_LOAD_SHIFT;
3639 3640

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3641 3642 3643 3644 3645
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3646 3647 3648
		power >>= SCHED_LOAD_SHIFT;
	}

3649 3650 3651 3652 3653
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3654

3655
	sdg->cpu_power = power;
3656 3657 3658
}

static void update_group_power(struct sched_domain *sd, int cpu)
3659 3660 3661
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3662
	unsigned long power;
3663 3664

	if (!child) {
3665
		update_cpu_power(sd, cpu);
3666 3667 3668
		return;
	}

3669
	power = 0;
3670 3671 3672

	group = child->groups;
	do {
3673
		power += group->cpu_power;
3674 3675
		group = group->next;
	} while (group != child->groups);
3676 3677

	sdg->cpu_power = power;
3678
}
3679

3680 3681
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682
 * @sd: The sched_domain whose statistics are to be updated.
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3693 3694
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3705
	if (local_group) {
3706
		balance_cpu = group_first_cpu(group);
3707
		if (balance_cpu == this_cpu)
3708
			update_group_power(sd, this_cpu);
3709
	}
3710 3711 3712 3713 3714

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3715

3716 3717
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3718

3719 3720
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3721

3722
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3723
		if (local_group) {
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3736
		}
3737

3738 3739 3740
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3741

3742 3743
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3744

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3756

3757
	/* Adjust by relative CPU power of the group */
3758
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3759

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3770 3771
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3772 3773 3774 3775

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3776
	sgs->group_capacity =
3777
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3778
}
I
Ingo Molnar 已提交
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3789
 */
3790 3791 3792 3793
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3794
{
P
Peter Zijlstra 已提交
3795
	struct sched_domain *child = sd->child;
3796
	struct sched_group *group = sd->groups;
3797
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3798 3799 3800 3801
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3802

3803
	init_sd_power_savings_stats(sd, sds, idle);
3804
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3805 3806 3807 3808

	do {
		int local_group;

3809 3810
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3811
		memset(&sgs, 0, sizeof(sgs));
3812
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3813
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3814

3815 3816
		if (local_group && balance && !(*balance))
			return;
3817

3818
		sds->total_load += sgs.group_load;
3819
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3820

P
Peter Zijlstra 已提交
3821 3822 3823 3824 3825 3826
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3827
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3828 3829

		if (local_group) {
3830 3831 3832 3833 3834
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3835 3836
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3837 3838 3839 3840 3841
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3842
		}
3843

3844
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3845 3846
		group = group->next;
	} while (group != sd->groups);
3847
}
L
Linus Torvalds 已提交
3848

3849 3850
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 3852
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3871

3872 3873 3874 3875 3876
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3877

L
Linus Torvalds 已提交
3878
	/*
3879 3880 3881
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3882
	 */
3883

3884
	pwr_now += sds->busiest->cpu_power *
3885
			min(sds->busiest_load_per_task, sds->max_load);
3886
	pwr_now += sds->this->cpu_power *
3887 3888 3889 3890
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3891 3892
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3893
	if (sds->max_load > tmp)
3894
		pwr_move += sds->busiest->cpu_power *
3895 3896 3897
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3898
	if (sds->max_load * sds->busiest->cpu_power <
3899
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3900 3901
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3902
	else
3903 3904 3905
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3906 3907 3908 3909 3910 3911 3912
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3925 3926 3927 3928 3929
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3930
	if (sds->max_load < sds->avg_load) {
3931
		*imbalance = 0;
3932
		return fix_small_imbalance(sds, this_cpu, imbalance);
3933
	}
3934 3935

	/* Don't want to pull so many tasks that a group would go idle */
3936 3937
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3938

L
Linus Torvalds 已提交
3939
	/* How much load to actually move to equalise the imbalance */
3940 3941
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3942 3943
			/ SCHED_LOAD_SCALE;

3944 3945 3946 3947 3948 3949
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3950 3951
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3952

3953
}
3954
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3980 3981 3982 3983 3984 3985 3986
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3987

3988
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3989

3990 3991 3992 3993 3994 3995 3996
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4007 4008
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4009

4010 4011
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4012

4013
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4014 4015
		goto out_balanced;

4016
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4017

4018 4019 4020 4021
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4022 4023
		goto out_balanced;

4024 4025 4026 4027
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4028

L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035 4036
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4037
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4038 4039
	 * appear as very large values with unsigned longs.
	 */
4040
	if (sds.max_load <= sds.busiest_load_per_task)
4041 4042
		goto out_balanced;

4043 4044
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4045
	return sds.busiest;
L
Linus Torvalds 已提交
4046 4047

out_balanced:
4048 4049 4050 4051 4052 4053
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4054
ret:
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059 4060 4061
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4062
static struct rq *
I
Ingo Molnar 已提交
4063
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4064
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4065
{
4066
	struct rq *busiest = NULL, *rq;
4067
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4068 4069
	int i;

4070
	for_each_cpu(i, sched_group_cpus(group)) {
4071 4072
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4073
		unsigned long wl;
4074

4075
		if (!cpumask_test_cpu(i, cpus))
4076 4077
			continue;

4078
		rq = cpu_rq(i);
4079 4080
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4081

4082
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4083
			continue;
L
Linus Torvalds 已提交
4084

I
Ingo Molnar 已提交
4085 4086
		if (wl > max_load) {
			max_load = wl;
4087
			busiest = rq;
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093
		}
	}

	return busiest;
}

4094 4095 4096 4097 4098 4099
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4100 4101 4102
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4103 4104 4105 4106
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4107
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4108
			struct sched_domain *sd, enum cpu_idle_type idle,
4109
			int *balance)
L
Linus Torvalds 已提交
4110
{
P
Peter Williams 已提交
4111
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4112 4113
	struct sched_group *group;
	unsigned long imbalance;
4114
	struct rq *busiest;
4115
	unsigned long flags;
4116
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4117

4118
	cpumask_copy(cpus, cpu_active_mask);
4119

4120 4121 4122
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4123
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4124
	 * portraying it as CPU_NOT_IDLE.
4125
	 */
I
Ingo Molnar 已提交
4126
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4127
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4128
		sd_idle = 1;
L
Linus Torvalds 已提交
4129

4130
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4131

4132
redo:
4133
	update_shares(sd);
4134
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4135
				   cpus, balance);
4136

4137
	if (*balance == 0)
4138 4139
		goto out_balanced;

L
Linus Torvalds 已提交
4140 4141 4142 4143 4144
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4145
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4146 4147 4148 4149 4150
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4151
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4152 4153 4154

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4155
	ld_moved = 0;
L
Linus Torvalds 已提交
4156 4157 4158 4159
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4160
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4161 4162
		 * correctly treated as an imbalance.
		 */
4163
		local_irq_save(flags);
N
Nick Piggin 已提交
4164
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4165
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4166
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4167
		double_rq_unlock(this_rq, busiest);
4168
		local_irq_restore(flags);
4169

4170 4171 4172
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4173
		if (ld_moved && this_cpu != smp_processor_id())
4174 4175
			resched_cpu(this_cpu);

4176
		/* All tasks on this runqueue were pinned by CPU affinity */
4177
		if (unlikely(all_pinned)) {
4178 4179
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4180
				goto redo;
4181
			goto out_balanced;
4182
		}
L
Linus Torvalds 已提交
4183
	}
4184

P
Peter Williams 已提交
4185
	if (!ld_moved) {
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4191
			raw_spin_lock_irqsave(&busiest->lock, flags);
4192 4193 4194 4195

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4196 4197
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4198 4199
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4200 4201 4202 4203
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4204 4205 4206
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4207
				active_balance = 1;
L
Linus Torvalds 已提交
4208
			}
4209
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4210
			if (active_balance)
L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4217
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4218
		}
4219
	} else
L
Linus Torvalds 已提交
4220 4221
		sd->nr_balance_failed = 0;

4222
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4223 4224
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4225 4226 4227 4228 4229 4230 4231 4232 4233
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4234 4235
	}

P
Peter Williams 已提交
4236
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4237
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4238 4239 4240
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4241 4242 4243 4244

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4245
	sd->nr_balance_failed = 0;
4246 4247

out_one_pinned:
L
Linus Torvalds 已提交
4248
	/* tune up the balancing interval */
4249 4250
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4251 4252
		sd->balance_interval *= 2;

4253
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4254
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4255 4256 4257 4258
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4259 4260
	if (ld_moved)
		update_shares(sd);
4261
	return ld_moved;
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4268
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4269 4270
 * this_rq is locked.
 */
4271
static int
4272
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4273 4274
{
	struct sched_group *group;
4275
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4276
	unsigned long imbalance;
P
Peter Williams 已提交
4277
	int ld_moved = 0;
N
Nick Piggin 已提交
4278
	int sd_idle = 0;
4279
	int all_pinned = 0;
4280
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4281

4282
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4283

4284 4285 4286 4287
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4288
	 * portraying it as CPU_NOT_IDLE.
4289 4290 4291
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4292
		sd_idle = 1;
L
Linus Torvalds 已提交
4293

4294
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4295
redo:
4296
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4297
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4298
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4299
	if (!group) {
I
Ingo Molnar 已提交
4300
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4301
		goto out_balanced;
L
Linus Torvalds 已提交
4302 4303
	}

4304
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4305
	if (!busiest) {
I
Ingo Molnar 已提交
4306
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4307
		goto out_balanced;
L
Linus Torvalds 已提交
4308 4309
	}

N
Nick Piggin 已提交
4310 4311
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4312
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4313

P
Peter Williams 已提交
4314
	ld_moved = 0;
4315 4316 4317
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4318 4319
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4320
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4321 4322
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4323
		double_unlock_balance(this_rq, busiest);
4324

4325
		if (unlikely(all_pinned)) {
4326 4327
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4328 4329
				goto redo;
		}
4330 4331
	}

P
Peter Williams 已提交
4332
	if (!ld_moved) {
4333
		int active_balance = 0;
4334

I
Ingo Molnar 已提交
4335
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4336 4337
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4338
			return -1;
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4375
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4388 4389 4390
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
4391
		raw_spin_unlock(&this_rq->lock);
4392 4393
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4394
		raw_spin_lock(&this_rq->lock);
4395

N
Nick Piggin 已提交
4396
	} else
4397
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4398

4399
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4400
	return ld_moved;
4401 4402

out_balanced:
I
Ingo Molnar 已提交
4403
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4404
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4405
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4406
		return -1;
4407
	sd->nr_balance_failed = 0;
4408

4409
	return 0;
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4416
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4417 4418
{
	struct sched_domain *sd;
4419
	int pulled_task = 0;
I
Ingo Molnar 已提交
4420
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4421

M
Mike Galbraith 已提交
4422 4423 4424 4425 4426
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4427
	for_each_domain(this_cpu, sd) {
4428 4429 4430 4431 4432 4433
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4434
			/* If we've pulled tasks over stop searching: */
4435
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4436
							   sd);
4437 4438 4439 4440

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4441 4442
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4443
			break;
M
Mike Galbraith 已提交
4444
		}
L
Linus Torvalds 已提交
4445
	}
I
Ingo Molnar 已提交
4446
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4447 4448 4449 4450 4451
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4452
	}
L
Linus Torvalds 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4463
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4464
{
4465
	int target_cpu = busiest_rq->push_cpu;
4466 4467
	struct sched_domain *sd;
	struct rq *target_rq;
4468

4469
	/* Is there any task to move? */
4470 4471 4472 4473
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4474 4475

	/*
4476
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4477
	 * we need to fix it. Originally reported by
4478
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4479
	 */
4480
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4481

4482 4483
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4484 4485
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4486 4487

	/* Search for an sd spanning us and the target CPU. */
4488
	for_each_domain(target_cpu, sd) {
4489
		if ((sd->flags & SD_LOAD_BALANCE) &&
4490
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4491
				break;
4492
	}
4493

4494
	if (likely(sd)) {
4495
		schedstat_inc(sd, alb_count);
4496

P
Peter Williams 已提交
4497 4498
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4499 4500 4501 4502
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4503
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4504 4505
}

4506 4507 4508
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4509
	cpumask_var_t cpu_mask;
4510
	cpumask_var_t ilb_grp_nohz_mask;
4511 4512 4513 4514
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4515 4516 4517 4518 4519
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4631
	return cpumask_first(nohz.cpu_mask);
4632 4633 4634
}
#endif

4635
/*
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4646
 *
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4662 4663 4664 4665 4666 4667 4668 4669
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4670 4671
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4672

4673 4674 4675
			return 0;
		}

4676 4677
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4678
		/* time for ilb owner also to sleep */
4679
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4680 4681 4682 4683 4684 4685 4686 4687 4688
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4705
			return 1;
4706
		}
4707
	} else {
4708
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4709 4710
			return 0;

4711
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4724 4725 4726 4727 4728
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4729
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4730
{
4731 4732
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4733 4734
	unsigned long interval;
	struct sched_domain *sd;
4735
	/* Earliest time when we have to do rebalance again */
4736
	unsigned long next_balance = jiffies + 60*HZ;
4737
	int update_next_balance = 0;
4738
	int need_serialize;
L
Linus Torvalds 已提交
4739

4740
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4741 4742 4743 4744
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4745
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4752 4753 4754
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4755
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4756

4757
		if (need_serialize) {
4758 4759 4760 4761
			if (!spin_trylock(&balancing))
				goto out;
		}

4762
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4763
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4764 4765
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4766 4767 4768
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4769
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4770
			}
4771
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4772
		}
4773
		if (need_serialize)
4774 4775
			spin_unlock(&balancing);
out:
4776
		if (time_after(next_balance, sd->last_balance + interval)) {
4777
			next_balance = sd->last_balance + interval;
4778 4779
			update_next_balance = 1;
		}
4780 4781 4782 4783 4784 4785 4786 4787

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4788
	}
4789 4790 4791 4792 4793 4794 4795 4796

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4797 4798 4799 4800 4801 4802 4803 4804 4805
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4806 4807 4808 4809
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4810

I
Ingo Molnar 已提交
4811
	rebalance_domains(this_cpu, idle);
4812 4813 4814 4815 4816 4817 4818

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4819 4820
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4821 4822 4823
		struct rq *rq;
		int balance_cpu;

4824 4825 4826 4827
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4828 4829 4830 4831 4832 4833 4834 4835
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4836
			rebalance_domains(balance_cpu, CPU_IDLE);
4837 4838

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4839 4840
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4841 4842 4843 4844 4845
		}
	}
#endif
}

4846 4847 4848 4849 4850
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4851 4852 4853 4854 4855 4856 4857
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4858
static inline void trigger_load_balance(struct rq *rq, int cpu)
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4870
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4871 4872 4873 4874
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4875
			int ilb = find_new_ilb(cpu);
4876

4877
			if (ilb < nr_cpu_ids)
4878 4879 4880 4881 4882 4883 4884 4885 4886
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4887
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4888 4889 4890 4891 4892 4893 4894 4895 4896
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4897
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4898 4899
		return;
#endif
4900 4901 4902
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4903
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4904
}
I
Ingo Molnar 已提交
4905 4906 4907

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4908 4909 4910
/*
 * on UP we do not need to balance between CPUs:
 */
4911
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4912 4913
{
}
I
Ingo Molnar 已提交
4914

L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920 4921
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4922
 * Return any ns on the sched_clock that have not yet been accounted in
4923
 * @p in case that task is currently running.
4924 4925
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4926
 */
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4941
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4942 4943
{
	unsigned long flags;
4944
	struct rq *rq;
4945
	u64 ns = 0;
4946

4947
	rq = task_rq_lock(p, &flags);
4948 4949
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4950

4951 4952
	return ns;
}
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4971

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4991
	task_rq_unlock(rq, &flags);
4992

L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998 4999
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5000
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5001
 */
5002 5003
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5004 5005 5006 5007
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5008
	/* Add user time to process. */
L
Linus Torvalds 已提交
5009
	p->utime = cputime_add(p->utime, cputime);
5010
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5011
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5019 5020

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5021 5022
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5023 5024
}

5025 5026 5027 5028
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5029
 * @cputime_scaled: cputime scaled by cpu frequency
5030
 */
5031 5032
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5033 5034 5035 5036 5037 5038
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5039
	/* Add guest time to process. */
5040
	p->utime = cputime_add(p->utime, cputime);
5041
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5042
	account_group_user_time(p, cputime);
5043 5044
	p->gtime = cputime_add(p->gtime, cputime);

5045
	/* Add guest time to cpustat. */
5046 5047 5048 5049 5050 5051 5052
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5053 5054
}

L
Linus Torvalds 已提交
5055 5056 5057 5058 5059
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5060
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5061 5062
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5063
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5064 5065 5066 5067
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5068
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5069
		account_guest_time(p, cputime, cputime_scaled);
5070 5071
		return;
	}
5072

5073
	/* Add system time to process. */
L
Linus Torvalds 已提交
5074
	p->stime = cputime_add(p->stime, cputime);
5075
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5076
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5085 5086
		cpustat->system = cputime64_add(cpustat->system, tmp);

5087 5088
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5089 5090 5091 5092
	/* Account for system time used */
	acct_update_integrals(p);
}

5093
/*
L
Linus Torvalds 已提交
5094 5095
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5096
 */
5097
void account_steal_time(cputime_t cputime)
5098
{
5099 5100 5101 5102
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5103 5104
}

L
Linus Torvalds 已提交
5105
/*
5106 5107
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5108
 */
5109
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5110 5111
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5112
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5113
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5114

5115 5116 5117 5118
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5119 5120
}

5121 5122 5123 5124 5125 5126 5127 5128 5129
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5130
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5131 5132 5133
	struct rq *rq = this_rq();

	if (user_tick)
5134
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5135
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5136
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5137 5138
				    one_jiffy_scaled);
	else
5139
		account_idle_time(cputime_one_jiffy);
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5159 5160
}

5161 5162
#endif

5163 5164 5165 5166
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5167
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5168
{
5169 5170
	*ut = p->utime;
	*st = p->stime;
5171 5172
}

5173
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5174
{
5175 5176 5177 5178 5179 5180
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5181 5182
}
#else
5183 5184

#ifndef nsecs_to_cputime
5185
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5186 5187
#endif

5188
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5189
{
5190
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5191 5192 5193 5194

	/*
	 * Use CFS's precise accounting:
	 */
5195
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5196 5197

	if (total) {
5198 5199 5200
		u64 temp;

		temp = (u64)(rtime * utime);
5201
		do_div(temp, total);
5202 5203 5204
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5205

5206 5207 5208
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5209
	p->prev_utime = max(p->prev_utime, utime);
5210
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5211

5212 5213
	*ut = p->prev_utime;
	*st = p->prev_stime;
5214 5215
}

5216 5217 5218 5219
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5220
{
5221 5222 5223
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5224

5225
	thread_group_cputime(p, &cputime);
5226

5227 5228
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5229

5230 5231
	if (total) {
		u64 temp;
5232

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5245 5246 5247
}
#endif

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5259
	struct task_struct *curr = rq->curr;
5260 5261

	sched_clock_tick();
I
Ingo Molnar 已提交
5262

5263
	raw_spin_lock(&rq->lock);
5264
	update_rq_clock(rq);
5265
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5266
	curr->sched_class->task_tick(rq, curr, 0);
5267
	raw_spin_unlock(&rq->lock);
5268

5269
	perf_event_task_tick(curr, cpu);
5270

5271
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5272 5273
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5274
#endif
L
Linus Torvalds 已提交
5275 5276
}

5277
notrace unsigned long get_parent_ip(unsigned long addr)
5278 5279 5280 5281 5282 5283 5284 5285
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5286

5287 5288 5289
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5290
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5291
{
5292
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5293 5294 5295
	/*
	 * Underflow?
	 */
5296 5297
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5298
#endif
L
Linus Torvalds 已提交
5299
	preempt_count() += val;
5300
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5301 5302 5303
	/*
	 * Spinlock count overflowing soon?
	 */
5304 5305
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5306 5307 5308
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5309 5310 5311
}
EXPORT_SYMBOL(add_preempt_count);

5312
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5313
{
5314
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5315 5316 5317
	/*
	 * Underflow?
	 */
5318
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5319
		return;
L
Linus Torvalds 已提交
5320 5321 5322
	/*
	 * Is the spinlock portion underflowing?
	 */
5323 5324 5325
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5326
#endif
5327

5328 5329
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5330 5331 5332 5333 5334 5335 5336
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5337
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5338
 */
I
Ingo Molnar 已提交
5339
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5340
{
5341 5342 5343 5344 5345
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5346
	debug_show_held_locks(prev);
5347
	print_modules();
I
Ingo Molnar 已提交
5348 5349
	if (irqs_disabled())
		print_irqtrace_events(prev);
5350 5351 5352 5353 5354

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5355
}
L
Linus Torvalds 已提交
5356

I
Ingo Molnar 已提交
5357 5358 5359 5360 5361
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5362
	/*
I
Ingo Molnar 已提交
5363
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5364 5365 5366
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5367
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5368 5369
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5370 5371
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5372
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5373 5374
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5375 5376
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5377 5378
	}
#endif
I
Ingo Molnar 已提交
5379 5380
}

P
Peter Zijlstra 已提交
5381
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5382
{
P
Peter Zijlstra 已提交
5383 5384
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5385

P
Peter Zijlstra 已提交
5386 5387
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5398
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5399
	}
P
Peter Zijlstra 已提交
5400
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5401 5402
}

I
Ingo Molnar 已提交
5403 5404 5405 5406
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5407
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5408
{
5409
	const struct sched_class *class;
I
Ingo Molnar 已提交
5410
	struct task_struct *p;
L
Linus Torvalds 已提交
5411 5412

	/*
I
Ingo Molnar 已提交
5413 5414
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5415
	 */
I
Ingo Molnar 已提交
5416
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5417
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5418 5419
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5420 5421
	}

I
Ingo Molnar 已提交
5422 5423
	class = sched_class_highest;
	for ( ; ; ) {
5424
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5434

I
Ingo Molnar 已提交
5435 5436 5437
/*
 * schedule() is the main scheduler function.
 */
5438
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5439 5440
{
	struct task_struct *prev, *next;
5441
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5442
	struct rq *rq;
5443
	int cpu;
I
Ingo Molnar 已提交
5444

5445 5446
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5447 5448
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5449
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5450 5451 5452 5453 5454 5455 5456
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5457

5458
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5459
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5460

5461
	raw_spin_lock_irq(&rq->lock);
5462
	update_rq_clock(rq);
5463
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5464 5465

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5466
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5467
			prev->state = TASK_RUNNING;
5468
		else
5469
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5470
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5471 5472
	}

5473
	pre_schedule(rq, prev);
5474

I
Ingo Molnar 已提交
5475
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5476 5477
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5478
	put_prev_task(rq, prev);
5479
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5480 5481

	if (likely(prev != next)) {
5482
		sched_info_switch(prev, next);
5483
		perf_event_task_sched_out(prev, next, cpu);
5484

L
Linus Torvalds 已提交
5485 5486 5487 5488
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5489
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5490 5491 5492 5493 5494 5495
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5496
	} else
5497
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5498

5499
	post_schedule(rq);
L
Linus Torvalds 已提交
5500

P
Peter Zijlstra 已提交
5501
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5502
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5503

L
Linus Torvalds 已提交
5504
	preempt_enable_no_resched();
5505
	if (need_resched())
L
Linus Torvalds 已提交
5506 5507 5508 5509
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5510
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5571 5572
#ifdef CONFIG_PREEMPT
/*
5573
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5574
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5575 5576 5577 5578 5579
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5580

L
Linus Torvalds 已提交
5581 5582
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5583
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5584
	 */
N
Nick Piggin 已提交
5585
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5586 5587
		return;

5588 5589 5590 5591
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5592

5593 5594 5595 5596 5597
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5598
	} while (need_resched());
L
Linus Torvalds 已提交
5599 5600 5601 5602
}
EXPORT_SYMBOL(preempt_schedule);

/*
5603
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609 5610
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5611

5612
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5613 5614
	BUG_ON(ti->preempt_count || !irqs_disabled());

5615 5616 5617 5618 5619 5620
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5621

5622 5623 5624 5625 5626
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5627
	} while (need_resched());
L
Linus Torvalds 已提交
5628 5629 5630 5631
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5632
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5633
			  void *key)
L
Linus Torvalds 已提交
5634
{
P
Peter Zijlstra 已提交
5635
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5636 5637 5638 5639
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5640 5641
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5642 5643 5644
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5645
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5646 5647
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5648
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5649
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5650
{
5651
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5652

5653
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5654 5655
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5656
		if (curr->func(curr, mode, wake_flags, key) &&
5657
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5667
 * @key: is directly passed to the wakeup function
5668 5669 5670
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5671
 */
5672
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5673
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5686
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5687 5688 5689 5690
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5691 5692 5693 5694 5695
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5696
/**
5697
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5698 5699 5700
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5701
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5702 5703 5704 5705 5706 5707 5708
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5709 5710 5711
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5712
 */
5713 5714
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5715 5716
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5717
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5723
		wake_flags = 0;
L
Linus Torvalds 已提交
5724 5725

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5726
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5727 5728
	spin_unlock_irqrestore(&q->lock, flags);
}
5729 5730 5731 5732 5733 5734 5735 5736 5737
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5738 5739
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5740 5741 5742 5743 5744 5745 5746 5747
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5748 5749 5750
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5751
 */
5752
void complete(struct completion *x)
L
Linus Torvalds 已提交
5753 5754 5755 5756 5757
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5758
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5759 5760 5761 5762
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5763 5764 5765 5766 5767
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5768 5769 5770
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5771
 */
5772
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5778
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5779 5780 5781 5782
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5783 5784
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5785 5786 5787 5788 5789 5790 5791
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5792
			if (signal_pending_state(state, current)) {
5793 5794
				timeout = -ERESTARTSYS;
				break;
5795 5796
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5797 5798 5799
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5800
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5801
		__remove_wait_queue(&x->wait, &wait);
5802 5803
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5804 5805
	}
	x->done--;
5806
	return timeout ?: 1;
L
Linus Torvalds 已提交
5807 5808
}

5809 5810
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5811 5812 5813 5814
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5815
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5816
	spin_unlock_irq(&x->wait.lock);
5817 5818
	return timeout;
}
L
Linus Torvalds 已提交
5819

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5830
void __sched wait_for_completion(struct completion *x)
5831 5832
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5833
}
5834
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5835

5836 5837 5838 5839 5840 5841 5842 5843 5844
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5845
unsigned long __sched
5846
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5847
{
5848
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5849
}
5850
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5851

5852 5853 5854 5855 5856 5857 5858
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5859
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5860
{
5861 5862 5863 5864
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5865
}
5866
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5867

5868 5869 5870 5871 5872 5873 5874 5875
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5876
unsigned long __sched
5877 5878
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5879
{
5880
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5881
}
5882
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5883

5884 5885 5886 5887 5888 5889 5890
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5946 5947
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5948
{
I
Ingo Molnar 已提交
5949 5950 5951 5952
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5953

5954
	__set_current_state(state);
L
Linus Torvalds 已提交
5955

5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5970 5971 5972
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5973
long __sched
I
Ingo Molnar 已提交
5974
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5975
{
5976
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5977 5978 5979
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5980
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5981
{
5982
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5983 5984 5985
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5986
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5987
{
5988
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5989 5990 5991
}
EXPORT_SYMBOL(sleep_on_timeout);

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6004
void rt_mutex_setprio(struct task_struct *p, int prio)
6005 6006
{
	unsigned long flags;
6007
	int oldprio, on_rq, running;
6008
	struct rq *rq;
6009
	const struct sched_class *prev_class = p->sched_class;
6010 6011 6012 6013

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6014
	update_rq_clock(rq);
6015

6016
	oldprio = p->prio;
I
Ingo Molnar 已提交
6017
	on_rq = p->se.on_rq;
6018
	running = task_current(rq, p);
6019
	if (on_rq)
6020
		dequeue_task(rq, p, 0);
6021 6022
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6023 6024 6025 6026 6027 6028

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6029 6030
	p->prio = prio;

6031 6032
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6033
	if (on_rq) {
6034
		enqueue_task(rq, p, 0);
6035 6036

		check_class_changed(rq, p, prev_class, oldprio, running);
6037 6038 6039 6040 6041 6042
	}
	task_rq_unlock(rq, &flags);
}

#endif

6043
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6044
{
I
Ingo Molnar 已提交
6045
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6046
	unsigned long flags;
6047
	struct rq *rq;
L
Linus Torvalds 已提交
6048 6049 6050 6051 6052 6053 6054 6055

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6056
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6057 6058 6059 6060
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6061
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6062
	 */
6063
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6064 6065 6066
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6067
	on_rq = p->se.on_rq;
6068
	if (on_rq)
6069
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6070 6071

	p->static_prio = NICE_TO_PRIO(nice);
6072
	set_load_weight(p);
6073 6074 6075
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6076

I
Ingo Molnar 已提交
6077
	if (on_rq) {
6078
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6079
		/*
6080 6081
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6082
		 */
6083
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6091 6092 6093 6094 6095
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6096
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6097
{
6098 6099
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6100

M
Matt Mackall 已提交
6101 6102 6103 6104
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6105 6106 6107 6108 6109 6110 6111 6112 6113
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6114
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6115
{
6116
	long nice, retval;
L
Linus Torvalds 已提交
6117 6118 6119 6120 6121 6122

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6123 6124
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6125 6126 6127
	if (increment > 40)
		increment = 40;

6128
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6134 6135 6136
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6155
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6156 6157 6158 6159 6160 6161 6162 6163
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6164
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6165 6166 6167
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6168
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6183
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6184 6185 6186 6187 6188 6189 6190 6191
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6192
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6193
{
6194
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6195 6196 6197
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6198 6199
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6200
{
I
Ingo Molnar 已提交
6201
	BUG_ON(p->se.on_rq);
6202

L
Linus Torvalds 已提交
6203 6204
	p->policy = policy;
	p->rt_priority = prio;
6205 6206 6207
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6208 6209 6210 6211
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6212
	set_load_weight(p);
L
Linus Torvalds 已提交
6213 6214
}

6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6231 6232
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6233
{
6234
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6235
	unsigned long flags;
6236
	const struct sched_class *prev_class = p->sched_class;
6237
	struct rq *rq;
6238
	int reset_on_fork;
L
Linus Torvalds 已提交
6239

6240 6241
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6242 6243
recheck:
	/* double check policy once rq lock held */
6244 6245
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6246
		policy = oldpolicy = p->policy;
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6257 6258
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6259 6260
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6261 6262
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6263
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6264
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6265
		return -EINVAL;
6266
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6267 6268
		return -EINVAL;

6269 6270 6271
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6272
	if (user && !capable(CAP_SYS_NICE)) {
6273
		if (rt_policy(policy)) {
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6290 6291 6292 6293 6294 6295
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6296

6297
		/* can't change other user's priorities */
6298
		if (!check_same_owner(p))
6299
			return -EPERM;
6300 6301 6302 6303

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6304
	}
L
Linus Torvalds 已提交
6305

6306
	if (user) {
6307
#ifdef CONFIG_RT_GROUP_SCHED
6308 6309 6310 6311
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6312 6313
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6314
			return -EPERM;
6315 6316
#endif

6317 6318 6319 6320 6321
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6322 6323 6324 6325
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
6326
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6327 6328 6329 6330
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6331
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6332 6333 6334
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6335
		__task_rq_unlock(rq);
6336
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6337 6338
		goto recheck;
	}
I
Ingo Molnar 已提交
6339
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6340
	on_rq = p->se.on_rq;
6341
	running = task_current(rq, p);
6342
	if (on_rq)
6343
		deactivate_task(rq, p, 0);
6344 6345
	if (running)
		p->sched_class->put_prev_task(rq, p);
6346

6347 6348
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6349
	oldprio = p->prio;
I
Ingo Molnar 已提交
6350
	__setscheduler(rq, p, policy, param->sched_priority);
6351

6352 6353
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6354 6355
	if (on_rq) {
		activate_task(rq, p, 0);
6356 6357

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6358
	}
6359
	__task_rq_unlock(rq);
6360
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6361

6362 6363
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6364 6365
	return 0;
}
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6380 6381
EXPORT_SYMBOL_GPL(sched_setscheduler);

6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6399 6400
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6401 6402 6403
{
	struct sched_param lparam;
	struct task_struct *p;
6404
	int retval;
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6410 6411 6412

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6413
	p = find_process_by_pid(pid);
6414 6415 6416
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6417

L
Linus Torvalds 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6427 6428
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6429
{
6430 6431 6432 6433
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6434 6435 6436 6437 6438 6439 6440 6441
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6442
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6443 6444 6445 6446 6447 6448 6449 6450
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6451
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6452
{
6453
	struct task_struct *p;
6454
	int retval;
L
Linus Torvalds 已提交
6455 6456

	if (pid < 0)
6457
		return -EINVAL;
L
Linus Torvalds 已提交
6458 6459 6460 6461 6462 6463 6464

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6465 6466
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6467 6468 6469 6470 6471 6472
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6473
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6474 6475 6476
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6477
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6478 6479
{
	struct sched_param lp;
6480
	struct task_struct *p;
6481
	int retval;
L
Linus Torvalds 已提交
6482 6483

	if (!param || pid < 0)
6484
		return -EINVAL;
L
Linus Torvalds 已提交
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6511
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6512
{
6513
	cpumask_var_t cpus_allowed, new_mask;
6514 6515
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6516

6517
	get_online_cpus();
L
Linus Torvalds 已提交
6518 6519 6520 6521 6522
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6523
		put_online_cpus();
L
Linus Torvalds 已提交
6524 6525 6526 6527 6528
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6529
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6530 6531 6532 6533 6534
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6535 6536 6537 6538 6539 6540 6541 6542
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6543
	retval = -EPERM;
6544
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6545 6546
		goto out_unlock;

6547 6548 6549 6550
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6551 6552
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6553
 again:
6554
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6555

P
Paul Menage 已提交
6556
	if (!retval) {
6557 6558
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6559 6560 6561 6562 6563
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6564
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6565 6566 6567
			goto again;
		}
	}
L
Linus Torvalds 已提交
6568
out_unlock:
6569 6570 6571 6572
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6573
	put_task_struct(p);
6574
	put_online_cpus();
L
Linus Torvalds 已提交
6575 6576 6577 6578
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6579
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6580
{
6581 6582 6583 6584 6585
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6586 6587 6588 6589 6590 6591 6592 6593 6594
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6595 6596
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6597
{
6598
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6599 6600
	int retval;

6601 6602
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6603

6604 6605 6606 6607 6608
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6609 6610
}

6611
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6612
{
6613
	struct task_struct *p;
6614 6615
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6616 6617
	int retval;

6618
	get_online_cpus();
L
Linus Torvalds 已提交
6619 6620 6621 6622 6623 6624 6625
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6626 6627 6628 6629
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6630
	rq = task_rq_lock(p, &flags);
6631
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6632
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6633 6634 6635

out_unlock:
	read_unlock(&tasklist_lock);
6636
	put_online_cpus();
L
Linus Torvalds 已提交
6637

6638
	return retval;
L
Linus Torvalds 已提交
6639 6640 6641 6642 6643 6644 6645 6646
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6647 6648
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6649 6650
{
	int ret;
6651
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6652

6653
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6654 6655
		return -EINVAL;

6656 6657
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6658

6659 6660 6661 6662 6663 6664 6665 6666
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6667

6668
	return ret;
L
Linus Torvalds 已提交
6669 6670 6671 6672 6673
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6674 6675
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6676
 */
6677
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6678
{
6679
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6680

6681
	schedstat_inc(rq, yld_count);
6682
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6683 6684 6685 6686 6687 6688

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6689
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6690
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
6691 6692 6693 6694 6695 6696 6697
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6698 6699 6700 6701 6702
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6703
static void __cond_resched(void)
L
Linus Torvalds 已提交
6704
{
6705 6706 6707
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6708 6709
}

6710
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6711
{
P
Peter Zijlstra 已提交
6712
	if (should_resched()) {
L
Linus Torvalds 已提交
6713 6714 6715 6716 6717
		__cond_resched();
		return 1;
	}
	return 0;
}
6718
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6719 6720

/*
6721
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6722 6723
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6724
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6725 6726 6727
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6728
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6729
{
P
Peter Zijlstra 已提交
6730
	int resched = should_resched();
J
Jan Kara 已提交
6731 6732
	int ret = 0;

6733 6734
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6735
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6736
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6737
		if (resched)
N
Nick Piggin 已提交
6738 6739 6740
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6741
		ret = 1;
L
Linus Torvalds 已提交
6742 6743
		spin_lock(lock);
	}
J
Jan Kara 已提交
6744
	return ret;
L
Linus Torvalds 已提交
6745
}
6746
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6747

6748
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6749 6750 6751
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6752
	if (should_resched()) {
6753
		local_bh_enable();
L
Linus Torvalds 已提交
6754 6755 6756 6757 6758 6759
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6760
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6761 6762 6763 6764

/**
 * yield - yield the current processor to other threads.
 *
6765
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6776
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6777 6778 6779 6780
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6781
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6782

6783
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6784
	atomic_inc(&rq->nr_iowait);
6785
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6786
	schedule();
6787
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6788
	atomic_dec(&rq->nr_iowait);
6789
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6790 6791 6792 6793 6794
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6795
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6796 6797
	long ret;

6798
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6799
	atomic_inc(&rq->nr_iowait);
6800
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6801
	ret = schedule_timeout(timeout);
6802
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6803
	atomic_dec(&rq->nr_iowait);
6804
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6815
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6825
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6826
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6840
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6850
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6851
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6865
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6866
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6867
{
6868
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6869
	unsigned int time_slice;
6870 6871
	unsigned long flags;
	struct rq *rq;
6872
	int retval;
L
Linus Torvalds 已提交
6873 6874 6875
	struct timespec t;

	if (pid < 0)
6876
		return -EINVAL;
L
Linus Torvalds 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6888 6889 6890
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6891

L
Linus Torvalds 已提交
6892
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6893
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6894 6895
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6896

L
Linus Torvalds 已提交
6897 6898 6899 6900 6901
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6902
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6903

6904
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6905 6906
{
	unsigned long free = 0;
6907
	unsigned state;
L
Linus Torvalds 已提交
6908 6909

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6910
	printk(KERN_INFO "%-13.13s %c", p->comm,
6911
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6912
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6913
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6914
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6915
	else
I
Ingo Molnar 已提交
6916
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6917 6918
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6919
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6920
	else
I
Ingo Molnar 已提交
6921
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6922 6923
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6924
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6925
#endif
6926 6927 6928
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6929

6930
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6931 6932
}

I
Ingo Molnar 已提交
6933
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6934
{
6935
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6936

6937 6938 6939
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6940
#else
6941 6942
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6943 6944 6945 6946 6947 6948 6949 6950
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6951
		if (!state_filter || (p->state & state_filter))
6952
			sched_show_task(p);
L
Linus Torvalds 已提交
6953 6954
	} while_each_thread(g, p);

6955 6956
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6957 6958 6959
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6960
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6961 6962 6963
	/*
	 * Only show locks if all tasks are dumped:
	 */
6964
	if (!state_filter)
I
Ingo Molnar 已提交
6965
		debug_show_all_locks();
L
Linus Torvalds 已提交
6966 6967
}

I
Ingo Molnar 已提交
6968 6969
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6970
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6971 6972
}

6973 6974 6975 6976 6977 6978 6979 6980
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6981
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6982
{
6983
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6984 6985
	unsigned long flags;

6986
	raw_spin_lock_irqsave(&rq->lock, flags);
6987

I
Ingo Molnar 已提交
6988 6989 6990
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6991
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6992
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6993 6994

	rq->curr = rq->idle = idle;
6995 6996 6997
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
6998
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6999 7000

	/* Set the preempt count _outside_ the spinlocks! */
7001 7002 7003
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7004
	task_thread_info(idle)->preempt_count = 0;
7005
#endif
I
Ingo Molnar 已提交
7006 7007 7008 7009
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7010
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7011 7012 7013 7014 7015 7016 7017
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7018
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7019
 */
7020
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7021

I
Ingo Molnar 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7031
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
7032
{
7033
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
7048

7049 7050
	return factor;
}
I
Ingo Molnar 已提交
7051

7052 7053 7054
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
7055

7056 7057 7058 7059 7060 7061 7062 7063
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7064

7065 7066 7067
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7068 7069
}

L
Linus Torvalds 已提交
7070 7071 7072 7073
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7074
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7093
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7094 7095
 * call is not atomic; no spinlocks may be held.
 */
7096
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7097
{
7098
	struct migration_req req;
L
Linus Torvalds 已提交
7099
	unsigned long flags;
7100
	struct rq *rq;
7101
	int ret = 0;
L
Linus Torvalds 已提交
7102 7103

	rq = task_rq_lock(p, &flags);
7104
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7105 7106 7107 7108
		ret = -EINVAL;
		goto out;
	}

7109
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7110
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7111 7112 7113 7114
		ret = -EINVAL;
		goto out;
	}

7115
	if (p->sched_class->set_cpus_allowed)
7116
		p->sched_class->set_cpus_allowed(p, new_mask);
7117
	else {
7118 7119
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7120 7121
	}

L
Linus Torvalds 已提交
7122
	/* Can the task run on the task's current CPU? If so, we're done */
7123
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7124 7125
		goto out;

7126
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7127
		/* Need help from migration thread: drop lock and wait. */
7128 7129 7130
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7131 7132
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7133
		put_task_struct(mt);
L
Linus Torvalds 已提交
7134 7135 7136 7137 7138 7139
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7140

L
Linus Torvalds 已提交
7141 7142
	return ret;
}
7143
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7144 7145

/*
I
Ingo Molnar 已提交
7146
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7147 7148 7149 7150 7151 7152
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7153 7154
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7155
 */
7156
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7157
{
7158
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7159
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7160

7161
	if (unlikely(!cpu_active(dest_cpu)))
7162
		return ret;
L
Linus Torvalds 已提交
7163 7164 7165 7166 7167 7168 7169

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7170
		goto done;
L
Linus Torvalds 已提交
7171
	/* Affinity changed (again). */
7172
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7173
		goto fail;
L
Linus Torvalds 已提交
7174

I
Ingo Molnar 已提交
7175
	on_rq = p->se.on_rq;
7176
	if (on_rq)
7177
		deactivate_task(rq_src, p, 0);
7178

L
Linus Torvalds 已提交
7179
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7180 7181
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7182
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7183
	}
L
Linus Torvalds 已提交
7184
done:
7185
	ret = 1;
L
Linus Torvalds 已提交
7186
fail:
L
Linus Torvalds 已提交
7187
	double_rq_unlock(rq_src, rq_dest);
7188
	return ret;
L
Linus Torvalds 已提交
7189 7190
}

7191 7192 7193 7194 7195
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7196 7197 7198 7199 7200
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7201
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7202
{
7203
	int badcpu;
L
Linus Torvalds 已提交
7204
	int cpu = (long)data;
7205
	struct rq *rq;
L
Linus Torvalds 已提交
7206 7207 7208 7209 7210 7211

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7212
		struct migration_req *req;
L
Linus Torvalds 已提交
7213 7214
		struct list_head *head;

7215
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7216 7217

		if (cpu_is_offline(cpu)) {
7218
			raw_spin_unlock_irq(&rq->lock);
7219
			break;
L
Linus Torvalds 已提交
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
7230
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7231 7232 7233 7234
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7235
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7236 7237
		list_del_init(head->next);

7238
		if (req->task != NULL) {
7239
			raw_spin_unlock(&rq->lock);
7240 7241 7242
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
7243
			raw_spin_unlock(&rq->lock);
7244 7245
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7246
			raw_spin_unlock(&rq->lock);
7247 7248
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7249
		local_irq_enable();
L
Linus Torvalds 已提交
7250 7251 7252 7253 7254 7255 7256 7257 7258

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7270
/*
7271
 * Figure out where task on dead CPU should go, use force if necessary.
7272
 */
7273
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7274
{
7275
	int dest_cpu;
7276
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7277 7278 7279

again:
	/* Look for allowed, online CPU in same node. */
7280
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7281 7282 7283 7284
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
7285
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7286 7287 7288 7289 7290 7291
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7292
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7293

7294 7295 7296 7297 7298 7299 7300 7301 7302
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7303
		}
7304 7305 7306 7307 7308 7309
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7319
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7320
{
7321
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7335
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7336

7337
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7338

7339 7340
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7341 7342
			continue;

7343 7344 7345
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7346

7347
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7348 7349
}

I
Ingo Molnar 已提交
7350 7351
/*
 * Schedules idle task to be the next runnable task on current CPU.
7352 7353
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7354 7355 7356
 */
void sched_idle_next(void)
{
7357
	int this_cpu = smp_processor_id();
7358
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7359 7360 7361 7362
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7363
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7364

7365 7366 7367
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7368
	 */
7369
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
7370

I
Ingo Molnar 已提交
7371
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7372

7373 7374
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7375

7376
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7377 7378
}

7379 7380
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7394
/* called under rq->lock with disabled interrupts */
7395
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7396
{
7397
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7398 7399

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7400
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7401 7402

	/* Cannot have done final schedule yet: would have vanished. */
7403
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7404

7405
	get_task_struct(p);
L
Linus Torvalds 已提交
7406 7407 7408

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7409
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7410 7411
	 * fine.
	 */
7412
	raw_spin_unlock_irq(&rq->lock);
7413
	move_task_off_dead_cpu(dead_cpu, p);
7414
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7415

7416
	put_task_struct(p);
L
Linus Torvalds 已提交
7417 7418 7419 7420 7421
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7422
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7423
	struct task_struct *next;
7424

I
Ingo Molnar 已提交
7425 7426 7427
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7428
		update_rq_clock(rq);
7429
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7430 7431
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7432
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7433
		migrate_dead(dead_cpu, next);
7434

L
Linus Torvalds 已提交
7435 7436
	}
}
7437 7438 7439 7440 7441 7442 7443

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7444
	rq->calc_load_active = 0;
7445
}
L
Linus Torvalds 已提交
7446 7447
#endif /* CONFIG_HOTPLUG_CPU */

7448 7449 7450
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7451 7452
	{
		.procname	= "sched_domain",
7453
		.mode		= 0555,
7454
	},
7455
	{}
7456 7457 7458
};

static struct ctl_table sd_ctl_root[] = {
7459 7460
	{
		.procname	= "kernel",
7461
		.mode		= 0555,
7462 7463
		.child		= sd_ctl_dir,
	},
7464
	{}
7465 7466 7467 7468 7469
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7470
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7471 7472 7473 7474

	return entry;
}

7475 7476
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7477
	struct ctl_table *entry;
7478

7479 7480 7481
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7482
	 * will always be set. In the lowest directory the names are
7483 7484 7485
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7486 7487
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7488 7489 7490
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7491 7492 7493 7494 7495

	kfree(*tablep);
	*tablep = NULL;
}

7496
static void
7497
set_table_entry(struct ctl_table *entry,
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7511
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7512

7513 7514 7515
	if (table == NULL)
		return NULL;

7516
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7517
		sizeof(long), 0644, proc_doulongvec_minmax);
7518
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7519
		sizeof(long), 0644, proc_doulongvec_minmax);
7520
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7521
		sizeof(int), 0644, proc_dointvec_minmax);
7522
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7523
		sizeof(int), 0644, proc_dointvec_minmax);
7524
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7525
		sizeof(int), 0644, proc_dointvec_minmax);
7526
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7527
		sizeof(int), 0644, proc_dointvec_minmax);
7528
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7529
		sizeof(int), 0644, proc_dointvec_minmax);
7530
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7531
		sizeof(int), 0644, proc_dointvec_minmax);
7532
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7533
		sizeof(int), 0644, proc_dointvec_minmax);
7534
	set_table_entry(&table[9], "cache_nice_tries",
7535 7536
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7537
	set_table_entry(&table[10], "flags", &sd->flags,
7538
		sizeof(int), 0644, proc_dointvec_minmax);
7539 7540 7541
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7542 7543 7544 7545

	return table;
}

7546
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7547 7548 7549 7550 7551 7552 7553 7554 7555
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7556 7557
	if (table == NULL)
		return NULL;
7558 7559 7560 7561 7562

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7563
		entry->mode = 0555;
7564 7565 7566 7567 7568 7569 7570 7571
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7572
static void register_sched_domain_sysctl(void)
7573
{
7574
	int i, cpu_num = num_possible_cpus();
7575 7576 7577
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7578 7579 7580
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7581 7582 7583
	if (entry == NULL)
		return;

7584
	for_each_possible_cpu(i) {
7585 7586
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7587
		entry->mode = 0555;
7588
		entry->child = sd_alloc_ctl_cpu_table(i);
7589
		entry++;
7590
	}
7591 7592

	WARN_ON(sd_sysctl_header);
7593 7594
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7595

7596
/* may be called multiple times per register */
7597 7598
static void unregister_sched_domain_sysctl(void)
{
7599 7600
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7601
	sd_sysctl_header = NULL;
7602 7603
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7604
}
7605
#else
7606 7607 7608 7609
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7610 7611 7612 7613
{
}
#endif

7614 7615 7616 7617 7618
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7619
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7639
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7640 7641 7642 7643
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7644 7645 7646 7647
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7648 7649
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7650 7651
{
	struct task_struct *p;
7652
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7653
	unsigned long flags;
7654
	struct rq *rq;
L
Linus Torvalds 已提交
7655 7656

	switch (action) {
7657

L
Linus Torvalds 已提交
7658
	case CPU_UP_PREPARE:
7659
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7660
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7661 7662 7663 7664 7665
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7666
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7667
		task_rq_unlock(rq, &flags);
7668
		get_task_struct(p);
L
Linus Torvalds 已提交
7669
		cpu_rq(cpu)->migration_thread = p;
7670
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7671
		break;
7672

L
Linus Torvalds 已提交
7673
	case CPU_ONLINE:
7674
	case CPU_ONLINE_FROZEN:
7675
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7676
		wake_up_process(cpu_rq(cpu)->migration_thread);
7677 7678 7679

		/* Update our root-domain */
		rq = cpu_rq(cpu);
7680
		raw_spin_lock_irqsave(&rq->lock, flags);
7681
		if (rq->rd) {
7682
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7683 7684

			set_rq_online(rq);
7685
		}
7686
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7687
		break;
7688

L
Linus Torvalds 已提交
7689 7690
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7691
	case CPU_UP_CANCELED_FROZEN:
7692 7693
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7694
		/* Unbind it from offline cpu so it can run. Fall thru. */
7695
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7696
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7697
		kthread_stop(cpu_rq(cpu)->migration_thread);
7698
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7699 7700
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7701

L
Linus Torvalds 已提交
7702
	case CPU_DEAD:
7703
	case CPU_DEAD_FROZEN:
7704
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7705 7706 7707
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7708
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7709 7710
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7711
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7712
		update_rq_clock(rq);
7713
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7714 7715
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7716
		migrate_dead_tasks(cpu);
7717
		raw_spin_unlock_irq(&rq->lock);
7718
		cpuset_unlock();
L
Linus Torvalds 已提交
7719 7720
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7721
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7722 7723 7724 7725 7726
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
7727
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7728
		while (!list_empty(&rq->migration_queue)) {
7729 7730
			struct migration_req *req;

L
Linus Torvalds 已提交
7731
			req = list_entry(rq->migration_queue.next,
7732
					 struct migration_req, list);
L
Linus Torvalds 已提交
7733
			list_del_init(&req->list);
7734
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7735
			complete(&req->done);
7736
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7737
		}
7738
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7739
		break;
G
Gregory Haskins 已提交
7740

7741 7742
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7743 7744
		/* Update our root-domain */
		rq = cpu_rq(cpu);
7745
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7746
		if (rq->rd) {
7747
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7748
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7749
		}
7750
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
7751
		break;
L
Linus Torvalds 已提交
7752 7753 7754 7755 7756
#endif
	}
	return NOTIFY_OK;
}

7757 7758 7759
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7760
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7761
 */
7762
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7763 7764 7765 7766
	.notifier_call = migration_call,
	.priority = 10
};

7767
static int __init migration_init(void)
L
Linus Torvalds 已提交
7768 7769
{
	void *cpu = (void *)(long)smp_processor_id();
7770
	int err;
7771 7772

	/* Start one for the boot CPU: */
7773 7774
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7775 7776
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7777

7778
	return 0;
L
Linus Torvalds 已提交
7779
}
7780
early_initcall(migration_init);
L
Linus Torvalds 已提交
7781 7782 7783
#endif

#ifdef CONFIG_SMP
7784

7785
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7786

7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7797
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7798
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7799
{
I
Ingo Molnar 已提交
7800
	struct sched_group *group = sd->groups;
7801
	char str[256];
L
Linus Torvalds 已提交
7802

R
Rusty Russell 已提交
7803
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7804
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7805 7806 7807 7808 7809 7810 7811 7812 7813

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7814 7815
	}

7816
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7817

7818
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7819 7820 7821
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7822
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7823 7824 7825
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7826

I
Ingo Molnar 已提交
7827
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7828
	do {
I
Ingo Molnar 已提交
7829 7830 7831
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7832 7833 7834
			break;
		}

7835
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7836 7837 7838 7839 7840
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7841

7842
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7843 7844 7845 7846
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7847

7848
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7849 7850 7851 7852
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7853

7854
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7855

R
Rusty Russell 已提交
7856
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7857 7858

		printk(KERN_CONT " %s", str);
7859 7860 7861
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7862
		}
L
Linus Torvalds 已提交
7863

I
Ingo Molnar 已提交
7864 7865 7866
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7867

7868
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7869
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7870

7871 7872
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7873 7874 7875 7876
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7877

I
Ingo Molnar 已提交
7878 7879
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7880
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7881
	int level = 0;
L
Linus Torvalds 已提交
7882

7883 7884 7885
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7886 7887 7888 7889
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7890

I
Ingo Molnar 已提交
7891 7892
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7893
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7894 7895 7896 7897
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7898
	for (;;) {
7899
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7900
			break;
L
Linus Torvalds 已提交
7901 7902
		level++;
		sd = sd->parent;
7903
		if (!sd)
I
Ingo Molnar 已提交
7904 7905
			break;
	}
7906
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7907
}
7908
#else /* !CONFIG_SCHED_DEBUG */
7909
# define sched_domain_debug(sd, cpu) do { } while (0)
7910
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7911

7912
static int sd_degenerate(struct sched_domain *sd)
7913
{
7914
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7915 7916 7917 7918 7919 7920
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7921 7922 7923
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7924 7925 7926 7927 7928
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7929
	if (sd->flags & (SD_WAKE_AFFINE))
7930 7931 7932 7933 7934
		return 0;

	return 1;
}

7935 7936
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7937 7938 7939 7940 7941 7942
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7943
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7944 7945 7946 7947 7948 7949 7950
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7951 7952 7953
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7954 7955
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7956 7957 7958 7959 7960 7961 7962
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7963 7964
static void free_rootdomain(struct root_domain *rd)
{
7965 7966
	synchronize_sched();

7967 7968
	cpupri_cleanup(&rd->cpupri);

7969 7970 7971 7972 7973 7974
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7975 7976
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7977
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7978 7979
	unsigned long flags;

7980
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
7981 7982

	if (rq->rd) {
I
Ingo Molnar 已提交
7983
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7984

7985
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7986
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7987

7988
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7989

I
Ingo Molnar 已提交
7990 7991 7992 7993 7994 7995 7996
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7997 7998 7999 8000 8001
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8002
	cpumask_set_cpu(rq->cpu, rd->span);
8003
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8004
		set_rq_online(rq);
G
Gregory Haskins 已提交
8005

8006
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8007 8008 8009

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8010 8011
}

L
Li Zefan 已提交
8012
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8013
{
8014 8015
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8016 8017
	memset(rd, 0, sizeof(*rd));

8018 8019
	if (bootmem)
		gfp = GFP_NOWAIT;
8020

8021
	if (!alloc_cpumask_var(&rd->span, gfp))
8022
		goto out;
8023
	if (!alloc_cpumask_var(&rd->online, gfp))
8024
		goto free_span;
8025
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8026
		goto free_online;
8027

P
Pekka Enberg 已提交
8028
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8029
		goto free_rto_mask;
8030
	return 0;
8031

8032 8033
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8034 8035 8036 8037
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8038
out:
8039
	return -ENOMEM;
G
Gregory Haskins 已提交
8040 8041 8042 8043
}

static void init_defrootdomain(void)
{
8044 8045
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8046 8047 8048
	atomic_set(&def_root_domain.refcount, 1);
}

8049
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8050 8051 8052 8053 8054 8055 8056
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8057 8058 8059 8060
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8061 8062 8063 8064

	return rd;
}

L
Linus Torvalds 已提交
8065
/*
I
Ingo Molnar 已提交
8066
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8067 8068
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8069 8070
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8071
{
8072
	struct rq *rq = cpu_rq(cpu);
8073 8074 8075
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8076
	for (tmp = sd; tmp; ) {
8077 8078 8079
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8080

8081
		if (sd_parent_degenerate(tmp, parent)) {
8082
			tmp->parent = parent->parent;
8083 8084
			if (parent->parent)
				parent->parent->child = tmp;
8085 8086
		} else
			tmp = tmp->parent;
8087 8088
	}

8089
	if (sd && sd_degenerate(sd)) {
8090
		sd = sd->parent;
8091 8092 8093
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8094 8095 8096

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8097
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8098
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8099 8100 8101
}

/* cpus with isolated domains */
8102
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8103 8104 8105 8106

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8107
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8108
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8109 8110 8111
	return 1;
}

I
Ingo Molnar 已提交
8112
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8113 8114

/*
8115 8116
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8117 8118
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8119 8120 8121 8122 8123
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8124
static void
8125 8126 8127
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8128
					struct sched_group **sg,
8129 8130
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8131 8132 8133 8134
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8135
	cpumask_clear(covered);
8136

8137
	for_each_cpu(i, span) {
8138
		struct sched_group *sg;
8139
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8140 8141
		int j;

8142
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8143 8144
			continue;

8145
		cpumask_clear(sched_group_cpus(sg));
8146
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8147

8148
		for_each_cpu(j, span) {
8149
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8150 8151
				continue;

8152
			cpumask_set_cpu(j, covered);
8153
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8164
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8165

8166
#ifdef CONFIG_NUMA
8167

8168 8169 8170 8171 8172
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8173
 * Find the next node to include in a given scheduling domain. Simply
8174 8175 8176 8177
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8178
static int find_next_best_node(int node, nodemask_t *used_nodes)
8179 8180 8181 8182 8183
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8184
	for (i = 0; i < nr_node_ids; i++) {
8185
		/* Start at @node */
8186
		n = (node + i) % nr_node_ids;
8187 8188 8189 8190 8191

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8192
		if (node_isset(n, *used_nodes))
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8204
	node_set(best_node, *used_nodes);
8205 8206 8207 8208 8209 8210
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8211
 * @span: resulting cpumask
8212
 *
I
Ingo Molnar 已提交
8213
 * Given a node, construct a good cpumask for its sched_domain to span. It
8214 8215 8216
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8217
static void sched_domain_node_span(int node, struct cpumask *span)
8218
{
8219
	nodemask_t used_nodes;
8220
	int i;
8221

8222
	cpumask_clear(span);
8223
	nodes_clear(used_nodes);
8224

8225
	cpumask_or(span, span, cpumask_of_node(node));
8226
	node_set(node, used_nodes);
8227 8228

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8229
		int next_node = find_next_best_node(node, &used_nodes);
8230

8231
		cpumask_or(span, span, cpumask_of_node(next_node));
8232 8233
	}
}
8234
#endif /* CONFIG_NUMA */
8235

8236
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8237

8238 8239
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8240 8241 8242
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8287
/*
8288
 * SMT sched-domains:
8289
 */
L
Linus Torvalds 已提交
8290
#ifdef CONFIG_SCHED_SMT
8291
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8292
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8293

I
Ingo Molnar 已提交
8294
static int
8295 8296
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8297
{
8298
	if (sg)
8299
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
8300 8301
	return cpu;
}
8302
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8303

8304 8305 8306
/*
 * multi-core sched-domains:
 */
8307
#ifdef CONFIG_SCHED_MC
8308 8309
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8310
#endif /* CONFIG_SCHED_MC */
8311 8312

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8313
static int
8314 8315
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8316
{
8317
	int group;
8318

8319
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8320
	group = cpumask_first(mask);
8321
	if (sg)
8322
		*sg = &per_cpu(sched_group_core, group).sg;
8323
	return group;
8324 8325
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8326
static int
8327 8328
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8329
{
8330
	if (sg)
8331
		*sg = &per_cpu(sched_group_core, cpu).sg;
8332 8333 8334 8335
	return cpu;
}
#endif

8336 8337
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8338

I
Ingo Molnar 已提交
8339
static int
8340 8341
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8342
{
8343
	int group;
8344
#ifdef CONFIG_SCHED_MC
8345
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8346
	group = cpumask_first(mask);
8347
#elif defined(CONFIG_SCHED_SMT)
8348
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8349
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8350
#else
8351
	group = cpu;
L
Linus Torvalds 已提交
8352
#endif
8353
	if (sg)
8354
		*sg = &per_cpu(sched_group_phys, group).sg;
8355
	return group;
L
Linus Torvalds 已提交
8356 8357 8358 8359
}

#ifdef CONFIG_NUMA
/*
8360 8361 8362
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8363
 */
8364
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8365
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8366

8367
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8368
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8369

8370 8371 8372
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8373
{
8374 8375
	int group;

8376
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8377
	group = cpumask_first(nodemask);
8378 8379

	if (sg)
8380
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8381
	return group;
L
Linus Torvalds 已提交
8382
}
8383

8384 8385 8386 8387 8388 8389 8390
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8391
	do {
8392
		for_each_cpu(j, sched_group_cpus(sg)) {
8393
			struct sched_domain *sd;
8394

8395
			sd = &per_cpu(phys_domains, j).sd;
8396
			if (j != group_first_cpu(sd->groups)) {
8397 8398 8399 8400 8401 8402
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8403

8404
			sg->cpu_power += sd->groups->cpu_power;
8405 8406 8407
		}
		sg = sg->next;
	} while (sg != group_head);
8408
}
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8441
	sg->cpu_power = 0;
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8464
		sg->cpu_power = 0;
8465 8466 8467 8468 8469 8470 8471 8472 8473
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8474
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8475

8476
#ifdef CONFIG_NUMA
8477
/* Free memory allocated for various sched_group structures */
8478 8479
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8480
{
8481
	int cpu, i;
8482

8483
	for_each_cpu(cpu, cpu_map) {
8484 8485 8486 8487 8488 8489
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8490
		for (i = 0; i < nr_node_ids; i++) {
8491 8492
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8493
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8494
			if (cpumask_empty(nodemask))
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8511
#else /* !CONFIG_NUMA */
8512 8513
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8514 8515
{
}
8516
#endif /* CONFIG_NUMA */
8517

8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8532 8533
	long power;
	int weight;
8534 8535 8536

	WARN_ON(!sd || !sd->groups);

8537
	if (cpu != group_first_cpu(sd->groups))
8538 8539 8540 8541
		return;

	child = sd->child;

8542
	sd->groups->cpu_power = 0;
8543

8544 8545 8546 8547 8548
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8549 8550 8551
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8552
		 */
P
Peter Zijlstra 已提交
8553 8554
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8555
			power /= weight;
P
Peter Zijlstra 已提交
8556 8557
			power >>= SCHED_LOAD_SHIFT;
		}
8558
		sd->groups->cpu_power += power;
8559 8560 8561 8562
		return;
	}

	/*
8563
	 * Add cpu_power of each child group to this groups cpu_power.
8564 8565 8566
	 */
	group = child->groups;
	do {
8567
		sd->groups->cpu_power += group->cpu_power;
8568 8569 8570 8571
		group = group->next;
	} while (group != child->groups);
}

8572 8573 8574 8575 8576
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8577 8578 8579 8580 8581 8582
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8583
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8584

8585 8586 8587 8588 8589
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8590
	sd->level = SD_LV_##type;				\
8591
	SD_INIT_NAME(sd, type);					\
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8606 8607 8608 8609
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8610 8611 8612 8613 8614 8615
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8634
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8635 8636
	} else {
		/* turn on idle balance on this domain */
8637
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8638 8639 8640
	}
}

8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8661
#ifdef CONFIG_NUMA
8662 8663 8664 8665 8666 8667 8668
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8669
#endif
8670 8671 8672 8673
	case sa_none:
		break;
	}
}
8674

8675 8676 8677
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8678
#ifdef CONFIG_NUMA
8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8689
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8690
		return sa_notcovered;
8691
	}
8692
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8693
#endif
8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8706
		printk(KERN_WARNING "Cannot alloc root domain\n");
8707
		return sa_tmpmask;
G
Gregory Haskins 已提交
8708
	}
8709 8710
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8711

8712 8713 8714 8715
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8716
#ifdef CONFIG_NUMA
8717
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8718

8719 8720 8721 8722 8723
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8724
		set_domain_attribute(sd, attr);
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8739
#endif
8740 8741
	return sd;
}
L
Linus Torvalds 已提交
8742

8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8758

8759 8760 8761 8762 8763
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8764
#ifdef CONFIG_SCHED_MC
8765 8766 8767 8768 8769 8770 8771
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8772
#endif
8773 8774
	return sd;
}
8775

8776 8777 8778 8779 8780
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8781
#ifdef CONFIG_SCHED_SMT
8782 8783 8784 8785 8786 8787 8788
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8789
#endif
8790 8791
	return sd;
}
L
Linus Torvalds 已提交
8792

8793 8794 8795 8796
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8797
#ifdef CONFIG_SCHED_SMT
8798 8799 8800 8801 8802 8803 8804 8805
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8806
#endif
8807
#ifdef CONFIG_SCHED_MC
8808 8809 8810 8811 8812 8813 8814
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8815
#endif
8816 8817 8818 8819 8820 8821 8822
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8823
#ifdef CONFIG_NUMA
8824 8825 8826 8827 8828
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8829 8830
	default:
		break;
8831
	}
8832
}
8833

8834 8835 8836 8837 8838 8839 8840 8841 8842
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8843
	struct sched_domain *sd;
8844
	int i;
8845
#ifdef CONFIG_NUMA
8846
	d.sd_allnodes = 0;
8847
#endif
8848

8849 8850 8851 8852
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8853

L
Linus Torvalds 已提交
8854
	/*
8855
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8856
	 */
8857
	for_each_cpu(i, cpu_map) {
8858 8859
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8860

8861
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8862
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8863
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8864
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8865
	}
8866

8867
	for_each_cpu(i, cpu_map) {
8868
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8869
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8870
	}
8871

L
Linus Torvalds 已提交
8872
	/* Set up physical groups */
8873 8874
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8875

L
Linus Torvalds 已提交
8876 8877
#ifdef CONFIG_NUMA
	/* Set up node groups */
8878 8879
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8880

8881 8882
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8883
			goto error;
L
Linus Torvalds 已提交
8884 8885 8886
#endif

	/* Calculate CPU power for physical packages and nodes */
8887
#ifdef CONFIG_SCHED_SMT
8888
	for_each_cpu(i, cpu_map) {
8889
		sd = &per_cpu(cpu_domains, i).sd;
8890
		init_sched_groups_power(i, sd);
8891
	}
L
Linus Torvalds 已提交
8892
#endif
8893
#ifdef CONFIG_SCHED_MC
8894
	for_each_cpu(i, cpu_map) {
8895
		sd = &per_cpu(core_domains, i).sd;
8896
		init_sched_groups_power(i, sd);
8897 8898
	}
#endif
8899

8900
	for_each_cpu(i, cpu_map) {
8901
		sd = &per_cpu(phys_domains, i).sd;
8902
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8903 8904
	}

8905
#ifdef CONFIG_NUMA
8906
	for (i = 0; i < nr_node_ids; i++)
8907
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8908

8909
	if (d.sd_allnodes) {
8910
		struct sched_group *sg;
8911

8912
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8913
								d.tmpmask);
8914 8915
		init_numa_sched_groups_power(sg);
	}
8916 8917
#endif

L
Linus Torvalds 已提交
8918
	/* Attach the domains */
8919
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8920
#ifdef CONFIG_SCHED_SMT
8921
		sd = &per_cpu(cpu_domains, i).sd;
8922
#elif defined(CONFIG_SCHED_MC)
8923
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8924
#else
8925
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8926
#endif
8927
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8928
	}
8929

8930 8931 8932
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8933 8934

error:
8935 8936
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8937
}
P
Paul Jackson 已提交
8938

8939
static int build_sched_domains(const struct cpumask *cpu_map)
8940 8941 8942 8943
{
	return __build_sched_domains(cpu_map, NULL);
}

8944
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8945
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8946 8947
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8948 8949 8950

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8951 8952
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8953
 */
8954
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8955

8956 8957 8958 8959 8960 8961
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8962
{
8963
	return 0;
8964 8965
}

8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8991
/*
I
Ingo Molnar 已提交
8992
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8993 8994
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8995
 */
8996
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8997
{
8998 8999
	int err;

9000
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9001
	ndoms_cur = 1;
9002
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
9003
	if (!doms_cur)
9004 9005
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9006
	dattr_cur = NULL;
9007
	err = build_sched_domains(doms_cur[0]);
9008
	register_sched_domain_sysctl();
9009 9010

	return err;
9011 9012
}

9013 9014
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9015
{
9016
	free_sched_groups(cpu_map, tmpmask);
9017
}
L
Linus Torvalds 已提交
9018

9019 9020 9021 9022
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9023
static void detach_destroy_domains(const struct cpumask *cpu_map)
9024
{
9025 9026
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9027 9028
	int i;

9029
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9030
		cpu_attach_domain(NULL, &def_root_domain, i);
9031
	synchronize_sched();
9032
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9033 9034
}

9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9051 9052
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9053
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9054 9055 9056
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9057
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9058 9059 9060
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9061 9062 9063
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9064 9065 9066 9067 9068 9069
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9070
 *
9071
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9072 9073
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9074
 *
P
Paul Jackson 已提交
9075 9076
 * Call with hotplug lock held
 */
9077
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9078
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9079
{
9080
	int i, j, n;
9081
	int new_topology;
P
Paul Jackson 已提交
9082

9083
	mutex_lock(&sched_domains_mutex);
9084

9085 9086 9087
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9088 9089 9090
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9091
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9092 9093 9094

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9095
		for (j = 0; j < n && !new_topology; j++) {
9096
			if (cpumask_equal(doms_cur[i], doms_new[j])
9097
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9098 9099 9100
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9101
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9102 9103 9104 9105
match1:
		;
	}

9106 9107
	if (doms_new == NULL) {
		ndoms_cur = 0;
9108
		doms_new = &fallback_doms;
9109
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9110
		WARN_ON_ONCE(dattr_new);
9111 9112
	}

P
Paul Jackson 已提交
9113 9114
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9115
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9116
			if (cpumask_equal(doms_new[i], doms_cur[j])
9117
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9118 9119 9120
				goto match2;
		}
		/* no match - add a new doms_new */
9121
		__build_sched_domains(doms_new[i],
9122
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9123 9124 9125 9126 9127
match2:
		;
	}

	/* Remember the new sched domains */
9128 9129
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9130
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9131
	doms_cur = doms_new;
9132
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9133
	ndoms_cur = ndoms_new;
9134 9135

	register_sched_domain_sysctl();
9136

9137
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9138 9139
}

9140
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9141
static void arch_reinit_sched_domains(void)
9142
{
9143
	get_online_cpus();
9144 9145 9146 9147

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9148
	rebuild_sched_domains();
9149
	put_online_cpus();
9150 9151 9152 9153
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9154
	unsigned int level = 0;
9155

9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9167 9168 9169
		return -EINVAL;

	if (smt)
9170
		sched_smt_power_savings = level;
9171
	else
9172
		sched_mc_power_savings = level;
9173

9174
	arch_reinit_sched_domains();
9175

9176
	return count;
9177 9178 9179
}

#ifdef CONFIG_SCHED_MC
9180 9181
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9182 9183 9184
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9185
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9186
					    const char *buf, size_t count)
9187 9188 9189
{
	return sched_power_savings_store(buf, count, 0);
}
9190 9191 9192
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9193 9194 9195
#endif

#ifdef CONFIG_SCHED_SMT
9196 9197
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9198 9199 9200
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9201
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9202
					     const char *buf, size_t count)
9203 9204 9205
{
	return sched_power_savings_store(buf, count, 1);
}
9206 9207
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9208 9209 9210
		   sched_smt_power_savings_store);
#endif

9211
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9227
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9228

9229
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9230
/*
9231 9232
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9233 9234 9235
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9236 9237 9238 9239
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9240 9241 9242 9243
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9244
		partition_sched_domains(1, NULL, NULL);
9245 9246 9247 9248 9249 9250 9251 9252 9253 9254
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9255
{
P
Peter Zijlstra 已提交
9256 9257
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9258 9259
	switch (action) {
	case CPU_DOWN_PREPARE:
9260
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9261
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9262 9263 9264
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9265
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9266
	case CPU_ONLINE:
9267
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9268
		enable_runtime(cpu_rq(cpu));
9269 9270
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9271 9272 9273 9274 9275 9276 9277
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9278 9279 9280
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9281
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9282

9283 9284 9285 9286 9287
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9288
	get_online_cpus();
9289
	mutex_lock(&sched_domains_mutex);
9290
	arch_init_sched_domains(cpu_active_mask);
9291 9292 9293
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9294
	mutex_unlock(&sched_domains_mutex);
9295
	put_online_cpus();
9296 9297

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9298 9299
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9300 9301 9302 9303 9304
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9305
	init_hrtick();
9306 9307

	/* Move init over to a non-isolated CPU */
9308
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9309
		BUG();
I
Ingo Molnar 已提交
9310
	sched_init_granularity();
9311
	free_cpumask_var(non_isolated_cpus);
9312

9313
	init_sched_rt_class();
L
Linus Torvalds 已提交
9314 9315 9316 9317
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9318
	sched_init_granularity();
L
Linus Torvalds 已提交
9319 9320 9321
}
#endif /* CONFIG_SMP */

9322 9323
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9324 9325 9326 9327 9328 9329 9330
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9331
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9332 9333
{
	cfs_rq->tasks_timeline = RB_ROOT;
9334
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9335 9336 9337
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9338
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9339 9340
}

P
Peter Zijlstra 已提交
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9354
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9355
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9356
#ifdef CONFIG_SMP
9357
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9358 9359
#endif
#endif
P
Peter Zijlstra 已提交
9360 9361 9362
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9363
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9364 9365 9366 9367
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9368
	rt_rq->rt_runtime = 0;
9369
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9370

9371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9372
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9373 9374
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9375 9376
}

P
Peter Zijlstra 已提交
9377
#ifdef CONFIG_FAIR_GROUP_SCHED
9378 9379 9380
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9381
{
9382
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9383 9384 9385 9386 9387 9388 9389
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9390 9391 9392 9393
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9394 9395 9396 9397 9398
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9399 9400
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9401
	se->load.inv_weight = 0;
9402
	se->parent = parent;
P
Peter Zijlstra 已提交
9403
}
9404
#endif
P
Peter Zijlstra 已提交
9405

9406
#ifdef CONFIG_RT_GROUP_SCHED
9407 9408 9409
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9410
{
9411 9412
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9413 9414 9415 9416
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9417
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9418 9419 9420 9421
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9422 9423 9424
	if (!rt_se)
		return;

9425 9426 9427 9428 9429
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9430
	rt_se->my_q = rt_rq;
9431
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9432 9433 9434 9435
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9436 9437
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9438
	int i, j;
9439 9440 9441 9442 9443 9444 9445
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9446 9447 9448
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9449 9450
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9451
	alloc_size += num_possible_cpus() * cpumask_size();
9452 9453
#endif
	if (alloc_size) {
9454
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9455 9456 9457 9458 9459 9460 9461

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9462 9463 9464 9465 9466 9467 9468

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9469 9470
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9471 9472 9473 9474 9475
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9476 9477 9478 9479 9480 9481 9482 9483
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9484 9485
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9486 9487 9488 9489 9490 9491
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9492
	}
I
Ingo Molnar 已提交
9493

G
Gregory Haskins 已提交
9494 9495 9496 9497
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9498 9499 9500 9501 9502 9503
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9504 9505 9506
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9507 9508
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9509

9510
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9511
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9512 9513 9514 9515 9516 9517
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9518 9519
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9520

9521 9522 9523 9524
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9525
	for_each_possible_cpu(i) {
9526
		struct rq *rq;
L
Linus Torvalds 已提交
9527 9528

		rq = cpu_rq(i);
9529
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9530
		rq->nr_running = 0;
9531 9532
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9533
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9534
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9535
#ifdef CONFIG_FAIR_GROUP_SCHED
9536
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9537
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9553
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9554 9555 9556 9557
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9558
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9559
#elif defined CONFIG_USER_SCHED
9560 9561
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9562 9563 9564 9565 9566 9567 9568 9569
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9570
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9571 9572
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9573
		init_tg_cfs_entry(&init_task_group,
9574
				&per_cpu(init_tg_cfs_rq, i),
9575 9576
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9577

9578
#endif
D
Dhaval Giani 已提交
9579 9580 9581
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9582
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9583
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9584
#ifdef CONFIG_CGROUP_SCHED
9585
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9586
#elif defined CONFIG_USER_SCHED
9587
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9588
		init_tg_rt_entry(&init_task_group,
9589
				&per_cpu(init_rt_rq_var, i),
9590 9591
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9592
#endif
I
Ingo Molnar 已提交
9593
#endif
L
Linus Torvalds 已提交
9594

I
Ingo Molnar 已提交
9595 9596
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9597
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9598
		rq->sd = NULL;
G
Gregory Haskins 已提交
9599
		rq->rd = NULL;
9600
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9601
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9602
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9603
		rq->push_cpu = 0;
9604
		rq->cpu = i;
9605
		rq->online = 0;
L
Linus Torvalds 已提交
9606
		rq->migration_thread = NULL;
9607 9608
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9609
		INIT_LIST_HEAD(&rq->migration_queue);
9610
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9611
#endif
P
Peter Zijlstra 已提交
9612
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9613 9614 9615
		atomic_set(&rq->nr_iowait, 0);
	}

9616
	set_load_weight(&init_task);
9617

9618 9619 9620 9621
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9622
#ifdef CONFIG_SMP
9623
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9624 9625
#endif

9626
#ifdef CONFIG_RT_MUTEXES
9627
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9628 9629
#endif

L
Linus Torvalds 已提交
9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9643 9644 9645

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9646 9647 9648 9649
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9650

9651
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9652
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9653
#ifdef CONFIG_SMP
9654
#ifdef CONFIG_NO_HZ
9655
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9656
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9657
#endif
R
Rusty Russell 已提交
9658 9659 9660
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9661
#endif /* SMP */
9662

9663
	perf_event_init();
9664

9665
	scheduler_running = 1;
L
Linus Torvalds 已提交
9666 9667 9668
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9669 9670 9671 9672 9673 9674 9675 9676
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9677
{
9678
#ifdef in_atomic
L
Linus Torvalds 已提交
9679 9680
	static unsigned long prev_jiffy;	/* ratelimiting */

9681 9682
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9700 9701 9702 9703 9704 9705
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9706 9707 9708
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9709

9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9721 9722
void normalize_rt_tasks(void)
{
9723
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9724
	unsigned long flags;
9725
	struct rq *rq;
L
Linus Torvalds 已提交
9726

9727
	read_lock_irqsave(&tasklist_lock, flags);
9728
	do_each_thread(g, p) {
9729 9730 9731 9732 9733 9734
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9735 9736
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9737 9738 9739
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9740
#endif
I
Ingo Molnar 已提交
9741 9742 9743 9744 9745 9746 9747 9748

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9749
			continue;
I
Ingo Molnar 已提交
9750
		}
L
Linus Torvalds 已提交
9751

9752
		raw_spin_lock(&p->pi_lock);
9753
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9754

9755
		normalize_task(rq, p);
9756

9757
		__task_rq_unlock(rq);
9758
		raw_spin_unlock(&p->pi_lock);
9759 9760
	} while_each_thread(g, p);

9761
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9762 9763 9764
}

#endif /* CONFIG_MAGIC_SYSRQ */
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9783
struct task_struct *curr_task(int cpu)
9784 9785 9786 9787 9788 9789 9790 9791 9792 9793
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9794 9795
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9796 9797 9798 9799 9800 9801 9802
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9803
void set_curr_task(int cpu, struct task_struct *p)
9804 9805 9806 9807 9808
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9809

9810 9811
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9826 9827
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9828 9829
{
	struct cfs_rq *cfs_rq;
9830
	struct sched_entity *se;
9831
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9832 9833
	int i;

9834
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9835 9836
	if (!tg->cfs_rq)
		goto err;
9837
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9838 9839
	if (!tg->se)
		goto err;
9840 9841

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9842 9843

	for_each_possible_cpu(i) {
9844
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9845

9846 9847
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9848 9849 9850
		if (!cfs_rq)
			goto err;

9851 9852
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9853
		if (!se)
9854
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9855

9856
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9857 9858 9859 9860
	}

	return 1;

9861 9862
 err_free_rq:
	kfree(cfs_rq);
9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9877
#else /* !CONFG_FAIR_GROUP_SCHED */
9878 9879 9880 9881
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9882 9883
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9895
#endif /* CONFIG_FAIR_GROUP_SCHED */
9896 9897

#ifdef CONFIG_RT_GROUP_SCHED
9898 9899 9900 9901
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9902 9903
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9915 9916
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9917 9918
{
	struct rt_rq *rt_rq;
9919
	struct sched_rt_entity *rt_se;
9920 9921 9922
	struct rq *rq;
	int i;

9923
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9924 9925
	if (!tg->rt_rq)
		goto err;
9926
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9927 9928 9929
	if (!tg->rt_se)
		goto err;

9930 9931
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9932 9933 9934 9935

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9936 9937
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9938 9939
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9940

9941 9942
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9943
		if (!rt_se)
9944
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9945

9946
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9947 9948
	}

9949 9950
	return 1;

9951 9952
 err_free_rq:
	kfree(rt_rq);
9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9967
#else /* !CONFIG_RT_GROUP_SCHED */
9968 9969 9970 9971
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9972 9973
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9985
#endif /* CONFIG_RT_GROUP_SCHED */
9986

9987
#ifdef CONFIG_GROUP_SCHED
9988 9989 9990 9991 9992 9993 9994 9995
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9996
struct task_group *sched_create_group(struct task_group *parent)
9997 9998 9999 10000 10001 10002 10003 10004 10005
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10006
	if (!alloc_fair_sched_group(tg, parent))
10007 10008
		goto err;

10009
	if (!alloc_rt_sched_group(tg, parent))
10010 10011
		goto err;

10012
	spin_lock_irqsave(&task_group_lock, flags);
10013
	for_each_possible_cpu(i) {
10014 10015
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10016
	}
P
Peter Zijlstra 已提交
10017
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10018 10019 10020 10021 10022

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10023
	list_add_rcu(&tg->siblings, &parent->children);
10024
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10025

10026
	return tg;
S
Srivatsa Vaddagiri 已提交
10027 10028

err:
P
Peter Zijlstra 已提交
10029
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10030 10031 10032
	return ERR_PTR(-ENOMEM);
}

10033
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10034
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10035 10036
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10037
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10038 10039
}

10040
/* Destroy runqueue etc associated with a task group */
10041
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10042
{
10043
	unsigned long flags;
10044
	int i;
S
Srivatsa Vaddagiri 已提交
10045

10046
	spin_lock_irqsave(&task_group_lock, flags);
10047
	for_each_possible_cpu(i) {
10048 10049
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10050
	}
P
Peter Zijlstra 已提交
10051
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10052
	list_del_rcu(&tg->siblings);
10053
	spin_unlock_irqrestore(&task_group_lock, flags);
10054 10055

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10056
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10057 10058
}

10059
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10060 10061 10062
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10063 10064
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10065 10066 10067 10068 10069 10070 10071 10072 10073
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10074
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10075 10076
	on_rq = tsk->se.on_rq;

10077
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10078
		dequeue_task(rq, tsk, 0);
10079 10080
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10081

P
Peter Zijlstra 已提交
10082
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10083

P
Peter Zijlstra 已提交
10084 10085 10086 10087 10088
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10089 10090 10091
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10092
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10093 10094 10095

	task_rq_unlock(rq, &flags);
}
10096
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10097

10098
#ifdef CONFIG_FAIR_GROUP_SCHED
10099
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10100 10101 10102 10103 10104
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10105
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10106 10107 10108
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10109
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10110

10111
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10112
		enqueue_entity(cfs_rq, se, 0);
10113
}
10114

10115 10116 10117 10118 10119 10120
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

10121
	raw_spin_lock_irqsave(&rq->lock, flags);
10122
	__set_se_shares(se, shares);
10123
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10124 10125
}

10126 10127
static DEFINE_MUTEX(shares_mutex);

10128
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10129 10130
{
	int i;
10131
	unsigned long flags;
10132

10133 10134 10135 10136 10137 10138
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10139 10140
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10141 10142
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10143

10144
	mutex_lock(&shares_mutex);
10145
	if (tg->shares == shares)
10146
		goto done;
S
Srivatsa Vaddagiri 已提交
10147

10148
	spin_lock_irqsave(&task_group_lock, flags);
10149 10150
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10151
	list_del_rcu(&tg->siblings);
10152
	spin_unlock_irqrestore(&task_group_lock, flags);
10153 10154 10155 10156 10157 10158 10159 10160

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10161
	tg->shares = shares;
10162 10163 10164 10165 10166
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10167
		set_se_shares(tg->se[i], shares);
10168
	}
S
Srivatsa Vaddagiri 已提交
10169

10170 10171 10172 10173
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10174
	spin_lock_irqsave(&task_group_lock, flags);
10175 10176
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10177
	list_add_rcu(&tg->siblings, &tg->parent->children);
10178
	spin_unlock_irqrestore(&task_group_lock, flags);
10179
done:
10180
	mutex_unlock(&shares_mutex);
10181
	return 0;
S
Srivatsa Vaddagiri 已提交
10182 10183
}

10184 10185 10186 10187
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10188
#endif
10189

10190
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10191
/*
P
Peter Zijlstra 已提交
10192
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10193
 */
P
Peter Zijlstra 已提交
10194 10195 10196 10197 10198
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10199
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10200

P
Peter Zijlstra 已提交
10201
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10202 10203
}

P
Peter Zijlstra 已提交
10204 10205
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10206
{
P
Peter Zijlstra 已提交
10207
	struct task_struct *g, *p;
10208

P
Peter Zijlstra 已提交
10209 10210 10211 10212
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10213

P
Peter Zijlstra 已提交
10214 10215
	return 0;
}
10216

P
Peter Zijlstra 已提交
10217 10218 10219 10220 10221
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10222

P
Peter Zijlstra 已提交
10223 10224 10225 10226 10227 10228
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10229

P
Peter Zijlstra 已提交
10230 10231
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10232

P
Peter Zijlstra 已提交
10233 10234 10235
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10236 10237
	}

10238 10239 10240 10241 10242 10243 10244
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10245 10246 10247 10248 10249
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10250

10251 10252 10253
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10254 10255
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10256

P
Peter Zijlstra 已提交
10257
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10258

10259 10260 10261 10262 10263
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10264

10265 10266 10267
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10268 10269 10270
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10271

P
Peter Zijlstra 已提交
10272 10273 10274 10275
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10276

P
Peter Zijlstra 已提交
10277
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10278
	}
P
Peter Zijlstra 已提交
10279

P
Peter Zijlstra 已提交
10280 10281 10282 10283
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10284 10285
}

P
Peter Zijlstra 已提交
10286
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10287
{
P
Peter Zijlstra 已提交
10288 10289 10290 10291 10292 10293 10294
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10295 10296
}

10297 10298
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10299
{
P
Peter Zijlstra 已提交
10300
	int i, err = 0;
P
Peter Zijlstra 已提交
10301 10302

	mutex_lock(&rt_constraints_mutex);
10303
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10304 10305
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10306
		goto unlock;
P
Peter Zijlstra 已提交
10307

10308
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10309 10310
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10311 10312 10313 10314

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

10315
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10316
		rt_rq->rt_runtime = rt_runtime;
10317
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10318
	}
10319
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10320
 unlock:
10321
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10322 10323 10324
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10325 10326
}

10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10339 10340 10341 10342
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10343
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10344 10345
		return -1;

10346
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10347 10348 10349
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10350 10351 10352 10353 10354 10355 10356 10357

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10358 10359 10360
	if (rt_period == 0)
		return -EINVAL;

10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10375
	u64 runtime, period;
10376 10377
	int ret = 0;

10378 10379 10380
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10381 10382 10383 10384 10385 10386 10387 10388
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10389

10390
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10391
	read_lock(&tasklist_lock);
10392
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10393
	read_unlock(&tasklist_lock);
10394 10395 10396 10397
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10398 10399 10400 10401 10402 10403 10404 10405 10406 10407

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10408
#else /* !CONFIG_RT_GROUP_SCHED */
10409 10410
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10411 10412 10413
	unsigned long flags;
	int i;

10414 10415 10416
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10417 10418 10419 10420 10421 10422 10423
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

10424
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10425 10426 10427
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

10428
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10429
		rt_rq->rt_runtime = global_rt_runtime();
10430
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
10431
	}
10432
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
10433

10434 10435
	return 0;
}
10436
#endif /* CONFIG_RT_GROUP_SCHED */
10437 10438

int sched_rt_handler(struct ctl_table *table, int write,
10439
		void __user *buffer, size_t *lenp,
10440 10441 10442 10443 10444 10445 10446 10447 10448 10449
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10450
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10467

10468
#ifdef CONFIG_CGROUP_SCHED
10469 10470

/* return corresponding task_group object of a cgroup */
10471
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10472
{
10473 10474
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10475 10476 10477
}

static struct cgroup_subsys_state *
10478
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10479
{
10480
	struct task_group *tg, *parent;
10481

10482
	if (!cgrp->parent) {
10483 10484 10485 10486
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10487 10488
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10489 10490 10491 10492 10493 10494
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10495 10496
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10497
{
10498
	struct task_group *tg = cgroup_tg(cgrp);
10499 10500 10501 10502

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10503
static int
10504
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10505
{
10506
#ifdef CONFIG_RT_GROUP_SCHED
10507
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10508 10509
		return -EINVAL;
#else
10510 10511 10512
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10513
#endif
10514 10515
	return 0;
}
10516

10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10536 10537 10538 10539
	return 0;
}

static void
10540
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10541 10542
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10543 10544
{
	sched_move_task(tsk);
10545 10546 10547 10548 10549 10550 10551 10552
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10553 10554
}

10555
#ifdef CONFIG_FAIR_GROUP_SCHED
10556
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10557
				u64 shareval)
10558
{
10559
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10560 10561
}

10562
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10563
{
10564
	struct task_group *tg = cgroup_tg(cgrp);
10565 10566 10567

	return (u64) tg->shares;
}
10568
#endif /* CONFIG_FAIR_GROUP_SCHED */
10569

10570
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10571
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10572
				s64 val)
P
Peter Zijlstra 已提交
10573
{
10574
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10575 10576
}

10577
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10578
{
10579
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10580
}
10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10592
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10593

10594
static struct cftype cpu_files[] = {
10595
#ifdef CONFIG_FAIR_GROUP_SCHED
10596 10597
	{
		.name = "shares",
10598 10599
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10600
	},
10601 10602
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10603
	{
P
Peter Zijlstra 已提交
10604
		.name = "rt_runtime_us",
10605 10606
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10607
	},
10608 10609
	{
		.name = "rt_period_us",
10610 10611
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10612
	},
10613
#endif
10614 10615 10616 10617
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10618
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10619 10620 10621
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10622 10623 10624 10625 10626 10627 10628
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10629 10630 10631
	.early_init	= 1,
};

10632
#endif	/* CONFIG_CGROUP_SCHED */
10633 10634 10635 10636 10637 10638 10639 10640 10641 10642

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10643
/* track cpu usage of a group of tasks and its child groups */
10644 10645 10646 10647
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10648
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10649
	struct cpuacct *parent;
10650 10651 10652 10653 10654
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10655
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10656
{
10657
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10670
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10671 10672
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10673
	int i;
10674 10675

	if (!ca)
10676
		goto out;
10677 10678

	ca->cpuusage = alloc_percpu(u64);
10679 10680 10681 10682 10683 10684
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10685

10686 10687 10688
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10689
	return &ca->css;
10690 10691 10692 10693 10694 10695 10696 10697 10698

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10699 10700 10701
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10702
static void
10703
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10704
{
10705
	struct cpuacct *ca = cgroup_ca(cgrp);
10706
	int i;
10707

10708 10709
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10710 10711 10712 10713
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10714 10715
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10716
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10717 10718 10719 10720 10721 10722
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
10723
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10724
	data = *cpuusage;
10725
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10726 10727 10728 10729 10730 10731 10732 10733 10734
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10735
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10736 10737 10738 10739 10740

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
10741
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10742
	*cpuusage = val;
10743
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10744 10745 10746 10747 10748
#else
	*cpuusage = val;
#endif
}

10749
/* return total cpu usage (in nanoseconds) of a group */
10750
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10751
{
10752
	struct cpuacct *ca = cgroup_ca(cgrp);
10753 10754 10755
	u64 totalcpuusage = 0;
	int i;

10756 10757
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10758 10759 10760 10761

	return totalcpuusage;
}

10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10774 10775
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10776 10777 10778 10779 10780

out:
	return err;
}

10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10815 10816 10817
static struct cftype files[] = {
	{
		.name = "usage",
10818 10819
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10820
	},
10821 10822 10823 10824
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10825 10826 10827 10828
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10829 10830
};

10831
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10832
{
10833
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10834 10835 10836 10837 10838 10839 10840 10841 10842 10843
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10844
	int cpu;
10845

L
Li Zefan 已提交
10846
	if (unlikely(!cpuacct_subsys.active))
10847 10848
		return;

10849
	cpu = task_cpu(tsk);
10850 10851 10852

	rcu_read_lock();

10853 10854
	ca = task_ca(tsk);

10855
	for (; ca; ca = ca->parent) {
10856
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10857 10858
		*cpuusage += cputime;
	}
10859 10860

	rcu_read_unlock();
10861 10862
}

10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10884 10885 10886 10887 10888 10889 10890 10891
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
10977
		raw_spin_lock_irqsave(&rq->lock, flags);
10978
		list_add(&req->list, &rq->migration_queue);
10979
		raw_spin_unlock_irqrestore(&rq->lock, flags);
10980 10981 10982 10983 10984 10985 10986
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
10987
		raw_spin_lock_irqsave(&rq->lock, flags);
10988 10989 10990
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
10991
		raw_spin_unlock_irqrestore(&rq->lock, flags);
10992 10993
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10994
	synchronize_sched_expedited_count++;
10995 10996 10997 10998 10999 11000 11001 11002
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */