sched.c 216.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916
/*
P
Peter Zijlstra 已提交
917 918
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
919 920 921
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935
		rq = task_rq(p);
936
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
937
		if (likely(rq == task_rq(p)))
938
			return rq;
939
		raw_spin_unlock(&rq->lock);
940 941 942
	}
}

L
Linus Torvalds 已提交
943 944
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
945
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
946 947
 * explicitly disabling preemption.
 */
948
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
949 950
	__acquires(rq->lock)
{
951
	struct rq *rq;
L
Linus Torvalds 已提交
952

953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
956
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
957
		if (likely(rq == task_rq(p)))
958
			return rq;
959
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
960 961 962
	}
}

963 964 965 966 967
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
968
	raw_spin_unlock_wait(&rq->lock);
969 970
}

A
Alexey Dobriyan 已提交
971
static void __task_rq_unlock(struct rq *rq)
972 973
	__releases(rq->lock)
{
974
	raw_spin_unlock(&rq->lock);
975 976
}

977
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
978 979
	__releases(rq->lock)
{
980
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
981 982 983
}

/*
984
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
985
 */
A
Alexey Dobriyan 已提交
986
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
987 988
	__acquires(rq->lock)
{
989
	struct rq *rq;
L
Linus Torvalds 已提交
990 991 992

	local_irq_disable();
	rq = this_rq();
993
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
994 995 996 997

	return rq;
}

P
Peter Zijlstra 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1019
	if (!cpu_active(cpu_of(rq)))
1020
		return 0;
P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1040
	raw_spin_lock(&rq->lock);
1041
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1042
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1044 1045 1046 1047

	return HRTIMER_NORESTART;
}

1048
#ifdef CONFIG_SMP
1049 1050 1051 1052
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1053
{
1054
	struct rq *rq = arg;
1055

1056
	raw_spin_lock(&rq->lock);
1057 1058
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1059
	raw_spin_unlock(&rq->lock);
1060 1061
}

1062 1063 1064 1065 1066 1067
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1068
{
1069 1070
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071

1072
	hrtimer_set_expires(timer, time);
1073 1074 1075 1076

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1077
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 1079
		rq->hrtick_csd_pending = 1;
	}
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1094
		hrtick_clear(cpu_rq(cpu));
1095 1096 1097 1098 1099 1100
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1101
static __init void init_hrtick(void)
1102 1103 1104
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1105 1106 1107 1108 1109 1110 1111 1112
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1113
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114
			HRTIMER_MODE_REL_PINNED, 0);
1115
}
1116

A
Andrew Morton 已提交
1117
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1118 1119
{
}
1120
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1121

1122
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1123
{
1124 1125
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1131

1132 1133
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1134
}
A
Andrew Morton 已提交
1135
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1136 1137 1138 1139 1140 1141 1142 1143
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1144 1145 1146
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1147
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1148

I
Ingo Molnar 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1162
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1163 1164 1165
{
	int cpu;

1166
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1167

1168
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1169 1170
		return;

1171
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1188
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1189 1190
		return;
	resched_task(cpu_curr(cpu));
1191
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1192
}
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1227
	set_tsk_need_resched(rq->idle);
1228 1229 1230 1231 1232 1233

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1245
#endif /* CONFIG_NO_HZ */
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1268
#else /* !CONFIG_SMP */
1269
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1270
{
1271
	assert_raw_spin_locked(&task_rq(p)->lock);
1272
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1273
}
1274 1275 1276 1277

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1278
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1279

1280 1281 1282 1283 1284 1285 1286 1287
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1288 1289 1290
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1291
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1292

1293 1294 1295
/*
 * delta *= weight / lw
 */
1296
static unsigned long
1297 1298 1299 1300 1301
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1302 1303 1304 1305 1306 1307 1308
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1309 1310 1311 1312 1313

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1314
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1315
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1316 1317
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1318
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319

1320
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1321 1322
}

1323
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 1325
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1326
	lw->inv_weight = 0;
1327 1328
}

1329
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 1331
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1332
	lw->inv_weight = 0;
1333 1334
}

1335 1336 1337 1338
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1339
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1340 1341 1342 1343
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1344 1345
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1355 1356 1357
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1358 1359
 */
static const int prio_to_weight[40] = {
1360 1361 1362 1363 1364 1365 1366 1367
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1368 1369
};

1370 1371 1372 1373 1374 1375 1376
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1377
static const u32 prio_to_wmult[40] = {
1378 1379 1380 1381 1382 1383 1384 1385
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1386
};
1387

1388 1389 1390 1391 1392 1393 1394 1395
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1396 1397
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 1399
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1400 1401
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1402 1403
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1404 1405
#endif

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1416
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1417
typedef int (*tg_visitor)(struct task_group *, void *);
1418 1419 1420 1421 1422

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1423
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1424 1425
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1426
	int ret;
1427 1428 1429 1430

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1431 1432 1433
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1434 1435 1436 1437 1438 1439 1440
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1441 1442 1443
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1444 1445 1446 1447 1448

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1449
out_unlock:
1450
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1451 1452

	return ret;
1453 1454
}

P
Peter Zijlstra 已提交
1455 1456 1457
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1458
}
P
Peter Zijlstra 已提交
1459 1460 1461
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1501 1502
static struct sched_group *group_of(int cpu)
{
1503
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1521 1522 1523 1524 1525
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1526
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1527

1528 1529
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1530 1531
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1537

1538
static __read_mostly unsigned long __percpu *update_shares_data;
1539

1540 1541 1542 1543 1544
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1545 1546 1547
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1548
				    unsigned long *usd_rq_weight)
1549
{
1550
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1551
	int boost = 0;
1552

1553
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1554 1555 1556 1557
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1558

1559
	/*
P
Peter Zijlstra 已提交
1560 1561 1562
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1563
	 */
1564
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1565
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1566

1567 1568 1569 1570
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1571

1572
		raw_spin_lock_irqsave(&rq->lock, flags);
1573
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1574
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1575
		__set_se_shares(tg->se[cpu], shares);
1576
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1577
	}
1578
}
1579 1580

/*
1581 1582 1583
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1584
 */
P
Peter Zijlstra 已提交
1585
static int tg_shares_up(struct task_group *tg, void *data)
1586
{
1587
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1588
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1589
	struct sched_domain *sd = data;
1590
	unsigned long flags;
1591
	int i;
1592

1593 1594 1595 1596
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1597
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1598

1599
	for_each_cpu(i, sched_domain_span(sd)) {
1600
		weight = tg->cfs_rq[i]->load.weight;
1601
		usd_rq_weight[i] = weight;
1602

1603
		rq_weight += weight;
1604 1605 1606 1607 1608 1609 1610 1611
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1612
		sum_weight += weight;
1613
		shares += tg->cfs_rq[i]->shares;
1614 1615
	}

1616 1617 1618
	if (!rq_weight)
		rq_weight = sum_weight;

1619 1620 1621 1622 1623
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1624

1625
	for_each_cpu(i, sched_domain_span(sd))
1626
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1627 1628

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1629 1630

	return 0;
1631 1632 1633
}

/*
1634 1635 1636
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1637
 */
P
Peter Zijlstra 已提交
1638
static int tg_load_down(struct task_group *tg, void *data)
1639
{
1640
	unsigned long load;
P
Peter Zijlstra 已提交
1641
	long cpu = (long)data;
1642

1643 1644 1645 1646 1647 1648 1649
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1650

1651
	tg->cfs_rq[cpu]->h_load = load;
1652

P
Peter Zijlstra 已提交
1653
	return 0;
1654 1655
}

1656
static void update_shares(struct sched_domain *sd)
1657
{
1658 1659 1660 1661 1662 1663 1664 1665
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1666 1667 1668

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1669
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1670
	}
1671 1672
}

P
Peter Zijlstra 已提交
1673
static void update_h_load(long cpu)
1674
{
1675 1676 1677
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1678
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1679 1680 1681 1682
}

#else

1683
static inline void update_shares(struct sched_domain *sd)
1684 1685 1686
{
}

1687 1688
#endif

1689 1690
#ifdef CONFIG_PREEMPT

1691 1692
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1693
/*
1694 1695 1696 1697 1698 1699
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1700
 */
1701 1702 1703 1704 1705
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1706
	raw_spin_unlock(&this_rq->lock);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 1722 1723 1724 1725 1726
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1727
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1728
		if (busiest < this_rq) {
1729 1730 1731 1732
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1733 1734
			ret = 1;
		} else
1735 1736
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1737 1738 1739 1740
	}
	return ret;
}

1741 1742 1743 1744 1745 1746 1747 1748 1749
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1750
		raw_spin_unlock(&this_rq->lock);
1751 1752 1753 1754 1755 1756
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1757 1758 1759
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1760
	raw_spin_unlock(&busiest->lock);
1761 1762
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1806 1807
#endif

V
Vegard Nossum 已提交
1808
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1809 1810
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1811
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1812 1813 1814
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1815
#endif
1816

1817
static void calc_load_account_active(struct rq *this_rq);
1818
static void update_sysctl(void);
1819
static int get_update_sysctl_factor(void);
1820

P
Peter Zijlstra 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1834

1835
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1836 1837

#define sched_class_highest (&rt_sched_class)
1838 1839
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1840

1841 1842
#include "sched_stats.h"

1843
static void inc_nr_running(struct rq *rq)
1844 1845 1846 1847
{
	rq->nr_running++;
}

1848
static void dec_nr_running(struct rq *rq)
1849 1850 1851 1852
{
	rq->nr_running--;
}

1853 1854 1855
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1856 1857 1858 1859
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1860

I
Ingo Molnar 已提交
1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1869

I
Ingo Molnar 已提交
1870 1871
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 1873
}

1874 1875 1876 1877 1878 1879
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1880 1881
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882
{
1883
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1884
	sched_info_queued(p);
1885
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1886
	p->se.on_rq = 1;
1887 1888
}

1889
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1890
{
1891
	update_rq_clock(rq);
1892
	sched_info_dequeued(p);
1893
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 0;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1905
	enqueue_task(rq, p, wakeup, false);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1928
/*
I
Ingo Molnar 已提交
1929
 * __normal_prio - return the priority that is based on the static prio
1930 1931 1932
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1933
	return p->static_prio;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1943
static inline int normal_prio(struct task_struct *p)
1944 1945 1946
{
	int prio;

1947
	if (task_has_rt_policy(p))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1961
static int effective_prio(struct task_struct *p)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1974 1975 1976 1977
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1978
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1979 1980 1981 1982
{
	return cpu_curr(task_cpu(p)) == p;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1995
#ifdef CONFIG_SMP
1996 1997 1998
/*
 * Is this task likely cache-hot:
 */
1999
static int
2000 2001 2002 2003
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2004 2005 2006
	if (p->sched_class != &fair_sched_class)
		return 0;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
2010
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2011 2012
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017 2018 2019
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2020 2021 2022 2023 2024
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2025
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2026
{
2027 2028 2029 2030 2031
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2032 2033
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 2035
#endif

2036
	trace_sched_migrate_task(p, new_cpu);
2037

2038 2039 2040 2041
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2042 2043

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2044 2045
}

2046
struct migration_req {
L
Linus Torvalds 已提交
2047 2048
	struct list_head list;

2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050 2051 2052
	int dest_cpu;

	struct completion done;
2053
};
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static int
2060
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2061
{
2062
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2063 2064 2065

	/*
	 * If the task is not on a runqueue (and not running), then
2066
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2067
	 */
2068
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2075

L
Linus Torvalds 已提交
2076 2077 2078
	return 1;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2122 2123 2124
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2125 2126 2127 2128 2129 2130 2131
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2138
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2139 2140
{
	unsigned long flags;
I
Ingo Molnar 已提交
2141
	int running, on_rq;
R
Roland McGrath 已提交
2142
	unsigned long ncsw;
2143
	struct rq *rq;
L
Linus Torvalds 已提交
2144

2145 2146 2147 2148 2149 2150 2151 2152
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2165 2166 2167
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2168
			cpu_relax();
R
Roland McGrath 已提交
2169
		}
2170

2171 2172 2173 2174 2175 2176
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2177
		trace_sched_wait_task(rq, p);
2178 2179
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2180
		ncsw = 0;
2181
		if (!match_state || p->state == match_state)
2182
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183
		task_rq_unlock(rq, &flags);
2184

R
Roland McGrath 已提交
2185 2186 2187 2188 2189 2190
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2201

2202 2203 2204 2205 2206
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2207
		 * So if it was still runnable (but just not actively
2208 2209 2210 2211 2212 2213 2214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2215

2216 2217 2218 2219 2220 2221 2222
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2223 2224

	return ncsw;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2240
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2250
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2251
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2252

T
Thomas Gleixner 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2274
#ifdef CONFIG_SMP
2275 2276 2277
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2294
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2295
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2311
/*
2312
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2313
 */
2314
static inline
2315
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2316
{
2317
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2330
		     !cpu_online(cpu)))
2331
		cpu = select_fallback_rq(task_cpu(p), p);
2332 2333

	return cpu;
2334 2335 2336
}
#endif

L
Linus Torvalds 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2351 2352
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2353
{
2354
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2355
	unsigned long flags;
2356
	struct rq *rq;
L
Linus Torvalds 已提交
2357

P
Peter Zijlstra 已提交
2358
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2359

2360
	smp_wmb();
2361
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2362
	if (!(p->state & state))
L
Linus Torvalds 已提交
2363 2364
		goto out;

I
Ingo Molnar 已提交
2365
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2366 2367 2368
		goto out_running;

	cpu = task_cpu(p);
2369
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2375 2376 2377
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2378 2379
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2380
	 */
2381 2382
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2383
	p->state = TASK_WAKING;
2384 2385 2386 2387

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

2388 2389
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2390
		set_task_cpu(p, cpu);
2391
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2392

2393 2394
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2395

2396 2397 2398 2399 2400 2401 2402
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2403
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2404

2405 2406 2407 2408 2409 2410 2411
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2412
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2413 2414 2415 2416 2417
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2418
#endif /* CONFIG_SCHEDSTATS */
2419

L
Linus Torvalds 已提交
2420 2421
out_activate:
#endif /* CONFIG_SMP */
2422
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2423
	if (wake_flags & WF_SYNC)
2424
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2425
	if (orig_cpu != cpu)
2426
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2427
	if (cpu == this_cpu)
2428
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2429
	else
2430
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2431
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2432 2433 2434
	success = 1;

out_running:
2435
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2436
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2437

L
Linus Torvalds 已提交
2438
	p->state = TASK_RUNNING;
2439
#ifdef CONFIG_SMP
2440 2441
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2453
#endif
L
Linus Torvalds 已提交
2454 2455
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2456
	put_cpu();
L
Linus Torvalds 已提交
2457 2458 2459 2460

	return success;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2472
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2473
{
2474
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2475 2476 2477
}
EXPORT_SYMBOL(wake_up_process);

2478
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483 2484 2485
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2486 2487 2488 2489 2490 2491 2492
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2493
	p->se.prev_sum_exec_runtime	= 0;
2494
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2495 2496

#ifdef CONFIG_SCHEDSTATS
2497
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2498
#endif
N
Nick Piggin 已提交
2499

P
Peter Zijlstra 已提交
2500
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2501
	p->se.on_rq = 0;
2502
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2503

2504 2505 2506
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2517
	/*
2518
	 * We mark the process as running here. This guarantees that
2519 2520 2521
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2522
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2523

2524 2525 2526 2527
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2528
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2529
			p->policy = SCHED_NORMAL;
2530 2531
			p->normal_prio = p->static_prio;
		}
2532

2533 2534
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2535
			p->normal_prio = p->static_prio;
2536 2537 2538
			set_load_weight(p);
		}

2539 2540 2541 2542 2543 2544
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2545

2546 2547 2548 2549 2550
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2551 2552
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2553

P
Peter Zijlstra 已提交
2554 2555 2556
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2557 2558
	set_task_cpu(p, cpu);

2559
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2560
	if (likely(sched_info_on()))
2561
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2562
#endif
2563
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2564 2565
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2566
#ifdef CONFIG_PREEMPT
2567
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2568
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2569
#endif
2570 2571
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2572
	put_cpu();
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2582
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2583 2584
{
	unsigned long flags;
I
Ingo Molnar 已提交
2585
	struct rq *rq;
2586
	int cpu __maybe_unused = get_cpu();
2587 2588

#ifdef CONFIG_SMP
2589 2590 2591
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2592 2593 2594 2595 2596
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2597 2598
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2599
	 */
2600
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2601
	set_task_cpu(p, cpu);
2602

2603
	p->state = TASK_RUNNING;
2604 2605 2606 2607
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2608
	activate_task(rq, p, 0);
2609
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2610
	check_preempt_curr(rq, p, WF_FORK);
2611
#ifdef CONFIG_SMP
2612 2613
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2614
#endif
I
Ingo Molnar 已提交
2615
	task_rq_unlock(rq, &flags);
2616
	put_cpu();
L
Linus Torvalds 已提交
2617 2618
}

2619 2620 2621
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2622
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2623
 * @notifier: notifier struct to register
2624 2625 2626 2627 2628 2629 2630 2631 2632
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2633
 * @notifier: notifier struct to unregister
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2663
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2675
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2676

2677 2678 2679
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2680
 * @prev: the current task that is being switched out
2681 2682 2683 2684 2685 2686 2687 2688 2689
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2690 2691 2692
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2693
{
2694
	fire_sched_out_preempt_notifiers(prev, next);
2695 2696 2697 2698
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2699 2700
/**
 * finish_task_switch - clean up after a task-switch
2701
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2702 2703
 * @prev: the thread we just switched away from.
 *
2704 2705 2706 2707
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2708 2709
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2710
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2711 2712 2713
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2714
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2715 2716 2717
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2718
	long prev_state;
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2724
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2725 2726
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2727
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2733
	prev_state = prev->state;
2734
	finish_arch_switch(prev);
2735 2736 2737
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2738
	perf_event_task_sched_in(current);
2739 2740 2741
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2743

2744
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2745 2746
	if (mm)
		mmdrop(mm);
2747
	if (unlikely(prev_state == TASK_DEAD)) {
2748 2749 2750
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2751
		 */
2752
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2753
		put_task_struct(prev);
2754
	}
L
Linus Torvalds 已提交
2755 2756
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2772
		raw_spin_lock_irqsave(&rq->lock, flags);
2773 2774
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2775
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2776 2777 2778 2779 2780 2781

		rq->post_schedule = 0;
	}
}

#else
2782

2783 2784 2785 2786 2787 2788
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2789 2790
}

2791 2792
#endif

L
Linus Torvalds 已提交
2793 2794 2795 2796
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2797
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2798 2799
	__releases(rq->lock)
{
2800 2801
	struct rq *rq = this_rq();

2802
	finish_task_switch(rq, prev);
2803

2804 2805 2806 2807 2808
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2809

2810 2811 2812 2813
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2814
	if (current->set_child_tid)
2815
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820 2821
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2822
static inline void
2823
context_switch(struct rq *rq, struct task_struct *prev,
2824
	       struct task_struct *next)
L
Linus Torvalds 已提交
2825
{
I
Ingo Molnar 已提交
2826
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2827

2828
	prepare_task_switch(rq, prev, next);
2829
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2830 2831
	mm = next->mm;
	oldmm = prev->active_mm;
2832 2833 2834 2835 2836
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2837
	arch_start_context_switch(prev);
2838

2839
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844 2845
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2846
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2847 2848 2849
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2850 2851 2852 2853 2854 2855 2856
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2857
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2858
#endif
L
Linus Torvalds 已提交
2859 2860 2861 2862

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2863 2864 2865 2866 2867 2868 2869
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2887
}
L
Linus Torvalds 已提交
2888 2889

unsigned long nr_uninterruptible(void)
2890
{
L
Linus Torvalds 已提交
2891
	unsigned long i, sum = 0;
2892

2893
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2894
		sum += cpu_rq(i)->nr_uninterruptible;
2895 2896

	/*
L
Linus Torvalds 已提交
2897 2898
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2899
	 */
L
Linus Torvalds 已提交
2900 2901
	if (unlikely((long)sum < 0))
		sum = 0;
2902

L
Linus Torvalds 已提交
2903
	return sum;
2904 2905
}

L
Linus Torvalds 已提交
2906
unsigned long long nr_context_switches(void)
2907
{
2908 2909
	int i;
	unsigned long long sum = 0;
2910

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912
		sum += cpu_rq(i)->nr_switches;
2913

L
Linus Torvalds 已提交
2914 2915
	return sum;
}
2916

L
Linus Torvalds 已提交
2917 2918 2919
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2920

2921
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2922
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2923

L
Linus Torvalds 已提交
2924 2925
	return sum;
}
2926

2927 2928 2929 2930 2931
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2932

2933 2934 2935 2936 2937
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2938

2939

2940 2941 2942 2943 2944
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2959 2960
}

2961 2962
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2963
{
2964 2965 2966 2967
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2968 2969

/*
2970 2971
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2972
 */
2973
void calc_global_load(void)
2974
{
2975 2976
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2977

2978 2979
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2980

2981 2982
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2983

2984 2985 2986
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2987

2988 2989
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2990

2991 2992 2993 2994 2995 2996
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
2997

2998 2999
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3000

3001 3002 3003 3004
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3005
	}
3006 3007 3008
}

/*
I
Ingo Molnar 已提交
3009 3010
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3011
 */
I
Ingo Molnar 已提交
3012
static void update_cpu_load(struct rq *this_rq)
3013
{
3014
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3015
	int i, scale;
3016

I
Ingo Molnar 已提交
3017
	this_rq->nr_load_updates++;
3018

I
Ingo Molnar 已提交
3019 3020 3021
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3022

I
Ingo Molnar 已提交
3023
		/* scale is effectively 1 << i now, and >> i divides by scale */
3024

I
Ingo Molnar 已提交
3025 3026
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3027 3028 3029 3030 3031 3032 3033
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3034 3035
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3036

3037 3038 3039
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3040 3041 3042
	}
}

I
Ingo Molnar 已提交
3043
#ifdef CONFIG_SMP
3044

3045
/*
P
Peter Zijlstra 已提交
3046 3047
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3048
 */
P
Peter Zijlstra 已提交
3049
void sched_exec(void)
3050
{
P
Peter Zijlstra 已提交
3051
	struct task_struct *p = current;
3052
	struct migration_req req;
L
Linus Torvalds 已提交
3053
	unsigned long flags;
3054
	struct rq *rq;
3055
	int dest_cpu;
3056

L
Linus Torvalds 已提交
3057
	rq = task_rq_lock(p, &flags);
3058 3059 3060 3061
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;

3062
	/*
P
Peter Zijlstra 已提交
3063
	 * select_task_rq() can race against ->cpus_allowed
3064
	 */
3065 3066 3067
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3068 3069
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3070

L
Linus Torvalds 已提交
3071 3072 3073 3074 3075
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3076

L
Linus Torvalds 已提交
3077 3078
		return;
	}
3079
unlock:
L
Linus Torvalds 已提交
3080 3081
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3082

L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3090
 * Return any ns on the sched_clock that have not yet been accounted in
3091
 * @p in case that task is currently running.
3092 3093
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3094
 */
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3109
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3110 3111
{
	unsigned long flags;
3112
	struct rq *rq;
3113
	u64 ns = 0;
3114

3115
	rq = task_rq_lock(p, &flags);
3116 3117
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3118

3119 3120
	return ns;
}
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3159
	task_rq_unlock(rq, &flags);
3160

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3168
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3169
 */
3170 3171
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3172 3173 3174 3175
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3176
	/* Add user time to process. */
L
Linus Torvalds 已提交
3177
	p->utime = cputime_add(p->utime, cputime);
3178
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3179
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3187 3188

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3189 3190
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3191 3192
}

3193 3194 3195 3196
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3197
 * @cputime_scaled: cputime scaled by cpu frequency
3198
 */
3199 3200
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3201 3202 3203 3204 3205 3206
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3207
	/* Add guest time to process. */
3208
	p->utime = cputime_add(p->utime, cputime);
3209
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3210
	account_group_user_time(p, cputime);
3211 3212
	p->gtime = cputime_add(p->gtime, cputime);

3213
	/* Add guest time to cpustat. */
3214 3215 3216 3217 3218 3219 3220
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3221 3222
}

L
Linus Torvalds 已提交
3223 3224 3225 3226 3227
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3228
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3229 3230
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3231
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3232 3233 3234 3235
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3236
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3237
		account_guest_time(p, cputime, cputime_scaled);
3238 3239
		return;
	}
3240

3241
	/* Add system time to process. */
L
Linus Torvalds 已提交
3242
	p->stime = cputime_add(p->stime, cputime);
3243
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3244
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3245 3246 3247 3248 3249 3250 3251 3252

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3253 3254
		cpustat->system = cputime64_add(cpustat->system, tmp);

3255 3256
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3257 3258 3259 3260
	/* Account for system time used */
	acct_update_integrals(p);
}

3261
/*
L
Linus Torvalds 已提交
3262 3263
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3264
 */
3265
void account_steal_time(cputime_t cputime)
3266
{
3267 3268 3269 3270
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3271 3272
}

L
Linus Torvalds 已提交
3273
/*
3274 3275
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3276
 */
3277
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3278 3279
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3281
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3282

3283 3284 3285 3286
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3287 3288
}

3289 3290 3291 3292 3293 3294 3295 3296 3297
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3298
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3299 3300 3301
	struct rq *rq = this_rq();

	if (user_tick)
3302
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3303
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3304
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3305 3306
				    one_jiffy_scaled);
	else
3307
		account_idle_time(cputime_one_jiffy);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3327 3328
}

3329 3330
#endif

3331 3332 3333 3334
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3336
{
3337 3338
	*ut = p->utime;
	*st = p->stime;
3339 3340
}

3341
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3342
{
3343 3344 3345 3346 3347 3348
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3349 3350
}
#else
3351 3352

#ifndef nsecs_to_cputime
3353
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3354 3355
#endif

3356
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3357
{
3358
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3359 3360 3361 3362

	/*
	 * Use CFS's precise accounting:
	 */
3363
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3364 3365

	if (total) {
3366 3367 3368
		u64 temp;

		temp = (u64)(rtime * utime);
3369
		do_div(temp, total);
3370 3371 3372
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3373

3374 3375 3376
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3377
	p->prev_utime = max(p->prev_utime, utime);
3378
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3379

3380 3381
	*ut = p->prev_utime;
	*st = p->prev_stime;
3382 3383
}

3384 3385 3386 3387
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3388
{
3389 3390 3391
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3392

3393
	thread_group_cputime(p, &cputime);
3394

3395 3396
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3397

3398 3399
	if (total) {
		u64 temp;
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3413 3414 3415
}
#endif

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3427
	struct task_struct *curr = rq->curr;
3428 3429

	sched_clock_tick();
I
Ingo Molnar 已提交
3430

3431
	raw_spin_lock(&rq->lock);
3432
	update_rq_clock(rq);
3433
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3434
	curr->sched_class->task_tick(rq, curr, 0);
3435
	raw_spin_unlock(&rq->lock);
3436

3437
	perf_event_task_tick(curr);
3438

3439
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3440 3441
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3442
#endif
L
Linus Torvalds 已提交
3443 3444
}

3445
notrace unsigned long get_parent_ip(unsigned long addr)
3446 3447 3448 3449 3450 3451 3452 3453
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3454

3455 3456 3457
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3458
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3459
{
3460
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3461 3462 3463
	/*
	 * Underflow?
	 */
3464 3465
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3466
#endif
L
Linus Torvalds 已提交
3467
	preempt_count() += val;
3468
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3469 3470 3471
	/*
	 * Spinlock count overflowing soon?
	 */
3472 3473
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3474 3475 3476
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3477 3478 3479
}
EXPORT_SYMBOL(add_preempt_count);

3480
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3481
{
3482
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3483 3484 3485
	/*
	 * Underflow?
	 */
3486
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487
		return;
L
Linus Torvalds 已提交
3488 3489 3490
	/*
	 * Is the spinlock portion underflowing?
	 */
3491 3492 3493
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3494
#endif
3495

3496 3497
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503 3504
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3505
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3506
 */
I
Ingo Molnar 已提交
3507
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3508
{
3509 3510
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3511 3512
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3513

I
Ingo Molnar 已提交
3514
	debug_show_held_locks(prev);
3515
	print_modules();
I
Ingo Molnar 已提交
3516 3517
	if (irqs_disabled())
		print_irqtrace_events(prev);
3518 3519 3520 3521 3522

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3523
}
L
Linus Torvalds 已提交
3524

I
Ingo Molnar 已提交
3525 3526 3527 3528 3529
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3530
	/*
I
Ingo Molnar 已提交
3531
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3532 3533 3534
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3535
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3536 3537
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3538 3539
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3540
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3541 3542
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3543 3544
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3545 3546
	}
#endif
I
Ingo Molnar 已提交
3547 3548
}

P
Peter Zijlstra 已提交
3549
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3550
{
3551 3552 3553
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3554
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3555 3556
}

I
Ingo Molnar 已提交
3557 3558 3559 3560
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3561
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3562
{
3563
	const struct sched_class *class;
I
Ingo Molnar 已提交
3564
	struct task_struct *p;
L
Linus Torvalds 已提交
3565 3566

	/*
I
Ingo Molnar 已提交
3567 3568
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3569
	 */
I
Ingo Molnar 已提交
3570
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3571
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3572 3573
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3574 3575
	}

I
Ingo Molnar 已提交
3576 3577
	class = sched_class_highest;
	for ( ; ; ) {
3578
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3588

I
Ingo Molnar 已提交
3589 3590 3591
/*
 * schedule() is the main scheduler function.
 */
3592
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3593 3594
{
	struct task_struct *prev, *next;
3595
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3596
	struct rq *rq;
3597
	int cpu;
I
Ingo Molnar 已提交
3598

3599 3600
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3601 3602
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3603
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3604 3605 3606 3607 3608 3609 3610
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3611

3612
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3613
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3614

3615
	raw_spin_lock_irq(&rq->lock);
3616
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3617 3618

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3619
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3620
			prev->state = TASK_RUNNING;
3621
		else
3622
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3623
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3624 3625
	}

3626
	pre_schedule(rq, prev);
3627

I
Ingo Molnar 已提交
3628
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3629 3630
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3631
	put_prev_task(rq, prev);
3632
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3633 3634

	if (likely(prev != next)) {
3635
		sched_info_switch(prev, next);
3636
		perf_event_task_sched_out(prev, next);
3637

L
Linus Torvalds 已提交
3638 3639 3640 3641
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3642
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3643 3644 3645 3646 3647 3648
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3649
	} else
3650
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3651

3652
	post_schedule(rq);
L
Linus Torvalds 已提交
3653

3654 3655 3656
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3657
		goto need_resched_nonpreemptible;
3658
	}
P
Peter Zijlstra 已提交
3659

L
Linus Torvalds 已提交
3660
	preempt_enable_no_resched();
3661
	if (need_resched())
L
Linus Torvalds 已提交
3662 3663 3664 3665
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3666
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3727 3728
#ifdef CONFIG_PREEMPT
/*
3729
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3730
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3731 3732 3733 3734 3735
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3736

L
Linus Torvalds 已提交
3737 3738
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3739
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3740
	 */
N
Nick Piggin 已提交
3741
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3742 3743
		return;

3744 3745 3746 3747
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3748

3749 3750 3751 3752 3753
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3754
	} while (need_resched());
L
Linus Torvalds 已提交
3755 3756 3757 3758
}
EXPORT_SYMBOL(preempt_schedule);

/*
3759
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765 3766
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3767

3768
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3769 3770
	BUG_ON(ti->preempt_count || !irqs_disabled());

3771 3772 3773 3774 3775 3776
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3777

3778 3779 3780 3781 3782
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3783
	} while (need_resched());
L
Linus Torvalds 已提交
3784 3785 3786 3787
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3788
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3789
			  void *key)
L
Linus Torvalds 已提交
3790
{
P
Peter Zijlstra 已提交
3791
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3792 3793 3794 3795
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3796 3797
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3798 3799 3800
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3801
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3802 3803
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3804
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3805
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3806
{
3807
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3808

3809
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3810 3811
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3812
		if (curr->func(curr, mode, wake_flags, key) &&
3813
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823
 * @key: is directly passed to the wakeup function
3824 3825 3826
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3827
 */
3828
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3829
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3842
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3843 3844 3845 3846
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3847 3848 3849 3850 3851
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3852
/**
3853
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3854 3855 3856
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3857
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863 3864
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3865 3866 3867
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3868
 */
3869 3870
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3871 3872
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3873
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3874 3875 3876 3877 3878

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3879
		wake_flags = 0;
L
Linus Torvalds 已提交
3880 3881

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3882
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3883 3884
	spin_unlock_irqrestore(&q->lock, flags);
}
3885 3886 3887 3888 3889 3890 3891 3892 3893
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3894 3895
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3896 3897 3898 3899 3900 3901 3902 3903
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3904 3905 3906
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3907
 */
3908
void complete(struct completion *x)
L
Linus Torvalds 已提交
3909 3910 3911 3912 3913
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3914
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3915 3916 3917 3918
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3919 3920 3921 3922 3923
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3924 3925 3926
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3927
 */
3928
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3934
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3935 3936 3937 3938
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3939 3940
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3941 3942 3943 3944 3945 3946 3947
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3948
			if (signal_pending_state(state, current)) {
3949 3950
				timeout = -ERESTARTSYS;
				break;
3951 3952
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3953 3954 3955
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3956
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3957
		__remove_wait_queue(&x->wait, &wait);
3958 3959
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3960 3961
	}
	x->done--;
3962
	return timeout ?: 1;
L
Linus Torvalds 已提交
3963 3964
}

3965 3966
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3967 3968 3969 3970
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3971
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3972
	spin_unlock_irq(&x->wait.lock);
3973 3974
	return timeout;
}
L
Linus Torvalds 已提交
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3986
void __sched wait_for_completion(struct completion *x)
3987 3988
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3989
}
3990
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3991

3992 3993 3994 3995 3996 3997 3998 3999 4000
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4001
unsigned long __sched
4002
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4003
{
4004
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4005
}
4006
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4007

4008 4009 4010 4011 4012 4013 4014
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4015
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4016
{
4017 4018 4019 4020
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4021
}
4022
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4032
unsigned long __sched
4033 4034
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4035
{
4036
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4037
}
4038
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4039

4040 4041 4042 4043 4044 4045 4046
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4070
	unsigned long flags;
4071 4072
	int ret = 1;

4073
	spin_lock_irqsave(&x->wait.lock, flags);
4074 4075 4076 4077
	if (!x->done)
		ret = 0;
	else
		x->done--;
4078
	spin_unlock_irqrestore(&x->wait.lock, flags);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4093
	unsigned long flags;
4094 4095
	int ret = 1;

4096
	spin_lock_irqsave(&x->wait.lock, flags);
4097 4098
	if (!x->done)
		ret = 0;
4099
	spin_unlock_irqrestore(&x->wait.lock, flags);
4100 4101 4102 4103
	return ret;
}
EXPORT_SYMBOL(completion_done);

4104 4105
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4106
{
I
Ingo Molnar 已提交
4107 4108 4109 4110
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4111

4112
	__set_current_state(state);
L
Linus Torvalds 已提交
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4128 4129 4130
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4131
long __sched
I
Ingo Molnar 已提交
4132
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4133
{
4134
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4135 4136 4137
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4138
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4139
{
4140
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4141 4142 4143
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4144
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4145
{
4146
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4147 4148 4149
}
EXPORT_SYMBOL(sleep_on_timeout);

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4162
void rt_mutex_setprio(struct task_struct *p, int prio)
4163 4164
{
	unsigned long flags;
4165
	int oldprio, on_rq, running;
4166
	struct rq *rq;
4167
	const struct sched_class *prev_class;
4168 4169 4170 4171 4172

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4173
	oldprio = p->prio;
4174
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4175
	on_rq = p->se.on_rq;
4176
	running = task_current(rq, p);
4177
	if (on_rq)
4178
		dequeue_task(rq, p, 0);
4179 4180
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4181 4182 4183 4184 4185 4186

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4187 4188
	p->prio = prio;

4189 4190
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4191
	if (on_rq) {
4192
		enqueue_task(rq, p, 0, oldprio < prio);
4193 4194

		check_class_changed(rq, p, prev_class, oldprio, running);
4195 4196 4197 4198 4199 4200
	}
	task_rq_unlock(rq, &flags);
}

#endif

4201
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4202
{
I
Ingo Molnar 已提交
4203
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4204
	unsigned long flags;
4205
	struct rq *rq;
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4218
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4219
	 */
4220
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4221 4222 4223
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4224
	on_rq = p->se.on_rq;
4225
	if (on_rq)
4226
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4227 4228

	p->static_prio = NICE_TO_PRIO(nice);
4229
	set_load_weight(p);
4230 4231 4232
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4233

I
Ingo Molnar 已提交
4234
	if (on_rq) {
4235
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4236
		/*
4237 4238
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4239
		 */
4240
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4248 4249 4250 4251 4252
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4253
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4254
{
4255 4256
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4257

4258
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4259 4260 4261
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4271
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4272
{
4273
	long nice, retval;
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4280 4281
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4282 4283 4284
	if (increment > 40)
		increment = 40;

4285
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4291 4292 4293
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4312
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4321
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4322 4323 4324
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4325
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4340
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4349
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4350
{
4351
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4352 4353 4354
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4355 4356
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4357
{
I
Ingo Molnar 已提交
4358
	BUG_ON(p->se.on_rq);
4359

L
Linus Torvalds 已提交
4360 4361
	p->policy = policy;
	p->rt_priority = prio;
4362 4363 4364
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4365 4366 4367 4368
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4369
	set_load_weight(p);
L
Linus Torvalds 已提交
4370 4371
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4388 4389
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4390
{
4391
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4392
	unsigned long flags;
4393
	const struct sched_class *prev_class;
4394
	struct rq *rq;
4395
	int reset_on_fork;
L
Linus Torvalds 已提交
4396

4397 4398
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4399 4400
recheck:
	/* double check policy once rq lock held */
4401 4402
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4403
		policy = oldpolicy = p->policy;
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4414 4415
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4416 4417
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4418 4419
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4420
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4421
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4422
		return -EINVAL;
4423
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4424 4425
		return -EINVAL;

4426 4427 4428
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4429
	if (user && !capable(CAP_SYS_NICE)) {
4430
		if (rt_policy(policy)) {
4431 4432 4433 4434
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4435
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4447 4448 4449 4450 4451 4452
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4453

4454
		/* can't change other user's priorities */
4455
		if (!check_same_owner(p))
4456
			return -EPERM;
4457 4458 4459 4460

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4461
	}
L
Linus Torvalds 已提交
4462

4463
	if (user) {
4464
#ifdef CONFIG_RT_GROUP_SCHED
4465 4466 4467 4468
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4469 4470
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4471
			return -EPERM;
4472 4473
#endif

4474 4475 4476 4477 4478
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4479 4480 4481 4482
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4483
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4484 4485 4486 4487
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4488
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4489 4490 4491
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4492
		__task_rq_unlock(rq);
4493
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4494 4495
		goto recheck;
	}
I
Ingo Molnar 已提交
4496
	on_rq = p->se.on_rq;
4497
	running = task_current(rq, p);
4498
	if (on_rq)
4499
		deactivate_task(rq, p, 0);
4500 4501
	if (running)
		p->sched_class->put_prev_task(rq, p);
4502

4503 4504
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4505
	oldprio = p->prio;
4506
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4507
	__setscheduler(rq, p, policy, param->sched_priority);
4508

4509 4510
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4511 4512
	if (on_rq) {
		activate_task(rq, p, 0);
4513 4514

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4515
	}
4516
	__task_rq_unlock(rq);
4517
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4518

4519 4520
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4521 4522
	return 0;
}
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4537 4538
EXPORT_SYMBOL_GPL(sched_setscheduler);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4556 4557
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4558 4559 4560
{
	struct sched_param lparam;
	struct task_struct *p;
4561
	int retval;
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4567 4568 4569

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4570
	p = find_process_by_pid(pid);
4571 4572 4573
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4574

L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4584 4585
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4586
{
4587 4588 4589 4590
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4599
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4608
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4609
{
4610
	struct task_struct *p;
4611
	int retval;
L
Linus Torvalds 已提交
4612 4613

	if (pid < 0)
4614
		return -EINVAL;
L
Linus Torvalds 已提交
4615 4616

	retval = -ESRCH;
4617
	rcu_read_lock();
L
Linus Torvalds 已提交
4618 4619 4620 4621
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4622 4623
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4624
	}
4625
	rcu_read_unlock();
L
Linus Torvalds 已提交
4626 4627 4628 4629
	return retval;
}

/**
4630
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4631 4632 4633
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4634
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4635 4636
{
	struct sched_param lp;
4637
	struct task_struct *p;
4638
	int retval;
L
Linus Torvalds 已提交
4639 4640

	if (!param || pid < 0)
4641
		return -EINVAL;
L
Linus Torvalds 已提交
4642

4643
	rcu_read_lock();
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4654
	rcu_read_unlock();
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4664
	rcu_read_unlock();
L
Linus Torvalds 已提交
4665 4666 4667
	return retval;
}

4668
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4669
{
4670
	cpumask_var_t cpus_allowed, new_mask;
4671 4672
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4673

4674
	get_online_cpus();
4675
	rcu_read_lock();
L
Linus Torvalds 已提交
4676 4677 4678

	p = find_process_by_pid(pid);
	if (!p) {
4679
		rcu_read_unlock();
4680
		put_online_cpus();
L
Linus Torvalds 已提交
4681 4682 4683
		return -ESRCH;
	}

4684
	/* Prevent p going away */
L
Linus Torvalds 已提交
4685
	get_task_struct(p);
4686
	rcu_read_unlock();
L
Linus Torvalds 已提交
4687

4688 4689 4690 4691 4692 4693 4694 4695
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4696
	retval = -EPERM;
4697
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4698 4699
		goto out_unlock;

4700 4701 4702 4703
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4704 4705
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4706
 again:
4707
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4708

P
Paul Menage 已提交
4709
	if (!retval) {
4710 4711
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4712 4713 4714 4715 4716
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4717
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4718 4719 4720
			goto again;
		}
	}
L
Linus Torvalds 已提交
4721
out_unlock:
4722 4723 4724 4725
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4726
	put_task_struct(p);
4727
	put_online_cpus();
L
Linus Torvalds 已提交
4728 4729 4730 4731
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4732
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4733
{
4734 4735 4736 4737 4738
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4748 4749
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4750
{
4751
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4752 4753
	int retval;

4754 4755
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4756

4757 4758 4759 4760 4761
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4762 4763
}

4764
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4765
{
4766
	struct task_struct *p;
4767 4768
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4769 4770
	int retval;

4771
	get_online_cpus();
4772
	rcu_read_lock();
L
Linus Torvalds 已提交
4773 4774 4775 4776 4777 4778

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4779 4780 4781 4782
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4783
	rq = task_rq_lock(p, &flags);
4784
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4785
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4786 4787

out_unlock:
4788
	rcu_read_unlock();
4789
	put_online_cpus();
L
Linus Torvalds 已提交
4790

4791
	return retval;
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798 4799
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4800 4801
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4802 4803
{
	int ret;
4804
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4805

4806 4807 4808
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4809 4810
		return -EINVAL;

4811 4812
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4813

4814 4815
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4816
		size_t retlen = min_t(size_t, len, cpumask_size());
4817 4818

		if (copy_to_user(user_mask_ptr, mask, retlen))
4819 4820
			ret = -EFAULT;
		else
4821
			ret = retlen;
4822 4823
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4824

4825
	return ret;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4831 4832
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4833
 */
4834
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4835
{
4836
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4837

4838
	schedstat_inc(rq, yld_count);
4839
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4846
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4847
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4848 4849 4850 4851 4852 4853 4854
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4855 4856 4857 4858 4859
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4860
static void __cond_resched(void)
L
Linus Torvalds 已提交
4861
{
4862 4863 4864
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4865 4866
}

4867
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4868
{
P
Peter Zijlstra 已提交
4869
	if (should_resched()) {
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874
		__cond_resched();
		return 1;
	}
	return 0;
}
4875
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4876 4877

/*
4878
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4879 4880
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4881
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4882 4883 4884
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4885
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4886
{
P
Peter Zijlstra 已提交
4887
	int resched = should_resched();
J
Jan Kara 已提交
4888 4889
	int ret = 0;

4890 4891
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4892
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4893
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4894
		if (resched)
N
Nick Piggin 已提交
4895 4896 4897
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4898
		ret = 1;
L
Linus Torvalds 已提交
4899 4900
		spin_lock(lock);
	}
J
Jan Kara 已提交
4901
	return ret;
L
Linus Torvalds 已提交
4902
}
4903
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4904

4905
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4906 4907 4908
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4909
	if (should_resched()) {
4910
		local_bh_enable();
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915 4916
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4917
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4918 4919 4920 4921

/**
 * yield - yield the current processor to other threads.
 *
4922
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4933
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4934 4935 4936 4937
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4938
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4939

4940
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4941
	atomic_inc(&rq->nr_iowait);
4942
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4943
	schedule();
4944
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4945
	atomic_dec(&rq->nr_iowait);
4946
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4952
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4953 4954
	long ret;

4955
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4956
	atomic_inc(&rq->nr_iowait);
4957
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4958
	ret = schedule_timeout(timeout);
4959
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4960
	atomic_dec(&rq->nr_iowait);
4961
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4972
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4982
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4983
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4997
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5007
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5008
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5022
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5023
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5024
{
5025
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5026
	unsigned int time_slice;
5027 5028
	unsigned long flags;
	struct rq *rq;
5029
	int retval;
L
Linus Torvalds 已提交
5030 5031 5032
	struct timespec t;

	if (pid < 0)
5033
		return -EINVAL;
L
Linus Torvalds 已提交
5034 5035

	retval = -ESRCH;
5036
	rcu_read_lock();
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5045 5046 5047
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5048

5049
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5050
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5051 5052
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5053

L
Linus Torvalds 已提交
5054
out_unlock:
5055
	rcu_read_unlock();
L
Linus Torvalds 已提交
5056 5057 5058
	return retval;
}

5059
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5060

5061
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5062 5063
{
	unsigned long free = 0;
5064
	unsigned state;
L
Linus Torvalds 已提交
5065 5066

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5067
	printk(KERN_INFO "%-13.13s %c", p->comm,
5068
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5069
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5070
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5071
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5072
	else
P
Peter Zijlstra 已提交
5073
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5074 5075
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5076
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5077
	else
P
Peter Zijlstra 已提交
5078
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5079 5080
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5081
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5082
#endif
P
Peter Zijlstra 已提交
5083
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5084 5085
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5086

5087
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5088 5089
}

I
Ingo Molnar 已提交
5090
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5091
{
5092
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5093

5094
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5095 5096
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5097
#else
P
Peter Zijlstra 已提交
5098 5099
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5108
		if (!state_filter || (p->state & state_filter))
5109
			sched_show_task(p);
L
Linus Torvalds 已提交
5110 5111
	} while_each_thread(g, p);

5112 5113
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5114 5115 5116
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5117
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5118 5119 5120
	/*
	 * Only show locks if all tasks are dumped:
	 */
5121
	if (!state_filter)
I
Ingo Molnar 已提交
5122
		debug_show_all_locks();
L
Linus Torvalds 已提交
5123 5124
}

I
Ingo Molnar 已提交
5125 5126
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5127
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5128 5129
}

5130 5131 5132 5133 5134 5135 5136 5137
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5138
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5139
{
5140
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5141 5142
	unsigned long flags;

5143
	raw_spin_lock_irqsave(&rq->lock, flags);
5144

I
Ingo Molnar 已提交
5145
	__sched_fork(idle);
5146
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5147 5148
	idle->se.exec_start = sched_clock();

5149
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5150
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5151 5152

	rq->curr = rq->idle = idle;
5153 5154 5155
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5156
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5157 5158

	/* Set the preempt count _outside_ the spinlocks! */
5159 5160 5161
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5162
	task_thread_info(idle)->preempt_count = 0;
5163
#endif
I
Ingo Molnar 已提交
5164 5165 5166 5167
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5168
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5169 5170 5171 5172 5173 5174 5175
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5176
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5177
 */
5178
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5179

I
Ingo Molnar 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5189
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5190
{
5191
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5206

5207 5208
	return factor;
}
I
Ingo Molnar 已提交
5209

5210 5211 5212
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5213

5214 5215 5216 5217 5218 5219 5220 5221
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5222

5223 5224 5225
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5226 5227
}

L
Linus Torvalds 已提交
5228 5229 5230 5231
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5232
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5251
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5252 5253
 * call is not atomic; no spinlocks may be held.
 */
5254
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5255
{
5256
	struct migration_req req;
L
Linus Torvalds 已提交
5257
	unsigned long flags;
5258
	struct rq *rq;
5259
	int ret = 0;
L
Linus Torvalds 已提交
5260

P
Peter Zijlstra 已提交
5261 5262 5263 5264 5265 5266 5267
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5268
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5269 5270 5271 5272
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5273

5274
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5275 5276 5277 5278
		ret = -EINVAL;
		goto out;
	}

5279
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5280
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5281 5282 5283 5284
		ret = -EINVAL;
		goto out;
	}

5285
	if (p->sched_class->set_cpus_allowed)
5286
		p->sched_class->set_cpus_allowed(p, new_mask);
5287
	else {
5288 5289
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5290 5291
	}

L
Linus Torvalds 已提交
5292
	/* Can the task run on the task's current CPU? If so, we're done */
5293
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5294 5295
		goto out;

5296
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5297
		/* Need help from migration thread: drop lock and wait. */
5298 5299 5300
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5301 5302
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5303
		put_task_struct(mt);
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5310

L
Linus Torvalds 已提交
5311 5312
	return ret;
}
5313
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5314 5315

/*
I
Ingo Molnar 已提交
5316
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5323 5324
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5325
 */
5326
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5327
{
5328
	struct rq *rq_dest, *rq_src;
5329
	int ret = 0;
L
Linus Torvalds 已提交
5330

5331
	if (unlikely(!cpu_active(dest_cpu)))
5332
		return ret;
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5340
		goto done;
L
Linus Torvalds 已提交
5341
	/* Affinity changed (again). */
5342
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5343
		goto fail;
L
Linus Torvalds 已提交
5344

5345 5346 5347 5348 5349
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5350
		deactivate_task(rq_src, p, 0);
5351
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5352
		activate_task(rq_dest, p, 0);
5353
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5354
	}
L
Linus Torvalds 已提交
5355
done:
5356
	ret = 1;
L
Linus Torvalds 已提交
5357
fail:
L
Linus Torvalds 已提交
5358
	double_rq_unlock(rq_src, rq_dest);
5359
	return ret;
L
Linus Torvalds 已提交
5360 5361
}

5362 5363 5364 5365 5366
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5367 5368 5369 5370 5371
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5372
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5373
{
5374
	int badcpu;
L
Linus Torvalds 已提交
5375
	int cpu = (long)data;
5376
	struct rq *rq;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5383
		struct migration_req *req;
L
Linus Torvalds 已提交
5384 5385
		struct list_head *head;

5386
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5387 5388

		if (cpu_is_offline(cpu)) {
5389
			raw_spin_unlock_irq(&rq->lock);
5390
			break;
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5401
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5402 5403 5404 5405
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5406
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5407 5408
		list_del_init(head->next);

5409
		if (req->task != NULL) {
5410
			raw_spin_unlock(&rq->lock);
5411 5412 5413
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5414
			raw_spin_unlock(&rq->lock);
5415 5416
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5417
			raw_spin_unlock(&rq->lock);
5418 5419
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5420
		local_irq_enable();
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5430
/*
5431
 * Figure out where task on dead CPU should go, use force if necessary.
5432
 */
5433
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5434
{
5435 5436 5437
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5438

5439 5440 5441 5442 5443 5444 5445
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5446 5447 5448 5449
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5450
	if (needs_cpu)
5451
		__migrate_task(p, dead_cpu, dest_cpu);
5452
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5462
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5463
{
5464
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5478
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5479

5480
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5481

5482 5483
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5484 5485
			continue;

5486 5487 5488
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5489

5490
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5491 5492
}

I
Ingo Molnar 已提交
5493 5494
/*
 * Schedules idle task to be the next runnable task on current CPU.
5495 5496
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5497 5498 5499
 */
void sched_idle_next(void)
{
5500
	int this_cpu = smp_processor_id();
5501
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5502 5503 5504 5505
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5506
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5507

5508 5509 5510
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5511
	 */
5512
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5513

I
Ingo Molnar 已提交
5514
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5515

5516
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5517

5518
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5519 5520
}

5521 5522
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5536
/* called under rq->lock with disabled interrupts */
5537
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5538
{
5539
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5540 5541

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5542
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5543 5544

	/* Cannot have done final schedule yet: would have vanished. */
5545
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5546

5547
	get_task_struct(p);
L
Linus Torvalds 已提交
5548 5549 5550

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5551
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5552 5553
	 * fine.
	 */
5554
	raw_spin_unlock_irq(&rq->lock);
5555
	move_task_off_dead_cpu(dead_cpu, p);
5556
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5557

5558
	put_task_struct(p);
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5564
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5565
	struct task_struct *next;
5566

I
Ingo Molnar 已提交
5567 5568 5569
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5570
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5571 5572
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5573
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5574
		migrate_dead(dead_cpu, next);
5575

L
Linus Torvalds 已提交
5576 5577
	}
}
5578 5579 5580 5581 5582 5583 5584

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5585
	rq->calc_load_active = 0;
5586
}
L
Linus Torvalds 已提交
5587 5588
#endif /* CONFIG_HOTPLUG_CPU */

5589 5590 5591
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5592 5593
	{
		.procname	= "sched_domain",
5594
		.mode		= 0555,
5595
	},
5596
	{}
5597 5598 5599
};

static struct ctl_table sd_ctl_root[] = {
5600 5601
	{
		.procname	= "kernel",
5602
		.mode		= 0555,
5603 5604
		.child		= sd_ctl_dir,
	},
5605
	{}
5606 5607 5608 5609 5610
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5611
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5612 5613 5614 5615

	return entry;
}

5616 5617
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5618
	struct ctl_table *entry;
5619

5620 5621 5622
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5623
	 * will always be set. In the lowest directory the names are
5624 5625 5626
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5627 5628
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5629 5630 5631
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5632 5633 5634 5635 5636

	kfree(*tablep);
	*tablep = NULL;
}

5637
static void
5638
set_table_entry(struct ctl_table *entry,
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5652
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5653

5654 5655 5656
	if (table == NULL)
		return NULL;

5657
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5658
		sizeof(long), 0644, proc_doulongvec_minmax);
5659
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5660
		sizeof(long), 0644, proc_doulongvec_minmax);
5661
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5662
		sizeof(int), 0644, proc_dointvec_minmax);
5663
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5664
		sizeof(int), 0644, proc_dointvec_minmax);
5665
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5666
		sizeof(int), 0644, proc_dointvec_minmax);
5667
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5668
		sizeof(int), 0644, proc_dointvec_minmax);
5669
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5670
		sizeof(int), 0644, proc_dointvec_minmax);
5671
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5672
		sizeof(int), 0644, proc_dointvec_minmax);
5673
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5674
		sizeof(int), 0644, proc_dointvec_minmax);
5675
	set_table_entry(&table[9], "cache_nice_tries",
5676 5677
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5678
	set_table_entry(&table[10], "flags", &sd->flags,
5679
		sizeof(int), 0644, proc_dointvec_minmax);
5680 5681 5682
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5683 5684 5685 5686

	return table;
}

5687
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5688 5689 5690 5691 5692 5693 5694 5695 5696
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5697 5698
	if (table == NULL)
		return NULL;
5699 5700 5701 5702 5703

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5704
		entry->mode = 0555;
5705 5706 5707 5708 5709 5710 5711 5712
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5713
static void register_sched_domain_sysctl(void)
5714
{
5715
	int i, cpu_num = num_possible_cpus();
5716 5717 5718
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5719 5720 5721
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5722 5723 5724
	if (entry == NULL)
		return;

5725
	for_each_possible_cpu(i) {
5726 5727
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5728
		entry->mode = 0555;
5729
		entry->child = sd_alloc_ctl_cpu_table(i);
5730
		entry++;
5731
	}
5732 5733

	WARN_ON(sd_sysctl_header);
5734 5735
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5736

5737
/* may be called multiple times per register */
5738 5739
static void unregister_sched_domain_sysctl(void)
{
5740 5741
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5742
	sd_sysctl_header = NULL;
5743 5744
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5745
}
5746
#else
5747 5748 5749 5750
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5751 5752 5753 5754
{
}
#endif

5755 5756 5757 5758 5759
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5760
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5780
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5781 5782 5783 5784
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5785 5786 5787 5788
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5789 5790
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5791 5792
{
	struct task_struct *p;
5793
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5794
	unsigned long flags;
5795
	struct rq *rq;
L
Linus Torvalds 已提交
5796 5797

	switch (action) {
5798

L
Linus Torvalds 已提交
5799
	case CPU_UP_PREPARE:
5800
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5801
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5802 5803 5804 5805 5806
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5807
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5808
		task_rq_unlock(rq, &flags);
5809
		get_task_struct(p);
L
Linus Torvalds 已提交
5810
		cpu_rq(cpu)->migration_thread = p;
5811
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5812
		break;
5813

L
Linus Torvalds 已提交
5814
	case CPU_ONLINE:
5815
	case CPU_ONLINE_FROZEN:
5816
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5817
		wake_up_process(cpu_rq(cpu)->migration_thread);
5818 5819 5820

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5821
		raw_spin_lock_irqsave(&rq->lock, flags);
5822
		if (rq->rd) {
5823
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5824 5825

			set_rq_online(rq);
5826
		}
5827
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5828
		break;
5829

L
Linus Torvalds 已提交
5830 5831
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5832
	case CPU_UP_CANCELED_FROZEN:
5833 5834
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5835
		/* Unbind it from offline cpu so it can run. Fall thru. */
5836
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5837
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5838
		kthread_stop(cpu_rq(cpu)->migration_thread);
5839
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5840 5841
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5842

L
Linus Torvalds 已提交
5843
	case CPU_DEAD:
5844
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5845 5846 5847
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5848
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5849 5850
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5851
		raw_spin_lock_irq(&rq->lock);
5852
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5853 5854
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5855
		migrate_dead_tasks(cpu);
5856
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5857 5858
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5859
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5860 5861 5862 5863 5864
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5865
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5866
		while (!list_empty(&rq->migration_queue)) {
5867 5868
			struct migration_req *req;

L
Linus Torvalds 已提交
5869
			req = list_entry(rq->migration_queue.next,
5870
					 struct migration_req, list);
L
Linus Torvalds 已提交
5871
			list_del_init(&req->list);
5872
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5873
			complete(&req->done);
5874
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5875
		}
5876
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5877
		break;
G
Gregory Haskins 已提交
5878

5879 5880
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5881 5882
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5883
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5884
		if (rq->rd) {
5885
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5886
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5887
		}
5888
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5889
		break;
L
Linus Torvalds 已提交
5890 5891 5892 5893 5894
#endif
	}
	return NOTIFY_OK;
}

5895 5896 5897
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5898
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5899
 */
5900
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5901 5902 5903 5904
	.notifier_call = migration_call,
	.priority = 10
};

5905
static int __init migration_init(void)
L
Linus Torvalds 已提交
5906 5907
{
	void *cpu = (void *)(long)smp_processor_id();
5908
	int err;
5909 5910

	/* Start one for the boot CPU: */
5911 5912
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5913 5914
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5915

5916
	return 0;
L
Linus Torvalds 已提交
5917
}
5918
early_initcall(migration_init);
L
Linus Torvalds 已提交
5919 5920 5921
#endif

#ifdef CONFIG_SMP
5922

5923
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5924

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5935
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5936
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5937
{
I
Ingo Molnar 已提交
5938
	struct sched_group *group = sd->groups;
5939
	char str[256];
L
Linus Torvalds 已提交
5940

R
Rusty Russell 已提交
5941
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5942
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5943 5944 5945 5946

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5947
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5948
		if (sd->parent)
P
Peter Zijlstra 已提交
5949 5950
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5951
		return -1;
N
Nick Piggin 已提交
5952 5953
	}

P
Peter Zijlstra 已提交
5954
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5955

5956
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5957 5958
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5959
	}
5960
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5961 5962
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5963
	}
L
Linus Torvalds 已提交
5964

I
Ingo Molnar 已提交
5965
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5966
	do {
I
Ingo Molnar 已提交
5967
		if (!group) {
P
Peter Zijlstra 已提交
5968 5969
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5970 5971 5972
			break;
		}

5973
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5974 5975 5976
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5977 5978
			break;
		}
L
Linus Torvalds 已提交
5979

5980
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5981 5982
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5983 5984
			break;
		}
L
Linus Torvalds 已提交
5985

5986
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5987 5988
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5989 5990
			break;
		}
L
Linus Torvalds 已提交
5991

5992
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5993

R
Rusty Russell 已提交
5994
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5995

P
Peter Zijlstra 已提交
5996
		printk(KERN_CONT " %s", str);
5997
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5998 5999
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6000
		}
L
Linus Torvalds 已提交
6001

I
Ingo Molnar 已提交
6002 6003
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6004
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6005

6006
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6007
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6008

6009 6010
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6011 6012
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6013 6014
	return 0;
}
L
Linus Torvalds 已提交
6015

I
Ingo Molnar 已提交
6016 6017
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6018
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6019
	int level = 0;
L
Linus Torvalds 已提交
6020

6021 6022 6023
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6024 6025 6026 6027
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6028

I
Ingo Molnar 已提交
6029 6030
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6031
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6032 6033 6034 6035
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6036
	for (;;) {
6037
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6038
			break;
L
Linus Torvalds 已提交
6039 6040
		level++;
		sd = sd->parent;
6041
		if (!sd)
I
Ingo Molnar 已提交
6042 6043
			break;
	}
6044
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6045
}
6046
#else /* !CONFIG_SCHED_DEBUG */
6047
# define sched_domain_debug(sd, cpu) do { } while (0)
6048
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6049

6050
static int sd_degenerate(struct sched_domain *sd)
6051
{
6052
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6053 6054 6055 6056 6057 6058
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6059 6060 6061
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6062 6063 6064 6065 6066
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6067
	if (sd->flags & (SD_WAKE_AFFINE))
6068 6069 6070 6071 6072
		return 0;

	return 1;
}

6073 6074
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6075 6076 6077 6078 6079 6080
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6081
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6082 6083 6084 6085 6086 6087 6088
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6089 6090 6091
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6092 6093
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6094 6095 6096 6097 6098 6099 6100
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6101 6102
static void free_rootdomain(struct root_domain *rd)
{
6103 6104
	synchronize_sched();

6105 6106
	cpupri_cleanup(&rd->cpupri);

6107 6108 6109 6110 6111 6112
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6113 6114
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6115
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6116 6117
	unsigned long flags;

6118
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6119 6120

	if (rq->rd) {
I
Ingo Molnar 已提交
6121
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6122

6123
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6124
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6125

6126
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6127

I
Ingo Molnar 已提交
6128 6129 6130 6131 6132 6133 6134
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6135 6136 6137 6138 6139
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6140
	cpumask_set_cpu(rq->cpu, rd->span);
6141
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6142
		set_rq_online(rq);
G
Gregory Haskins 已提交
6143

6144
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6145 6146 6147

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6148 6149
}

L
Li Zefan 已提交
6150
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6151
{
6152 6153
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6154 6155
	memset(rd, 0, sizeof(*rd));

6156 6157
	if (bootmem)
		gfp = GFP_NOWAIT;
6158

6159
	if (!alloc_cpumask_var(&rd->span, gfp))
6160
		goto out;
6161
	if (!alloc_cpumask_var(&rd->online, gfp))
6162
		goto free_span;
6163
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6164
		goto free_online;
6165

P
Pekka Enberg 已提交
6166
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6167
		goto free_rto_mask;
6168
	return 0;
6169

6170 6171
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6172 6173 6174 6175
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6176
out:
6177
	return -ENOMEM;
G
Gregory Haskins 已提交
6178 6179 6180 6181
}

static void init_defrootdomain(void)
{
6182 6183
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6184 6185 6186
	atomic_set(&def_root_domain.refcount, 1);
}

6187
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6188 6189 6190 6191 6192 6193 6194
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6195 6196 6197 6198
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6199 6200 6201 6202

	return rd;
}

L
Linus Torvalds 已提交
6203
/*
I
Ingo Molnar 已提交
6204
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6205 6206
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6207 6208
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6209
{
6210
	struct rq *rq = cpu_rq(cpu);
6211 6212 6213
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6214
	for (tmp = sd; tmp; ) {
6215 6216 6217
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6218

6219
		if (sd_parent_degenerate(tmp, parent)) {
6220
			tmp->parent = parent->parent;
6221 6222
			if (parent->parent)
				parent->parent->child = tmp;
6223 6224
		} else
			tmp = tmp->parent;
6225 6226
	}

6227
	if (sd && sd_degenerate(sd)) {
6228
		sd = sd->parent;
6229 6230 6231
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6232 6233 6234

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6235
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6236
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6237 6238 6239
}

/* cpus with isolated domains */
6240
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6241 6242 6243 6244

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6245
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6246
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6247 6248 6249
	return 1;
}

I
Ingo Molnar 已提交
6250
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6251 6252

/*
6253 6254
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6255 6256
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6257 6258 6259 6260 6261
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6262
static void
6263 6264 6265
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6266
					struct sched_group **sg,
6267 6268
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6269 6270 6271 6272
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6273
	cpumask_clear(covered);
6274

6275
	for_each_cpu(i, span) {
6276
		struct sched_group *sg;
6277
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6278 6279
		int j;

6280
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6281 6282
			continue;

6283
		cpumask_clear(sched_group_cpus(sg));
6284
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6285

6286
		for_each_cpu(j, span) {
6287
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6288 6289
				continue;

6290
			cpumask_set_cpu(j, covered);
6291
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6302
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6303

6304
#ifdef CONFIG_NUMA
6305

6306 6307 6308 6309 6310
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6311
 * Find the next node to include in a given scheduling domain. Simply
6312 6313 6314 6315
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6316
static int find_next_best_node(int node, nodemask_t *used_nodes)
6317 6318 6319 6320 6321
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6322
	for (i = 0; i < nr_node_ids; i++) {
6323
		/* Start at @node */
6324
		n = (node + i) % nr_node_ids;
6325 6326 6327 6328 6329

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6330
		if (node_isset(n, *used_nodes))
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6342
	node_set(best_node, *used_nodes);
6343 6344 6345 6346 6347 6348
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6349
 * @span: resulting cpumask
6350
 *
I
Ingo Molnar 已提交
6351
 * Given a node, construct a good cpumask for its sched_domain to span. It
6352 6353 6354
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6355
static void sched_domain_node_span(int node, struct cpumask *span)
6356
{
6357
	nodemask_t used_nodes;
6358
	int i;
6359

6360
	cpumask_clear(span);
6361
	nodes_clear(used_nodes);
6362

6363
	cpumask_or(span, span, cpumask_of_node(node));
6364
	node_set(node, used_nodes);
6365 6366

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6367
		int next_node = find_next_best_node(node, &used_nodes);
6368

6369
		cpumask_or(span, span, cpumask_of_node(next_node));
6370 6371
	}
}
6372
#endif /* CONFIG_NUMA */
6373

6374
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6375

6376 6377
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6378 6379 6380
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6425
/*
6426
 * SMT sched-domains:
6427
 */
L
Linus Torvalds 已提交
6428
#ifdef CONFIG_SCHED_SMT
6429
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6430
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6431

I
Ingo Molnar 已提交
6432
static int
6433 6434
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6435
{
6436
	if (sg)
6437
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6438 6439
	return cpu;
}
6440
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6441

6442 6443 6444
/*
 * multi-core sched-domains:
 */
6445
#ifdef CONFIG_SCHED_MC
6446 6447
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6448
#endif /* CONFIG_SCHED_MC */
6449 6450

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6451
static int
6452 6453
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6454
{
6455
	int group;
6456

6457
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6458
	group = cpumask_first(mask);
6459
	if (sg)
6460
		*sg = &per_cpu(sched_group_core, group).sg;
6461
	return group;
6462 6463
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6464
static int
6465 6466
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6467
{
6468
	if (sg)
6469
		*sg = &per_cpu(sched_group_core, cpu).sg;
6470 6471 6472 6473
	return cpu;
}
#endif

6474 6475
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6476

I
Ingo Molnar 已提交
6477
static int
6478 6479
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6480
{
6481
	int group;
6482
#ifdef CONFIG_SCHED_MC
6483
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6484
	group = cpumask_first(mask);
6485
#elif defined(CONFIG_SCHED_SMT)
6486
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6487
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6488
#else
6489
	group = cpu;
L
Linus Torvalds 已提交
6490
#endif
6491
	if (sg)
6492
		*sg = &per_cpu(sched_group_phys, group).sg;
6493
	return group;
L
Linus Torvalds 已提交
6494 6495 6496 6497
}

#ifdef CONFIG_NUMA
/*
6498 6499 6500
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6501
 */
6502
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6503
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6504

6505
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6506
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6507

6508 6509 6510
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6511
{
6512 6513
	int group;

6514
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6515
	group = cpumask_first(nodemask);
6516 6517

	if (sg)
6518
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6519
	return group;
L
Linus Torvalds 已提交
6520
}
6521

6522 6523 6524 6525 6526 6527 6528
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6529
	do {
6530
		for_each_cpu(j, sched_group_cpus(sg)) {
6531
			struct sched_domain *sd;
6532

6533
			sd = &per_cpu(phys_domains, j).sd;
6534
			if (j != group_first_cpu(sd->groups)) {
6535 6536 6537 6538 6539 6540
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6541

6542
			sg->cpu_power += sd->groups->cpu_power;
6543 6544 6545
		}
		sg = sg->next;
	} while (sg != group_head);
6546
}
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6568 6569
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6570 6571 6572 6573 6574 6575 6576 6577 6578
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6579
	sg->cpu_power = 0;
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6598 6599
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6600 6601
			return -ENOMEM;
		}
6602
		sg->cpu_power = 0;
6603 6604 6605 6606 6607 6608 6609 6610 6611
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6612
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6613

6614
#ifdef CONFIG_NUMA
6615
/* Free memory allocated for various sched_group structures */
6616 6617
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6618
{
6619
	int cpu, i;
6620

6621
	for_each_cpu(cpu, cpu_map) {
6622 6623 6624 6625 6626 6627
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6628
		for (i = 0; i < nr_node_ids; i++) {
6629 6630
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6631
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6632
			if (cpumask_empty(nodemask))
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6649
#else /* !CONFIG_NUMA */
6650 6651
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6652 6653
{
}
6654
#endif /* CONFIG_NUMA */
6655

6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6670 6671
	long power;
	int weight;
6672 6673 6674

	WARN_ON(!sd || !sd->groups);

6675
	if (cpu != group_first_cpu(sd->groups))
6676 6677 6678 6679
		return;

	child = sd->child;

6680
	sd->groups->cpu_power = 0;
6681

6682 6683 6684 6685 6686
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6687 6688 6689
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6690
		 */
P
Peter Zijlstra 已提交
6691 6692
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6693
			power /= weight;
P
Peter Zijlstra 已提交
6694 6695
			power >>= SCHED_LOAD_SHIFT;
		}
6696
		sd->groups->cpu_power += power;
6697 6698 6699 6700
		return;
	}

	/*
6701
	 * Add cpu_power of each child group to this groups cpu_power.
6702 6703 6704
	 */
	group = child->groups;
	do {
6705
		sd->groups->cpu_power += group->cpu_power;
6706 6707 6708 6709
		group = group->next;
	} while (group != child->groups);
}

6710 6711 6712 6713 6714
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6715 6716 6717 6718 6719 6720
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6721
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6722

6723 6724 6725 6726 6727
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6728
	sd->level = SD_LV_##type;				\
6729
	SD_INIT_NAME(sd, type);					\
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6744 6745 6746 6747
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6748 6749 6750 6751 6752 6753
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6772
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6773 6774
	} else {
		/* turn on idle balance on this domain */
6775
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6776 6777 6778
	}
}

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6799
#ifdef CONFIG_NUMA
6800 6801 6802 6803 6804 6805 6806
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6807
#endif
6808 6809 6810 6811
	case sa_none:
		break;
	}
}
6812

6813 6814 6815
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6816
#ifdef CONFIG_NUMA
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6827
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6828
		return sa_notcovered;
6829
	}
6830
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6831
#endif
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6844
		printk(KERN_WARNING "Cannot alloc root domain\n");
6845
		return sa_tmpmask;
G
Gregory Haskins 已提交
6846
	}
6847 6848
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6849

6850 6851 6852 6853
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6854
#ifdef CONFIG_NUMA
6855
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6856

6857 6858 6859 6860 6861
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6862
		set_domain_attribute(sd, attr);
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6877
#endif
6878 6879
	return sd;
}
L
Linus Torvalds 已提交
6880

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6896

6897 6898 6899 6900 6901
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6902
#ifdef CONFIG_SCHED_MC
6903 6904 6905 6906 6907 6908 6909
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6910
#endif
6911 6912
	return sd;
}
6913

6914 6915 6916 6917 6918
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6919
#ifdef CONFIG_SCHED_SMT
6920 6921 6922 6923 6924 6925 6926
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6927
#endif
6928 6929
	return sd;
}
L
Linus Torvalds 已提交
6930

6931 6932 6933 6934
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6935
#ifdef CONFIG_SCHED_SMT
6936 6937 6938 6939 6940 6941 6942 6943
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6944
#endif
6945
#ifdef CONFIG_SCHED_MC
6946 6947 6948 6949 6950 6951 6952
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6953
#endif
6954 6955 6956 6957 6958 6959 6960
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6961
#ifdef CONFIG_NUMA
6962 6963 6964 6965 6966
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6967 6968
	default:
		break;
6969
	}
6970
}
6971

6972 6973 6974 6975 6976 6977 6978 6979 6980
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6981
	struct sched_domain *sd;
6982
	int i;
6983
#ifdef CONFIG_NUMA
6984
	d.sd_allnodes = 0;
6985
#endif
6986

6987 6988 6989 6990
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6991

L
Linus Torvalds 已提交
6992
	/*
6993
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6994
	 */
6995
	for_each_cpu(i, cpu_map) {
6996 6997
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6998

6999
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7000
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7001
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7002
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7003
	}
7004

7005
	for_each_cpu(i, cpu_map) {
7006
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7007
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7008
	}
7009

L
Linus Torvalds 已提交
7010
	/* Set up physical groups */
7011 7012
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7013

L
Linus Torvalds 已提交
7014 7015
#ifdef CONFIG_NUMA
	/* Set up node groups */
7016 7017
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7018

7019 7020
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7021
			goto error;
L
Linus Torvalds 已提交
7022 7023 7024
#endif

	/* Calculate CPU power for physical packages and nodes */
7025
#ifdef CONFIG_SCHED_SMT
7026
	for_each_cpu(i, cpu_map) {
7027
		sd = &per_cpu(cpu_domains, i).sd;
7028
		init_sched_groups_power(i, sd);
7029
	}
L
Linus Torvalds 已提交
7030
#endif
7031
#ifdef CONFIG_SCHED_MC
7032
	for_each_cpu(i, cpu_map) {
7033
		sd = &per_cpu(core_domains, i).sd;
7034
		init_sched_groups_power(i, sd);
7035 7036
	}
#endif
7037

7038
	for_each_cpu(i, cpu_map) {
7039
		sd = &per_cpu(phys_domains, i).sd;
7040
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7041 7042
	}

7043
#ifdef CONFIG_NUMA
7044
	for (i = 0; i < nr_node_ids; i++)
7045
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7046

7047
	if (d.sd_allnodes) {
7048
		struct sched_group *sg;
7049

7050
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7051
								d.tmpmask);
7052 7053
		init_numa_sched_groups_power(sg);
	}
7054 7055
#endif

L
Linus Torvalds 已提交
7056
	/* Attach the domains */
7057
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7058
#ifdef CONFIG_SCHED_SMT
7059
		sd = &per_cpu(cpu_domains, i).sd;
7060
#elif defined(CONFIG_SCHED_MC)
7061
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7062
#else
7063
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7064
#endif
7065
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7066
	}
7067

7068 7069 7070
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7071 7072

error:
7073 7074
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7075
}
P
Paul Jackson 已提交
7076

7077
static int build_sched_domains(const struct cpumask *cpu_map)
7078 7079 7080 7081
{
	return __build_sched_domains(cpu_map, NULL);
}

7082
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7083
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7084 7085
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7086 7087 7088

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7089 7090
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7091
 */
7092
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7093

7094 7095 7096 7097 7098 7099
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7100
{
7101
	return 0;
7102 7103
}

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7129
/*
I
Ingo Molnar 已提交
7130
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7131 7132
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7133
 */
7134
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7135
{
7136 7137
	int err;

7138
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7139
	ndoms_cur = 1;
7140
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7141
	if (!doms_cur)
7142 7143
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7144
	dattr_cur = NULL;
7145
	err = build_sched_domains(doms_cur[0]);
7146
	register_sched_domain_sysctl();
7147 7148

	return err;
7149 7150
}

7151 7152
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7153
{
7154
	free_sched_groups(cpu_map, tmpmask);
7155
}
L
Linus Torvalds 已提交
7156

7157 7158 7159 7160
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7161
static void detach_destroy_domains(const struct cpumask *cpu_map)
7162
{
7163 7164
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7165 7166
	int i;

7167
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7168
		cpu_attach_domain(NULL, &def_root_domain, i);
7169
	synchronize_sched();
7170
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7171 7172
}

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7189 7190
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7191
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7192 7193 7194
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7195
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7196 7197 7198
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7199 7200 7201
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7202 7203 7204 7205 7206 7207
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7208
 *
7209
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7210 7211
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7212
 *
P
Paul Jackson 已提交
7213 7214
 * Call with hotplug lock held
 */
7215
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7216
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7217
{
7218
	int i, j, n;
7219
	int new_topology;
P
Paul Jackson 已提交
7220

7221
	mutex_lock(&sched_domains_mutex);
7222

7223 7224 7225
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7226 7227 7228
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7229
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7230 7231 7232

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7233
		for (j = 0; j < n && !new_topology; j++) {
7234
			if (cpumask_equal(doms_cur[i], doms_new[j])
7235
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7236 7237 7238
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7239
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7240 7241 7242 7243
match1:
		;
	}

7244 7245
	if (doms_new == NULL) {
		ndoms_cur = 0;
7246
		doms_new = &fallback_doms;
7247
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7248
		WARN_ON_ONCE(dattr_new);
7249 7250
	}

P
Paul Jackson 已提交
7251 7252
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7253
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7254
			if (cpumask_equal(doms_new[i], doms_cur[j])
7255
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7256 7257 7258
				goto match2;
		}
		/* no match - add a new doms_new */
7259
		__build_sched_domains(doms_new[i],
7260
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7261 7262 7263 7264 7265
match2:
		;
	}

	/* Remember the new sched domains */
7266 7267
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7268
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7269
	doms_cur = doms_new;
7270
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7271
	ndoms_cur = ndoms_new;
7272 7273

	register_sched_domain_sysctl();
7274

7275
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7276 7277
}

7278
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7279
static void arch_reinit_sched_domains(void)
7280
{
7281
	get_online_cpus();
7282 7283 7284 7285

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7286
	rebuild_sched_domains();
7287
	put_online_cpus();
7288 7289 7290 7291
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7292
	unsigned int level = 0;
7293

7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7305 7306 7307
		return -EINVAL;

	if (smt)
7308
		sched_smt_power_savings = level;
7309
	else
7310
		sched_mc_power_savings = level;
7311

7312
	arch_reinit_sched_domains();
7313

7314
	return count;
7315 7316 7317
}

#ifdef CONFIG_SCHED_MC
7318
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7319
					   struct sysdev_class_attribute *attr,
7320
					   char *page)
7321 7322 7323
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7324
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7325
					    struct sysdev_class_attribute *attr,
7326
					    const char *buf, size_t count)
7327 7328 7329
{
	return sched_power_savings_store(buf, count, 0);
}
7330 7331 7332
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7333 7334 7335
#endif

#ifdef CONFIG_SCHED_SMT
7336
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7337
					    struct sysdev_class_attribute *attr,
7338
					    char *page)
7339 7340 7341
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7342
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7343
					     struct sysdev_class_attribute *attr,
7344
					     const char *buf, size_t count)
7345 7346 7347
{
	return sched_power_savings_store(buf, count, 1);
}
7348 7349
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7350 7351 7352
		   sched_smt_power_savings_store);
#endif

7353
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7369
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7370

7371
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7372
/*
7373 7374
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7375 7376 7377
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7378 7379 7380 7381
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7382 7383 7384 7385
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7386
		partition_sched_domains(1, NULL, NULL);
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7397
{
P
Peter Zijlstra 已提交
7398 7399
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7400 7401
	switch (action) {
	case CPU_DOWN_PREPARE:
7402
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7403
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7404 7405 7406
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7407
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7408
	case CPU_ONLINE:
7409
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7410
		enable_runtime(cpu_rq(cpu));
7411 7412
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7413 7414 7415 7416 7417 7418 7419
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7420 7421 7422
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7423
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7424

7425 7426 7427 7428 7429
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7430
	get_online_cpus();
7431
	mutex_lock(&sched_domains_mutex);
7432
	arch_init_sched_domains(cpu_active_mask);
7433 7434 7435
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7436
	mutex_unlock(&sched_domains_mutex);
7437
	put_online_cpus();
7438 7439

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7440 7441
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7442 7443 7444 7445 7446
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7447
	init_hrtick();
7448 7449

	/* Move init over to a non-isolated CPU */
7450
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7451
		BUG();
I
Ingo Molnar 已提交
7452
	sched_init_granularity();
7453
	free_cpumask_var(non_isolated_cpus);
7454

7455
	init_sched_rt_class();
L
Linus Torvalds 已提交
7456 7457 7458 7459
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7460
	sched_init_granularity();
L
Linus Torvalds 已提交
7461 7462 7463
}
#endif /* CONFIG_SMP */

7464 7465
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7466 7467 7468 7469 7470 7471 7472
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7473
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7474 7475
{
	cfs_rq->tasks_timeline = RB_ROOT;
7476
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7477 7478 7479
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7480
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7481 7482
}

P
Peter Zijlstra 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7496
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7497
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7498
#ifdef CONFIG_SMP
7499
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7500 7501
#endif
#endif
P
Peter Zijlstra 已提交
7502 7503 7504
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7505
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7506 7507 7508 7509
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7510
	rt_rq->rt_runtime = 0;
7511
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7512

7513
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7514
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7515 7516
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7517 7518
}

P
Peter Zijlstra 已提交
7519
#ifdef CONFIG_FAIR_GROUP_SCHED
7520 7521 7522
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7523
{
7524
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7525 7526 7527 7528 7529 7530 7531
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7532 7533 7534 7535
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7536 7537 7538 7539 7540
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7541 7542
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7543
	se->load.inv_weight = 0;
7544
	se->parent = parent;
P
Peter Zijlstra 已提交
7545
}
7546
#endif
P
Peter Zijlstra 已提交
7547

7548
#ifdef CONFIG_RT_GROUP_SCHED
7549 7550 7551
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7552
{
7553 7554
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7555 7556 7557
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7558
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7559 7560 7561 7562
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7563 7564 7565
	if (!rt_se)
		return;

7566 7567 7568 7569 7570
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7571
	rt_se->my_q = rt_rq;
7572
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7573 7574 7575 7576
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7577 7578
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7579
	int i, j;
7580 7581 7582 7583 7584 7585 7586
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7587
#endif
7588
#ifdef CONFIG_CPUMASK_OFFSTACK
7589
	alloc_size += num_possible_cpus() * cpumask_size();
7590 7591
#endif
	if (alloc_size) {
7592
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7593 7594 7595 7596 7597 7598 7599

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7600

7601
#endif /* CONFIG_FAIR_GROUP_SCHED */
7602 7603 7604 7605 7606
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7607 7608
		ptr += nr_cpu_ids * sizeof(void **);

7609
#endif /* CONFIG_RT_GROUP_SCHED */
7610 7611 7612 7613 7614 7615
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7616
	}
I
Ingo Molnar 已提交
7617

G
Gregory Haskins 已提交
7618 7619 7620 7621
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7622 7623 7624 7625 7626 7627
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7628
#endif /* CONFIG_RT_GROUP_SCHED */
7629

D
Dhaval Giani 已提交
7630
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7631
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7632 7633
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7634
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7635

7636 7637 7638 7639
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7640
	for_each_possible_cpu(i) {
7641
		struct rq *rq;
L
Linus Torvalds 已提交
7642 7643

		rq = cpu_rq(i);
7644
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7645
		rq->nr_running = 0;
7646 7647
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7648
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7649
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7650
#ifdef CONFIG_FAIR_GROUP_SCHED
7651
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7652
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7668
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7669 7670 7671 7672
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7673
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7674
#endif
D
Dhaval Giani 已提交
7675 7676 7677
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7678
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7679
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7680
#ifdef CONFIG_CGROUP_SCHED
7681
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7682
#endif
I
Ingo Molnar 已提交
7683
#endif
L
Linus Torvalds 已提交
7684

I
Ingo Molnar 已提交
7685 7686
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7687
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7688
		rq->sd = NULL;
G
Gregory Haskins 已提交
7689
		rq->rd = NULL;
7690
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7691
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7692
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7693
		rq->push_cpu = 0;
7694
		rq->cpu = i;
7695
		rq->online = 0;
L
Linus Torvalds 已提交
7696
		rq->migration_thread = NULL;
7697 7698
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7699
		INIT_LIST_HEAD(&rq->migration_queue);
7700
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7701
#endif
P
Peter Zijlstra 已提交
7702
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7703 7704 7705
		atomic_set(&rq->nr_iowait, 0);
	}

7706
	set_load_weight(&init_task);
7707

7708 7709 7710 7711
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7712
#ifdef CONFIG_SMP
7713
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7714 7715
#endif

7716
#ifdef CONFIG_RT_MUTEXES
7717
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7718 7719
#endif

L
Linus Torvalds 已提交
7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7733 7734 7735

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7736 7737 7738 7739
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7740

7741
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7742
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7743
#ifdef CONFIG_SMP
7744
#ifdef CONFIG_NO_HZ
7745
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7746
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7747
#endif
R
Rusty Russell 已提交
7748 7749 7750
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7751
#endif /* SMP */
7752

7753
	perf_event_init();
7754

7755
	scheduler_running = 1;
L
Linus Torvalds 已提交
7756 7757 7758
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7759 7760
static inline int preempt_count_equals(int preempt_offset)
{
7761
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7762 7763 7764 7765

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7766
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7767
{
7768
#ifdef in_atomic
L
Linus Torvalds 已提交
7769 7770
	static unsigned long prev_jiffy;	/* ratelimiting */

7771 7772
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7773 7774 7775 7776 7777
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7778 7779 7780 7781 7782 7783 7784
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7785 7786 7787 7788 7789

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7790 7791 7792 7793 7794 7795
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7796 7797 7798
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7799

7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7810 7811
void normalize_rt_tasks(void)
{
7812
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7813
	unsigned long flags;
7814
	struct rq *rq;
L
Linus Torvalds 已提交
7815

7816
	read_lock_irqsave(&tasklist_lock, flags);
7817
	do_each_thread(g, p) {
7818 7819 7820 7821 7822 7823
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7824 7825
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7826 7827 7828
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7829
#endif
I
Ingo Molnar 已提交
7830 7831 7832 7833 7834 7835 7836 7837

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7838
			continue;
I
Ingo Molnar 已提交
7839
		}
L
Linus Torvalds 已提交
7840

7841
		raw_spin_lock(&p->pi_lock);
7842
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7843

7844
		normalize_task(rq, p);
7845

7846
		__task_rq_unlock(rq);
7847
		raw_spin_unlock(&p->pi_lock);
7848 7849
	} while_each_thread(g, p);

7850
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7851 7852 7853
}

#endif /* CONFIG_MAGIC_SYSRQ */
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7872
struct task_struct *curr_task(int cpu)
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7883 7884
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7885 7886 7887 7888 7889 7890 7891
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7892
void set_curr_task(int cpu, struct task_struct *p)
7893 7894 7895 7896 7897
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7898

7899 7900
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7915 7916
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7917 7918
{
	struct cfs_rq *cfs_rq;
7919
	struct sched_entity *se;
7920
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7921 7922
	int i;

7923
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7924 7925
	if (!tg->cfs_rq)
		goto err;
7926
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7927 7928
	if (!tg->se)
		goto err;
7929 7930

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7931 7932

	for_each_possible_cpu(i) {
7933
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7934

7935 7936
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7937 7938 7939
		if (!cfs_rq)
			goto err;

7940 7941
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7942
		if (!se)
7943
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7944

7945
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7946 7947 7948 7949
	}

	return 1;

7950 7951
 err_free_rq:
	kfree(cfs_rq);
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7966
#else /* !CONFG_FAIR_GROUP_SCHED */
7967 7968 7969 7970
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7971 7972
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7984
#endif /* CONFIG_FAIR_GROUP_SCHED */
7985 7986

#ifdef CONFIG_RT_GROUP_SCHED
7987 7988 7989 7990
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7991 7992
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8004 8005
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8006 8007
{
	struct rt_rq *rt_rq;
8008
	struct sched_rt_entity *rt_se;
8009 8010 8011
	struct rq *rq;
	int i;

8012
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8013 8014
	if (!tg->rt_rq)
		goto err;
8015
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8016 8017 8018
	if (!tg->rt_se)
		goto err;

8019 8020
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8021 8022 8023 8024

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8025 8026
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8027 8028
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8029

8030 8031
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8032
		if (!rt_se)
8033
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8034

8035
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8036 8037
	}

8038 8039
	return 1;

8040 8041
 err_free_rq:
	kfree(rt_rq);
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8056
#else /* !CONFIG_RT_GROUP_SCHED */
8057 8058 8059 8060
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8061 8062
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8074
#endif /* CONFIG_RT_GROUP_SCHED */
8075

D
Dhaval Giani 已提交
8076
#ifdef CONFIG_CGROUP_SCHED
8077 8078 8079 8080 8081 8082 8083 8084
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8085
struct task_group *sched_create_group(struct task_group *parent)
8086 8087 8088 8089 8090 8091 8092 8093 8094
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8095
	if (!alloc_fair_sched_group(tg, parent))
8096 8097
		goto err;

8098
	if (!alloc_rt_sched_group(tg, parent))
8099 8100
		goto err;

8101
	spin_lock_irqsave(&task_group_lock, flags);
8102
	for_each_possible_cpu(i) {
8103 8104
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8105
	}
P
Peter Zijlstra 已提交
8106
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8107 8108 8109 8110 8111

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8112
	list_add_rcu(&tg->siblings, &parent->children);
8113
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8114

8115
	return tg;
S
Srivatsa Vaddagiri 已提交
8116 8117

err:
P
Peter Zijlstra 已提交
8118
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8119 8120 8121
	return ERR_PTR(-ENOMEM);
}

8122
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8123
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8124 8125
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8126
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8127 8128
}

8129
/* Destroy runqueue etc associated with a task group */
8130
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8131
{
8132
	unsigned long flags;
8133
	int i;
S
Srivatsa Vaddagiri 已提交
8134

8135
	spin_lock_irqsave(&task_group_lock, flags);
8136
	for_each_possible_cpu(i) {
8137 8138
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8139
	}
P
Peter Zijlstra 已提交
8140
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8141
	list_del_rcu(&tg->siblings);
8142
	spin_unlock_irqrestore(&task_group_lock, flags);
8143 8144

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8145
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8146 8147
}

8148
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8149 8150 8151
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8152 8153
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8154 8155 8156 8157 8158 8159 8160
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8161
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8162 8163
	on_rq = tsk->se.on_rq;

8164
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8165
		dequeue_task(rq, tsk, 0);
8166 8167
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8168

P
Peter Zijlstra 已提交
8169
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8170

P
Peter Zijlstra 已提交
8171 8172
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8173
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8174 8175
#endif

8176 8177 8178
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8179
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8180 8181 8182

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8183
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8184

8185
#ifdef CONFIG_FAIR_GROUP_SCHED
8186
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8187 8188 8189 8190 8191
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8192
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8193 8194 8195
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8196
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8197

8198
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8199
		enqueue_entity(cfs_rq, se, 0);
8200
}
8201

8202 8203 8204 8205 8206 8207
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8208
	raw_spin_lock_irqsave(&rq->lock, flags);
8209
	__set_se_shares(se, shares);
8210
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8211 8212
}

8213 8214
static DEFINE_MUTEX(shares_mutex);

8215
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8216 8217
{
	int i;
8218
	unsigned long flags;
8219

8220 8221 8222 8223 8224 8225
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8226 8227
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8228 8229
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8230

8231
	mutex_lock(&shares_mutex);
8232
	if (tg->shares == shares)
8233
		goto done;
S
Srivatsa Vaddagiri 已提交
8234

8235
	spin_lock_irqsave(&task_group_lock, flags);
8236 8237
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8238
	list_del_rcu(&tg->siblings);
8239
	spin_unlock_irqrestore(&task_group_lock, flags);
8240 8241 8242 8243 8244 8245 8246 8247

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8248
	tg->shares = shares;
8249 8250 8251 8252 8253
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8254
		set_se_shares(tg->se[i], shares);
8255
	}
S
Srivatsa Vaddagiri 已提交
8256

8257 8258 8259 8260
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8261
	spin_lock_irqsave(&task_group_lock, flags);
8262 8263
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8264
	list_add_rcu(&tg->siblings, &tg->parent->children);
8265
	spin_unlock_irqrestore(&task_group_lock, flags);
8266
done:
8267
	mutex_unlock(&shares_mutex);
8268
	return 0;
S
Srivatsa Vaddagiri 已提交
8269 8270
}

8271 8272 8273 8274
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8275
#endif
8276

8277
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8278
/*
P
Peter Zijlstra 已提交
8279
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8280
 */
P
Peter Zijlstra 已提交
8281 8282 8283 8284 8285
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8286
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8287

P
Peter Zijlstra 已提交
8288
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8289 8290
}

P
Peter Zijlstra 已提交
8291 8292
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8293
{
P
Peter Zijlstra 已提交
8294
	struct task_struct *g, *p;
8295

P
Peter Zijlstra 已提交
8296 8297 8298 8299
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8300

P
Peter Zijlstra 已提交
8301 8302
	return 0;
}
8303

P
Peter Zijlstra 已提交
8304 8305 8306 8307 8308
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8309

P
Peter Zijlstra 已提交
8310 8311 8312 8313 8314 8315
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8316

P
Peter Zijlstra 已提交
8317 8318
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8319

P
Peter Zijlstra 已提交
8320 8321 8322
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8323 8324
	}

8325 8326 8327 8328 8329
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8330

8331 8332 8333
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8334 8335
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8336

P
Peter Zijlstra 已提交
8337
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8338

8339 8340 8341 8342 8343
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8344

8345 8346 8347
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8348 8349 8350
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8351

P
Peter Zijlstra 已提交
8352 8353 8354 8355
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8356

P
Peter Zijlstra 已提交
8357
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8358
	}
P
Peter Zijlstra 已提交
8359

P
Peter Zijlstra 已提交
8360 8361 8362 8363
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8364 8365
}

P
Peter Zijlstra 已提交
8366
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8367
{
P
Peter Zijlstra 已提交
8368 8369 8370 8371 8372 8373 8374
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8375 8376
}

8377 8378
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8379
{
P
Peter Zijlstra 已提交
8380
	int i, err = 0;
P
Peter Zijlstra 已提交
8381 8382

	mutex_lock(&rt_constraints_mutex);
8383
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8384 8385
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8386
		goto unlock;
P
Peter Zijlstra 已提交
8387

8388
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8389 8390
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8391 8392 8393 8394

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8395
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8396
		rt_rq->rt_runtime = rt_runtime;
8397
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8398
	}
8399
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8400
 unlock:
8401
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8402 8403 8404
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8405 8406
}

8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8419 8420 8421 8422
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8423
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8424 8425
		return -1;

8426
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8427 8428 8429
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8430 8431 8432 8433 8434 8435 8436 8437

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8438 8439 8440
	if (rt_period == 0)
		return -EINVAL;

8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8455
	u64 runtime, period;
8456 8457
	int ret = 0;

8458 8459 8460
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8461 8462 8463 8464 8465 8466 8467 8468
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8469

8470
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8471
	read_lock(&tasklist_lock);
8472
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8473
	read_unlock(&tasklist_lock);
8474 8475 8476 8477
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8488
#else /* !CONFIG_RT_GROUP_SCHED */
8489 8490
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8491 8492 8493
	unsigned long flags;
	int i;

8494 8495 8496
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8497 8498 8499 8500 8501 8502 8503
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8504
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8505 8506 8507
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8508
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8509
		rt_rq->rt_runtime = global_rt_runtime();
8510
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8511
	}
8512
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8513

8514 8515
	return 0;
}
8516
#endif /* CONFIG_RT_GROUP_SCHED */
8517 8518

int sched_rt_handler(struct ctl_table *table, int write,
8519
		void __user *buffer, size_t *lenp,
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8530
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8547

8548
#ifdef CONFIG_CGROUP_SCHED
8549 8550

/* return corresponding task_group object of a cgroup */
8551
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8552
{
8553 8554
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8555 8556 8557
}

static struct cgroup_subsys_state *
8558
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8559
{
8560
	struct task_group *tg, *parent;
8561

8562
	if (!cgrp->parent) {
8563 8564 8565 8566
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8567 8568
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8569 8570 8571 8572 8573 8574
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8575 8576
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8577
{
8578
	struct task_group *tg = cgroup_tg(cgrp);
8579 8580 8581 8582

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8583
static int
8584
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8585
{
8586
#ifdef CONFIG_RT_GROUP_SCHED
8587
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8588 8589
		return -EINVAL;
#else
8590 8591 8592
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8593
#endif
8594 8595
	return 0;
}
8596

8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8616 8617 8618 8619
	return 0;
}

static void
8620
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8621 8622
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8623 8624
{
	sched_move_task(tsk);
8625 8626 8627 8628 8629 8630 8631 8632
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8633 8634
}

8635
#ifdef CONFIG_FAIR_GROUP_SCHED
8636
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8637
				u64 shareval)
8638
{
8639
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8640 8641
}

8642
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8643
{
8644
	struct task_group *tg = cgroup_tg(cgrp);
8645 8646 8647

	return (u64) tg->shares;
}
8648
#endif /* CONFIG_FAIR_GROUP_SCHED */
8649

8650
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8651
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8652
				s64 val)
P
Peter Zijlstra 已提交
8653
{
8654
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8655 8656
}

8657
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8658
{
8659
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8660
}
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8672
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8673

8674
static struct cftype cpu_files[] = {
8675
#ifdef CONFIG_FAIR_GROUP_SCHED
8676 8677
	{
		.name = "shares",
8678 8679
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8680
	},
8681 8682
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8683
	{
P
Peter Zijlstra 已提交
8684
		.name = "rt_runtime_us",
8685 8686
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8687
	},
8688 8689
	{
		.name = "rt_period_us",
8690 8691
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8692
	},
8693
#endif
8694 8695 8696 8697
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8698
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8699 8700 8701
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8702 8703 8704 8705 8706 8707 8708
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8709 8710 8711
	.early_init	= 1,
};

8712
#endif	/* CONFIG_CGROUP_SCHED */
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8723
/* track cpu usage of a group of tasks and its child groups */
8724 8725 8726
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8727
	u64 __percpu *cpuusage;
8728
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8729
	struct cpuacct *parent;
8730 8731 8732 8733 8734
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8735
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8736
{
8737
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8750
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8751 8752
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8753
	int i;
8754 8755

	if (!ca)
8756
		goto out;
8757 8758

	ca->cpuusage = alloc_percpu(u64);
8759 8760 8761 8762 8763 8764
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8765

8766 8767 8768
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8769
	return &ca->css;
8770 8771 8772 8773 8774 8775 8776 8777 8778

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8779 8780 8781
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8782
static void
8783
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8784
{
8785
	struct cpuacct *ca = cgroup_ca(cgrp);
8786
	int i;
8787

8788 8789
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8790 8791 8792 8793
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8794 8795
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8796
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8797 8798 8799 8800 8801 8802
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8803
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8804
	data = *cpuusage;
8805
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8806 8807 8808 8809 8810 8811 8812 8813 8814
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8815
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8816 8817 8818 8819 8820

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8821
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8822
	*cpuusage = val;
8823
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8824 8825 8826 8827 8828
#else
	*cpuusage = val;
#endif
}

8829
/* return total cpu usage (in nanoseconds) of a group */
8830
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8831
{
8832
	struct cpuacct *ca = cgroup_ca(cgrp);
8833 8834 8835
	u64 totalcpuusage = 0;
	int i;

8836 8837
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8838 8839 8840 8841

	return totalcpuusage;
}

8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8854 8855
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8856 8857 8858 8859 8860

out:
	return err;
}

8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8895 8896 8897
static struct cftype files[] = {
	{
		.name = "usage",
8898 8899
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8900
	},
8901 8902 8903 8904
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8905 8906 8907 8908
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8909 8910
};

8911
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8912
{
8913
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8914 8915 8916 8917 8918 8919 8920 8921 8922 8923
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8924
	int cpu;
8925

L
Li Zefan 已提交
8926
	if (unlikely(!cpuacct_subsys.active))
8927 8928
		return;

8929
	cpu = task_cpu(tsk);
8930 8931 8932

	rcu_read_lock();

8933 8934
	ca = task_ca(tsk);

8935
	for (; ca; ca = ca->parent) {
8936
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8937 8938
		*cpuusage += cputime;
	}
8939 8940

	rcu_read_unlock();
8941 8942
}

8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8960 8961 8962 8963 8964 8965 8966
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8967
	int batch = CPUACCT_BATCH;
8968 8969 8970 8971 8972 8973 8974 8975

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8976
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8977 8978 8979 8980 8981
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8982 8983 8984 8985 8986 8987 8988 8989
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9075
		raw_spin_lock_irqsave(&rq->lock, flags);
9076
		list_add(&req->list, &rq->migration_queue);
9077
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9078 9079 9080 9081 9082 9083 9084
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9085
		raw_spin_lock_irqsave(&rq->lock, flags);
9086 9087 9088
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9089
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9090 9091
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9092
	synchronize_sched_expedited_count++;
9093 9094 9095 9096 9097 9098 9099 9100
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */