sched.c 216.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935 936 937
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
938
		raw_spin_lock(&rq->lock);
939
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
940
			return rq;
941
		raw_spin_unlock(&rq->lock);
942 943 944
	}
}

L
Linus Torvalds 已提交
945 946
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
947
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
948 949
 * explicitly disabling preemption.
 */
950
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
951 952
	__acquires(rq->lock)
{
953
	struct rq *rq;
L
Linus Torvalds 已提交
954

955
	for (;;) {
956 957
		while (task_is_waking(p))
			cpu_relax();
958 959
		local_irq_save(*flags);
		rq = task_rq(p);
960
		raw_spin_lock(&rq->lock);
961
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
962
			return rq;
963
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
964 965 966
	}
}

967 968 969 970 971
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
972
	raw_spin_unlock_wait(&rq->lock);
973 974
}

A
Alexey Dobriyan 已提交
975
static void __task_rq_unlock(struct rq *rq)
976 977
	__releases(rq->lock)
{
978
	raw_spin_unlock(&rq->lock);
979 980
}

981
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
982 983
	__releases(rq->lock)
{
984
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
985 986 987
}

/*
988
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
989
 */
A
Alexey Dobriyan 已提交
990
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
991 992
	__acquires(rq->lock)
{
993
	struct rq *rq;
L
Linus Torvalds 已提交
994 995 996

	local_irq_disable();
	rq = this_rq();
997
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
998 999 1000 1001

	return rq;
}

P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1023
	if (!cpu_active(cpu_of(rq)))
1024
		return 0;
P
Peter Zijlstra 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1044
	raw_spin_lock(&rq->lock);
1045
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1046
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1048 1049 1050 1051

	return HRTIMER_NORESTART;
}

1052
#ifdef CONFIG_SMP
1053 1054 1055 1056
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1057
{
1058
	struct rq *rq = arg;
1059

1060
	raw_spin_lock(&rq->lock);
1061 1062
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1063
	raw_spin_unlock(&rq->lock);
1064 1065
}

1066 1067 1068 1069 1070 1071
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1072
{
1073 1074
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075

1076
	hrtimer_set_expires(timer, time);
1077 1078 1079 1080

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1081
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 1083
		rq->hrtick_csd_pending = 1;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1098
		hrtick_clear(cpu_rq(cpu));
1099 1100 1101 1102 1103 1104
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1105
static __init void init_hrtick(void)
1106 1107 1108
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1109 1110 1111 1112 1113 1114 1115 1116
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1117
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118
			HRTIMER_MODE_REL_PINNED, 0);
1119
}
1120

A
Andrew Morton 已提交
1121
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1122 1123
{
}
1124
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1125

1126
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1127
{
1128 1129
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1130

1131 1132 1133 1134
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1135

1136 1137
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1138
}
A
Andrew Morton 已提交
1139
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1148 1149 1150
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1151
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152

I
Ingo Molnar 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1166
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1167 1168 1169
{
	int cpu;

1170
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1171

1172
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1173 1174
		return;

1175
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1192
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1193 1194
		return;
	resched_task(cpu_curr(cpu));
1195
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1196
}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1231
	set_tsk_need_resched(rq->idle);
1232 1233 1234 1235 1236 1237

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1249
#endif /* CONFIG_NO_HZ */
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1272
#else /* !CONFIG_SMP */
1273
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1274
{
1275
	assert_raw_spin_locked(&task_rq(p)->lock);
1276
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1277
}
1278 1279 1280 1281

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1282
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1292 1293 1294
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1295
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1296

1297 1298 1299
/*
 * delta *= weight / lw
 */
1300
static unsigned long
1301 1302 1303 1304 1305
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1306 1307 1308 1309 1310 1311 1312
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1313 1314 1315 1316 1317

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1318
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1319
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1320 1321
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1322
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323

1324
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 1326
}

1327
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 1329
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1330
	lw->inv_weight = 0;
1331 1332
}

1333
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 1335
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339 1340 1341 1342
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1343
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 1345 1346 1347
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1348 1349
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 1360 1361
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1362 1363
 */
static const int prio_to_weight[40] = {
1364 1365 1366 1367 1368 1369 1370 1371
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1372 1373
};

1374 1375 1376 1377 1378 1379 1380
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1381
static const u32 prio_to_wmult[40] = {
1382 1383 1384 1385 1386 1387 1388 1389
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1390
};
1391

1392 1393 1394 1395 1396 1397 1398 1399
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1400 1401
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1402 1403
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1404 1405
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1406 1407
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1408 1409
#endif

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1420
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1421
typedef int (*tg_visitor)(struct task_group *, void *);
1422 1423 1424 1425 1426

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1427
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1428 1429
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1430
	int ret;
1431 1432 1433 1434

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1435 1436 1437
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1438 1439 1440 1441 1442 1443 1444
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1445 1446 1447
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1448 1449 1450 1451 1452

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1453
out_unlock:
1454
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1455 1456

	return ret;
1457 1458
}

P
Peter Zijlstra 已提交
1459 1460 1461
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1462
}
P
Peter Zijlstra 已提交
1463 1464 1465
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1505 1506
static struct sched_group *group_of(int cpu)
{
1507
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1530
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1531

1532 1533
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1534 1535
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1536 1537 1538 1539 1540

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1541

1542
static __read_mostly unsigned long __percpu *update_shares_data;
1543

1544 1545 1546 1547 1548
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1549 1550 1551
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1552
				    unsigned long *usd_rq_weight)
1553
{
1554
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1555
	int boost = 0;
1556

1557
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1558 1559 1560 1561
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1562

1563
	/*
P
Peter Zijlstra 已提交
1564 1565 1566
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1567
	 */
1568
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1569
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1570

1571 1572 1573 1574
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1575

1576
		raw_spin_lock_irqsave(&rq->lock, flags);
1577
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1578
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1579
		__set_se_shares(tg->se[cpu], shares);
1580
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1581
	}
1582
}
1583 1584

/*
1585 1586 1587
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1588
 */
P
Peter Zijlstra 已提交
1589
static int tg_shares_up(struct task_group *tg, void *data)
1590
{
1591
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1592
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1593
	struct sched_domain *sd = data;
1594
	unsigned long flags;
1595
	int i;
1596

1597 1598 1599 1600
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1601
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1602

1603
	for_each_cpu(i, sched_domain_span(sd)) {
1604
		weight = tg->cfs_rq[i]->load.weight;
1605
		usd_rq_weight[i] = weight;
1606

1607
		rq_weight += weight;
1608 1609 1610 1611 1612 1613 1614 1615
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1616
		sum_weight += weight;
1617
		shares += tg->cfs_rq[i]->shares;
1618 1619
	}

1620 1621 1622
	if (!rq_weight)
		rq_weight = sum_weight;

1623 1624 1625 1626 1627
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1628

1629
	for_each_cpu(i, sched_domain_span(sd))
1630
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1631 1632

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1633 1634

	return 0;
1635 1636 1637
}

/*
1638 1639 1640
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1641
 */
P
Peter Zijlstra 已提交
1642
static int tg_load_down(struct task_group *tg, void *data)
1643
{
1644
	unsigned long load;
P
Peter Zijlstra 已提交
1645
	long cpu = (long)data;
1646

1647 1648 1649 1650 1651 1652 1653
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1654

1655
	tg->cfs_rq[cpu]->h_load = load;
1656

P
Peter Zijlstra 已提交
1657
	return 0;
1658 1659
}

1660
static void update_shares(struct sched_domain *sd)
1661
{
1662 1663 1664 1665 1666 1667 1668 1669
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1670 1671 1672

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1673
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1674
	}
1675 1676
}

P
Peter Zijlstra 已提交
1677
static void update_h_load(long cpu)
1678
{
1679 1680 1681
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1682
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1683 1684 1685 1686
}

#else

1687
static inline void update_shares(struct sched_domain *sd)
1688 1689 1690
{
}

1691 1692
#endif

1693 1694
#ifdef CONFIG_PREEMPT

1695 1696
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1697
/*
1698 1699 1700 1701 1702 1703
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1704
 */
1705 1706 1707 1708 1709
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1710
	raw_spin_unlock(&this_rq->lock);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1725 1726 1727 1728 1729 1730
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1731
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1732
		if (busiest < this_rq) {
1733 1734 1735 1736
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1737 1738
			ret = 1;
		} else
1739 1740
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742 1743 1744
	}
	return ret;
}

1745 1746 1747 1748 1749 1750 1751 1752 1753
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1754
		raw_spin_unlock(&this_rq->lock);
1755 1756 1757 1758 1759 1760
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1761 1762 1763
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1764
	raw_spin_unlock(&busiest->lock);
1765 1766
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1810 1811
#endif

V
Vegard Nossum 已提交
1812
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1813 1814
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1815
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1816 1817 1818
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1819
#endif
1820

1821
static void calc_load_account_active(struct rq *this_rq);
1822
static void update_sysctl(void);
1823
static int get_update_sysctl_factor(void);
1824

P
Peter Zijlstra 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1838

1839
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1840 1841

#define sched_class_highest (&rt_sched_class)
1842 1843
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1844

1845 1846
#include "sched_stats.h"

1847
static void inc_nr_running(struct rq *rq)
1848 1849 1850 1851
{
	rq->nr_running++;
}

1852
static void dec_nr_running(struct rq *rq)
1853 1854 1855 1856
{
	rq->nr_running--;
}

1857 1858 1859
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1860 1861 1862 1863
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1864

I
Ingo Molnar 已提交
1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1873

I
Ingo Molnar 已提交
1874 1875
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1876 1877
}

1878 1879 1880 1881 1882 1883
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1884 1885
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1886
{
1887
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1888
	sched_info_queued(p);
1889
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1890
	p->se.on_rq = 1;
1891 1892
}

1893
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1894
{
1895
	update_rq_clock(rq);
1896
	sched_info_dequeued(p);
1897
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1898
	p->se.on_rq = 0;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1909
	enqueue_task(rq, p, wakeup, false);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1932
/*
I
Ingo Molnar 已提交
1933
 * __normal_prio - return the priority that is based on the static prio
1934 1935 1936
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1937
	return p->static_prio;
1938 1939
}

1940 1941 1942 1943 1944 1945 1946
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1947
static inline int normal_prio(struct task_struct *p)
1948 1949 1950
{
	int prio;

1951
	if (task_has_rt_policy(p))
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1965
static int effective_prio(struct task_struct *p)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1978 1979 1980 1981
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1982
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1983 1984 1985 1986
{
	return cpu_curr(task_cpu(p)) == p;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1999
#ifdef CONFIG_SMP
2000 2001 2002
/*
 * Is this task likely cache-hot:
 */
2003
static int
2004 2005 2006 2007
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2008 2009 2010
	if (p->sched_class != &fair_sched_class)
		return 0;

2011 2012 2013
	/*
	 * Buddy candidates are cache hot:
	 */
2014
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2015 2016
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2017 2018
		return 1;

2019 2020 2021 2022 2023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2024 2025 2026 2027 2028
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2029
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2030
{
2031 2032 2033 2034 2035
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2036 2037
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2038 2039
#endif

2040
	trace_sched_migrate_task(p, new_cpu);
2041

2042 2043 2044 2045
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2046 2047

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2048 2049
}

2050
struct migration_req {
L
Linus Torvalds 已提交
2051 2052
	struct list_head list;

2053
	struct task_struct *task;
L
Linus Torvalds 已提交
2054 2055 2056
	int dest_cpu;

	struct completion done;
2057
};
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2063
static int
2064
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2065
{
2066
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2067 2068 2069

	/*
	 * If the task is not on a runqueue (and not running), then
2070
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2071
	 */
2072
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2079

L
Linus Torvalds 已提交
2080 2081 2082
	return 1;
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2126 2127 2128
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2129 2130 2131 2132 2133 2134 2135
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2142
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2143 2144
{
	unsigned long flags;
I
Ingo Molnar 已提交
2145
	int running, on_rq;
R
Roland McGrath 已提交
2146
	unsigned long ncsw;
2147
	struct rq *rq;
L
Linus Torvalds 已提交
2148

2149 2150 2151 2152 2153 2154 2155 2156
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2169 2170 2171
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2172
			cpu_relax();
R
Roland McGrath 已提交
2173
		}
2174

2175 2176 2177 2178 2179 2180
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2181
		trace_sched_wait_task(rq, p);
2182 2183
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2184
		ncsw = 0;
2185
		if (!match_state || p->state == match_state)
2186
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2187
		task_rq_unlock(rq, &flags);
2188

R
Roland McGrath 已提交
2189 2190 2191 2192 2193 2194
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2205

2206 2207 2208 2209 2210
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2211
		 * So if it was still runnable (but just not actively
2212 2213 2214 2215 2216 2217 2218
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2219

2220 2221 2222 2223 2224 2225 2226
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2227 2228

	return ncsw;
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2244
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2254
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2255
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2256

T
Thomas Gleixner 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2278
#ifdef CONFIG_SMP
2279 2280 2281
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2298
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2299
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2315
/*
2316
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2317
 */
2318
static inline
2319
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2320
{
2321
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2334
		     !cpu_online(cpu)))
2335
		cpu = select_fallback_rq(task_cpu(p), p);
2336 2337

	return cpu;
2338 2339 2340
}
#endif

L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2355 2356
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2357
{
2358
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2359
	unsigned long flags;
2360
	struct rq *rq;
L
Linus Torvalds 已提交
2361

P
Peter Zijlstra 已提交
2362
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2363

2364
	smp_wmb();
2365
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2366
	if (!(p->state & state))
L
Linus Torvalds 已提交
2367 2368
		goto out;

I
Ingo Molnar 已提交
2369
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2370 2371 2372
		goto out_running;

	cpu = task_cpu(p);
2373
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2379 2380 2381
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2382 2383
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2384
	 */
2385 2386
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2387
	p->state = TASK_WAKING;
2388 2389 2390 2391

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

2392 2393
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2394
		set_task_cpu(p, cpu);
2395
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2396

2397 2398
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2399

2400 2401 2402 2403 2404 2405 2406
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2407
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2408

2409 2410 2411 2412 2413 2414 2415
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2416
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2417 2418 2419 2420 2421
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2422
#endif /* CONFIG_SCHEDSTATS */
2423

L
Linus Torvalds 已提交
2424 2425
out_activate:
#endif /* CONFIG_SMP */
2426
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2427
	if (wake_flags & WF_SYNC)
2428
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2429
	if (orig_cpu != cpu)
2430
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2431
	if (cpu == this_cpu)
2432
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2433
	else
2434
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2435
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2436 2437 2438
	success = 1;

out_running:
2439
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2440
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2441

L
Linus Torvalds 已提交
2442
	p->state = TASK_RUNNING;
2443
#ifdef CONFIG_SMP
2444 2445
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2457
#endif
L
Linus Torvalds 已提交
2458 2459
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2460
	put_cpu();
L
Linus Torvalds 已提交
2461 2462 2463 2464

	return success;
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2476
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2477
{
2478
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2479 2480 2481
}
EXPORT_SYMBOL(wake_up_process);

2482
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2490 2491 2492 2493 2494 2495 2496
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2497
	p->se.prev_sum_exec_runtime	= 0;
2498
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2499 2500

#ifdef CONFIG_SCHEDSTATS
2501
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2502
#endif
N
Nick Piggin 已提交
2503

P
Peter Zijlstra 已提交
2504
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2505
	p->se.on_rq = 0;
2506
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2507

2508 2509 2510
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2521
	/*
2522
	 * We mark the process as running here. This guarantees that
2523 2524 2525
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2526
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2527

2528 2529 2530 2531
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2532
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2533
			p->policy = SCHED_NORMAL;
2534 2535
			p->normal_prio = p->static_prio;
		}
2536

2537 2538
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2539
			p->normal_prio = p->static_prio;
2540 2541 2542
			set_load_weight(p);
		}

2543 2544 2545 2546 2547 2548
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2549

2550 2551 2552 2553 2554
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2555 2556
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2557

P
Peter Zijlstra 已提交
2558 2559 2560
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2561 2562
	set_task_cpu(p, cpu);

2563
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2564
	if (likely(sched_info_on()))
2565
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2566
#endif
2567
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2568 2569
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2570
#ifdef CONFIG_PREEMPT
2571
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2572
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2573
#endif
2574 2575
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2576
	put_cpu();
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2586
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2587 2588
{
	unsigned long flags;
I
Ingo Molnar 已提交
2589
	struct rq *rq;
2590
	int cpu __maybe_unused = get_cpu();
2591 2592

#ifdef CONFIG_SMP
2593 2594 2595
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2596 2597 2598 2599 2600
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2601 2602
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2603
	 */
2604
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2605
	set_task_cpu(p, cpu);
2606

2607
	p->state = TASK_RUNNING;
2608 2609 2610 2611
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2612
	activate_task(rq, p, 0);
2613
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2614
	check_preempt_curr(rq, p, WF_FORK);
2615
#ifdef CONFIG_SMP
2616 2617
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2618
#endif
I
Ingo Molnar 已提交
2619
	task_rq_unlock(rq, &flags);
2620
	put_cpu();
L
Linus Torvalds 已提交
2621 2622
}

2623 2624 2625
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2626
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2627
 * @notifier: notifier struct to register
2628 2629 2630 2631 2632 2633 2634 2635 2636
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2637
 * @notifier: notifier struct to unregister
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2667
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2679
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2680

2681 2682 2683
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2684
 * @prev: the current task that is being switched out
2685 2686 2687 2688 2689 2690 2691 2692 2693
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2694 2695 2696
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2697
{
2698
	fire_sched_out_preempt_notifiers(prev, next);
2699 2700 2701 2702
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2703 2704
/**
 * finish_task_switch - clean up after a task-switch
2705
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2706 2707
 * @prev: the thread we just switched away from.
 *
2708 2709 2710 2711
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2712 2713
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2714
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2715 2716 2717
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2718
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2719 2720 2721
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2722
	long prev_state;
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2728
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2729 2730
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2731
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2737
	prev_state = prev->state;
2738
	finish_arch_switch(prev);
2739 2740 2741
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742
	perf_event_task_sched_in(current);
2743 2744 2745
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2746
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2747

2748
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2749 2750
	if (mm)
		mmdrop(mm);
2751
	if (unlikely(prev_state == TASK_DEAD)) {
2752 2753 2754
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2755
		 */
2756
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2757
		put_task_struct(prev);
2758
	}
L
Linus Torvalds 已提交
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2776
		raw_spin_lock_irqsave(&rq->lock, flags);
2777 2778
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2779
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2780 2781 2782 2783 2784 2785

		rq->post_schedule = 0;
	}
}

#else
2786

2787 2788 2789 2790 2791 2792
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2793 2794
}

2795 2796
#endif

L
Linus Torvalds 已提交
2797 2798 2799 2800
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2801
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2802 2803
	__releases(rq->lock)
{
2804 2805
	struct rq *rq = this_rq();

2806
	finish_task_switch(rq, prev);
2807

2808 2809 2810 2811 2812
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2813

2814 2815 2816 2817
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2818
	if (current->set_child_tid)
2819
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2826
static inline void
2827
context_switch(struct rq *rq, struct task_struct *prev,
2828
	       struct task_struct *next)
L
Linus Torvalds 已提交
2829
{
I
Ingo Molnar 已提交
2830
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2831

2832
	prepare_task_switch(rq, prev, next);
2833
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2834 2835
	mm = next->mm;
	oldmm = prev->active_mm;
2836 2837 2838 2839 2840
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2841
	arch_start_context_switch(prev);
2842

2843
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2850
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2851 2852 2853
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2854 2855 2856 2857 2858 2859 2860
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2861
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2862
#endif
L
Linus Torvalds 已提交
2863 2864 2865 2866

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2867 2868 2869 2870 2871 2872 2873
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2891
}
L
Linus Torvalds 已提交
2892 2893

unsigned long nr_uninterruptible(void)
2894
{
L
Linus Torvalds 已提交
2895
	unsigned long i, sum = 0;
2896

2897
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2898
		sum += cpu_rq(i)->nr_uninterruptible;
2899 2900

	/*
L
Linus Torvalds 已提交
2901 2902
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2903
	 */
L
Linus Torvalds 已提交
2904 2905
	if (unlikely((long)sum < 0))
		sum = 0;
2906

L
Linus Torvalds 已提交
2907
	return sum;
2908 2909
}

L
Linus Torvalds 已提交
2910
unsigned long long nr_context_switches(void)
2911
{
2912 2913
	int i;
	unsigned long long sum = 0;
2914

2915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2916
		sum += cpu_rq(i)->nr_switches;
2917

L
Linus Torvalds 已提交
2918 2919
	return sum;
}
2920

L
Linus Torvalds 已提交
2921 2922 2923
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2924

2925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2926
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2927

L
Linus Torvalds 已提交
2928 2929
	return sum;
}
2930

2931 2932 2933 2934 2935
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2936

2937 2938 2939 2940 2941
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2942

2943

2944 2945 2946 2947 2948
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2963 2964
}

2965 2966
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967
{
2968 2969 2970 2971
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2972 2973

/*
2974 2975
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2976
 */
2977
void calc_global_load(void)
2978
{
2979 2980
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2981

2982 2983
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2984

2985 2986
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2987

2988 2989 2990
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2991

2992 2993
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2994

2995 2996 2997 2998 2999 3000
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3001

3002 3003
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3004

3005 3006 3007 3008
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3009
	}
3010 3011 3012
}

/*
I
Ingo Molnar 已提交
3013 3014
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3015
 */
I
Ingo Molnar 已提交
3016
static void update_cpu_load(struct rq *this_rq)
3017
{
3018
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3019
	int i, scale;
3020

I
Ingo Molnar 已提交
3021
	this_rq->nr_load_updates++;
3022

I
Ingo Molnar 已提交
3023 3024 3025
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3026

I
Ingo Molnar 已提交
3027
		/* scale is effectively 1 << i now, and >> i divides by scale */
3028

I
Ingo Molnar 已提交
3029 3030
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3031 3032 3033 3034 3035 3036 3037
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3038 3039
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3040

3041 3042 3043
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3044 3045 3046
	}
}

I
Ingo Molnar 已提交
3047
#ifdef CONFIG_SMP
3048

3049
/*
P
Peter Zijlstra 已提交
3050 3051
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3052
 */
P
Peter Zijlstra 已提交
3053
void sched_exec(void)
3054
{
P
Peter Zijlstra 已提交
3055
	struct task_struct *p = current;
3056
	struct migration_req req;
L
Linus Torvalds 已提交
3057
	unsigned long flags;
3058
	struct rq *rq;
3059
	int dest_cpu;
3060

L
Linus Torvalds 已提交
3061
	rq = task_rq_lock(p, &flags);
3062 3063 3064 3065
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;

3066
	/*
P
Peter Zijlstra 已提交
3067
	 * select_task_rq() can race against ->cpus_allowed
3068
	 */
3069 3070 3071
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3072 3073
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3074

L
Linus Torvalds 已提交
3075 3076 3077 3078 3079
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3080

L
Linus Torvalds 已提交
3081 3082
		return;
	}
3083
unlock:
L
Linus Torvalds 已提交
3084 3085
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3086

L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3094
 * Return any ns on the sched_clock that have not yet been accounted in
3095
 * @p in case that task is currently running.
3096 3097
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3098
 */
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3113
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3114 3115
{
	unsigned long flags;
3116
	struct rq *rq;
3117
	u64 ns = 0;
3118

3119
	rq = task_rq_lock(p, &flags);
3120 3121
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3122

3123 3124
	return ns;
}
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3163
	task_rq_unlock(rq, &flags);
3164

L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170 3171
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3172
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3173
 */
3174 3175
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3176 3177 3178 3179
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3180
	/* Add user time to process. */
L
Linus Torvalds 已提交
3181
	p->utime = cputime_add(p->utime, cputime);
3182
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3183
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189 3190

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3191 3192

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3193 3194
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3195 3196
}

3197 3198 3199 3200
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3201
 * @cputime_scaled: cputime scaled by cpu frequency
3202
 */
3203 3204
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3205 3206 3207 3208 3209 3210
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3211
	/* Add guest time to process. */
3212
	p->utime = cputime_add(p->utime, cputime);
3213
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3214
	account_group_user_time(p, cputime);
3215 3216
	p->gtime = cputime_add(p->gtime, cputime);

3217
	/* Add guest time to cpustat. */
3218 3219 3220 3221 3222 3223 3224
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3225 3226
}

L
Linus Torvalds 已提交
3227 3228 3229 3230 3231
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3232
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3233 3234
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3235
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3236 3237 3238 3239
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3240
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3241
		account_guest_time(p, cputime, cputime_scaled);
3242 3243
		return;
	}
3244

3245
	/* Add system time to process. */
L
Linus Torvalds 已提交
3246
	p->stime = cputime_add(p->stime, cputime);
3247
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3248
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254 3255 3256

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3257 3258
		cpustat->system = cputime64_add(cpustat->system, tmp);

3259 3260
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3261 3262 3263 3264
	/* Account for system time used */
	acct_update_integrals(p);
}

3265
/*
L
Linus Torvalds 已提交
3266 3267
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3268
 */
3269
void account_steal_time(cputime_t cputime)
3270
{
3271 3272 3273 3274
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3275 3276
}

L
Linus Torvalds 已提交
3277
/*
3278 3279
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3280
 */
3281
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3282 3283
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3284
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3285
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3286

3287 3288 3289 3290
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3291 3292
}

3293 3294 3295 3296 3297 3298 3299 3300 3301
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3302
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3303 3304 3305
	struct rq *rq = this_rq();

	if (user_tick)
3306
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3307
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3308
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3309 3310
				    one_jiffy_scaled);
	else
3311
		account_idle_time(cputime_one_jiffy);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3331 3332
}

3333 3334
#endif

3335 3336 3337 3338
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3339
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3340
{
3341 3342
	*ut = p->utime;
	*st = p->stime;
3343 3344
}

3345
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3346
{
3347 3348 3349 3350 3351 3352
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3353 3354
}
#else
3355 3356

#ifndef nsecs_to_cputime
3357
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3358 3359
#endif

3360
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3361
{
3362
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3363 3364 3365 3366

	/*
	 * Use CFS's precise accounting:
	 */
3367
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3368 3369

	if (total) {
3370 3371 3372
		u64 temp;

		temp = (u64)(rtime * utime);
3373
		do_div(temp, total);
3374 3375 3376
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3377

3378 3379 3380
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3381
	p->prev_utime = max(p->prev_utime, utime);
3382
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3383

3384 3385
	*ut = p->prev_utime;
	*st = p->prev_stime;
3386 3387
}

3388 3389 3390 3391
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3392
{
3393 3394 3395
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3396

3397
	thread_group_cputime(p, &cputime);
3398

3399 3400
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3401

3402 3403
	if (total) {
		u64 temp;
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3417 3418 3419
}
#endif

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3431
	struct task_struct *curr = rq->curr;
3432 3433

	sched_clock_tick();
I
Ingo Molnar 已提交
3434

3435
	raw_spin_lock(&rq->lock);
3436
	update_rq_clock(rq);
3437
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3438
	curr->sched_class->task_tick(rq, curr, 0);
3439
	raw_spin_unlock(&rq->lock);
3440

3441
	perf_event_task_tick(curr);
3442

3443
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3444 3445
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3446
#endif
L
Linus Torvalds 已提交
3447 3448
}

3449
notrace unsigned long get_parent_ip(unsigned long addr)
3450 3451 3452 3453 3454 3455 3456 3457
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3458

3459 3460 3461
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3462
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3463
{
3464
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3465 3466 3467
	/*
	 * Underflow?
	 */
3468 3469
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3470
#endif
L
Linus Torvalds 已提交
3471
	preempt_count() += val;
3472
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3473 3474 3475
	/*
	 * Spinlock count overflowing soon?
	 */
3476 3477
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3478 3479 3480
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3481 3482 3483
}
EXPORT_SYMBOL(add_preempt_count);

3484
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3485
{
3486
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3487 3488 3489
	/*
	 * Underflow?
	 */
3490
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3491
		return;
L
Linus Torvalds 已提交
3492 3493 3494
	/*
	 * Is the spinlock portion underflowing?
	 */
3495 3496 3497
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3498
#endif
3499

3500 3501
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506 3507 3508
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3509
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3510
 */
I
Ingo Molnar 已提交
3511
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3512
{
3513 3514
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3515 3516
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3517

I
Ingo Molnar 已提交
3518
	debug_show_held_locks(prev);
3519
	print_modules();
I
Ingo Molnar 已提交
3520 3521
	if (irqs_disabled())
		print_irqtrace_events(prev);
3522 3523 3524 3525 3526

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3527
}
L
Linus Torvalds 已提交
3528

I
Ingo Molnar 已提交
3529 3530 3531 3532 3533
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3534
	/*
I
Ingo Molnar 已提交
3535
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3536 3537 3538
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3539
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3540 3541
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3542 3543
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3544
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3545 3546
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3547 3548
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3549 3550
	}
#endif
I
Ingo Molnar 已提交
3551 3552
}

P
Peter Zijlstra 已提交
3553
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3554
{
3555 3556 3557
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3558
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3559 3560
}

I
Ingo Molnar 已提交
3561 3562 3563 3564
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3565
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3566
{
3567
	const struct sched_class *class;
I
Ingo Molnar 已提交
3568
	struct task_struct *p;
L
Linus Torvalds 已提交
3569 3570

	/*
I
Ingo Molnar 已提交
3571 3572
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3573
	 */
I
Ingo Molnar 已提交
3574
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3575
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3576 3577
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3578 3579
	}

I
Ingo Molnar 已提交
3580 3581
	class = sched_class_highest;
	for ( ; ; ) {
3582
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3592

I
Ingo Molnar 已提交
3593 3594 3595
/*
 * schedule() is the main scheduler function.
 */
3596
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3597 3598
{
	struct task_struct *prev, *next;
3599
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3600
	struct rq *rq;
3601
	int cpu;
I
Ingo Molnar 已提交
3602

3603 3604
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3605 3606
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3607
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3608 3609 3610 3611 3612 3613 3614
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3615

3616
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3617
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3618

3619
	raw_spin_lock_irq(&rq->lock);
3620
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3621 3622

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3623
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3624
			prev->state = TASK_RUNNING;
3625
		else
3626
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3627
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3628 3629
	}

3630
	pre_schedule(rq, prev);
3631

I
Ingo Molnar 已提交
3632
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3633 3634
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3635
	put_prev_task(rq, prev);
3636
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3637 3638

	if (likely(prev != next)) {
3639
		sched_info_switch(prev, next);
3640
		perf_event_task_sched_out(prev, next);
3641

L
Linus Torvalds 已提交
3642 3643 3644 3645
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3646
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3647 3648 3649 3650 3651 3652
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3653
	} else
3654
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3655

3656
	post_schedule(rq);
L
Linus Torvalds 已提交
3657

3658 3659 3660
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3661
		goto need_resched_nonpreemptible;
3662
	}
P
Peter Zijlstra 已提交
3663

L
Linus Torvalds 已提交
3664
	preempt_enable_no_resched();
3665
	if (need_resched())
L
Linus Torvalds 已提交
3666 3667 3668 3669
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3670
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3731 3732
#ifdef CONFIG_PREEMPT
/*
3733
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3734
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3735 3736 3737 3738 3739
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3740

L
Linus Torvalds 已提交
3741 3742
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3743
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3744
	 */
N
Nick Piggin 已提交
3745
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3746 3747
		return;

3748 3749 3750 3751
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3752

3753 3754 3755 3756 3757
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3758
	} while (need_resched());
L
Linus Torvalds 已提交
3759 3760 3761 3762
}
EXPORT_SYMBOL(preempt_schedule);

/*
3763
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3771

3772
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3773 3774
	BUG_ON(ti->preempt_count || !irqs_disabled());

3775 3776 3777 3778 3779 3780
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3781

3782 3783 3784 3785 3786
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3787
	} while (need_resched());
L
Linus Torvalds 已提交
3788 3789 3790 3791
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3792
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3793
			  void *key)
L
Linus Torvalds 已提交
3794
{
P
Peter Zijlstra 已提交
3795
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3796 3797 3798 3799
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3800 3801
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3802 3803 3804
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3805
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3806 3807
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3808
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3809
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3810
{
3811
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3812

3813
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3814 3815
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3816
		if (curr->func(curr, mode, wake_flags, key) &&
3817
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3827
 * @key: is directly passed to the wakeup function
3828 3829 3830
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3831
 */
3832
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3833
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3846
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3847 3848 3849 3850
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3851 3852 3853 3854 3855
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3856
/**
3857
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3858 3859 3860
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3861
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3869 3870 3871
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3872
 */
3873 3874
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3875 3876
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3877
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3883
		wake_flags = 0;
L
Linus Torvalds 已提交
3884 3885

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3886
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3887 3888
	spin_unlock_irqrestore(&q->lock, flags);
}
3889 3890 3891 3892 3893 3894 3895 3896 3897
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3898 3899
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3900 3901 3902 3903 3904 3905 3906 3907
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3908 3909 3910
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3911
 */
3912
void complete(struct completion *x)
L
Linus Torvalds 已提交
3913 3914 3915 3916 3917
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3918
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3919 3920 3921 3922
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3923 3924 3925 3926 3927
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3928 3929 3930
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3931
 */
3932
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3933 3934 3935 3936 3937
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3938
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3939 3940 3941 3942
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3943 3944
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950 3951
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3952
			if (signal_pending_state(state, current)) {
3953 3954
				timeout = -ERESTARTSYS;
				break;
3955 3956
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3957 3958 3959
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3960
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3961
		__remove_wait_queue(&x->wait, &wait);
3962 3963
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3964 3965
	}
	x->done--;
3966
	return timeout ?: 1;
L
Linus Torvalds 已提交
3967 3968
}

3969 3970
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3971 3972 3973 3974
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3975
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3976
	spin_unlock_irq(&x->wait.lock);
3977 3978
	return timeout;
}
L
Linus Torvalds 已提交
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3990
void __sched wait_for_completion(struct completion *x)
3991 3992
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3993
}
3994
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4005
unsigned long __sched
4006
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4007
{
4008
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4009
}
4010
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4011

4012 4013 4014 4015 4016 4017 4018
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4019
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4020
{
4021 4022 4023 4024
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4025
}
4026
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4027

4028 4029 4030 4031 4032 4033 4034 4035
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4036
unsigned long __sched
4037 4038
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4039
{
4040
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4041
}
4042
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4043

4044 4045 4046 4047 4048 4049 4050
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4074
	unsigned long flags;
4075 4076
	int ret = 1;

4077
	spin_lock_irqsave(&x->wait.lock, flags);
4078 4079 4080 4081
	if (!x->done)
		ret = 0;
	else
		x->done--;
4082
	spin_unlock_irqrestore(&x->wait.lock, flags);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4097
	unsigned long flags;
4098 4099
	int ret = 1;

4100
	spin_lock_irqsave(&x->wait.lock, flags);
4101 4102
	if (!x->done)
		ret = 0;
4103
	spin_unlock_irqrestore(&x->wait.lock, flags);
4104 4105 4106 4107
	return ret;
}
EXPORT_SYMBOL(completion_done);

4108 4109
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4110
{
I
Ingo Molnar 已提交
4111 4112 4113 4114
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4115

4116
	__set_current_state(state);
L
Linus Torvalds 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4132 4133 4134
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4135
long __sched
I
Ingo Molnar 已提交
4136
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4137
{
4138
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4139 4140 4141
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4142
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4143
{
4144
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4145 4146 4147
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4148
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4149
{
4150
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4151 4152 4153
}
EXPORT_SYMBOL(sleep_on_timeout);

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4166
void rt_mutex_setprio(struct task_struct *p, int prio)
4167 4168
{
	unsigned long flags;
4169
	int oldprio, on_rq, running;
4170
	struct rq *rq;
4171
	const struct sched_class *prev_class;
4172 4173 4174 4175 4176

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4177
	oldprio = p->prio;
4178
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4179
	on_rq = p->se.on_rq;
4180
	running = task_current(rq, p);
4181
	if (on_rq)
4182
		dequeue_task(rq, p, 0);
4183 4184
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4185 4186 4187 4188 4189 4190

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4191 4192
	p->prio = prio;

4193 4194
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4195
	if (on_rq) {
4196
		enqueue_task(rq, p, 0, oldprio < prio);
4197 4198

		check_class_changed(rq, p, prev_class, oldprio, running);
4199 4200 4201 4202 4203 4204
	}
	task_rq_unlock(rq, &flags);
}

#endif

4205
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4206
{
I
Ingo Molnar 已提交
4207
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4208
	unsigned long flags;
4209
	struct rq *rq;
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4222
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4223
	 */
4224
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4225 4226 4227
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4228
	on_rq = p->se.on_rq;
4229
	if (on_rq)
4230
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4231 4232

	p->static_prio = NICE_TO_PRIO(nice);
4233
	set_load_weight(p);
4234 4235 4236
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4237

I
Ingo Molnar 已提交
4238
	if (on_rq) {
4239
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4240
		/*
4241 4242
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4243
		 */
4244
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4252 4253 4254 4255 4256
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4257
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4258
{
4259 4260
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4261

4262
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4263 4264 4265
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4275
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4276
{
4277
	long nice, retval;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4284 4285
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4286 4287 4288
	if (increment > 40)
		increment = 40;

4289
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4295 4296 4297
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4316
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4325
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4326 4327 4328
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4329
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4344
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4353
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4354
{
4355
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4356 4357 4358
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4359 4360
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4361
{
I
Ingo Molnar 已提交
4362
	BUG_ON(p->se.on_rq);
4363

L
Linus Torvalds 已提交
4364 4365
	p->policy = policy;
	p->rt_priority = prio;
4366 4367 4368
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4369 4370 4371 4372
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4373
	set_load_weight(p);
L
Linus Torvalds 已提交
4374 4375
}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4392 4393
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4394
{
4395
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4396
	unsigned long flags;
4397
	const struct sched_class *prev_class;
4398
	struct rq *rq;
4399
	int reset_on_fork;
L
Linus Torvalds 已提交
4400

4401 4402
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4403 4404
recheck:
	/* double check policy once rq lock held */
4405 4406
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4407
		policy = oldpolicy = p->policy;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4418 4419
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4420 4421
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4422 4423
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4424
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4426
		return -EINVAL;
4427
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4428 4429
		return -EINVAL;

4430 4431 4432
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4433
	if (user && !capable(CAP_SYS_NICE)) {
4434
		if (rt_policy(policy)) {
4435 4436 4437 4438
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4439
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4451 4452 4453 4454 4455 4456
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4457

4458
		/* can't change other user's priorities */
4459
		if (!check_same_owner(p))
4460
			return -EPERM;
4461 4462 4463 4464

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4465
	}
L
Linus Torvalds 已提交
4466

4467
	if (user) {
4468
#ifdef CONFIG_RT_GROUP_SCHED
4469 4470 4471 4472
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4473 4474
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4475
			return -EPERM;
4476 4477
#endif

4478 4479 4480 4481 4482
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4483 4484 4485 4486
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4487
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4488 4489 4490 4491
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4492
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4493 4494 4495
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4496
		__task_rq_unlock(rq);
4497
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4498 4499
		goto recheck;
	}
I
Ingo Molnar 已提交
4500
	on_rq = p->se.on_rq;
4501
	running = task_current(rq, p);
4502
	if (on_rq)
4503
		deactivate_task(rq, p, 0);
4504 4505
	if (running)
		p->sched_class->put_prev_task(rq, p);
4506

4507 4508
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4509
	oldprio = p->prio;
4510
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4511
	__setscheduler(rq, p, policy, param->sched_priority);
4512

4513 4514
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4515 4516
	if (on_rq) {
		activate_task(rq, p, 0);
4517 4518

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4519
	}
4520
	__task_rq_unlock(rq);
4521
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4522

4523 4524
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4525 4526
	return 0;
}
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4541 4542
EXPORT_SYMBOL_GPL(sched_setscheduler);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4560 4561
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4562 4563 4564
{
	struct sched_param lparam;
	struct task_struct *p;
4565
	int retval;
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4571 4572 4573

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4574
	p = find_process_by_pid(pid);
4575 4576 4577
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4578

L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4588 4589
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4590
{
4591 4592 4593 4594
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4603
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4612
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4613
{
4614
	struct task_struct *p;
4615
	int retval;
L
Linus Torvalds 已提交
4616 4617

	if (pid < 0)
4618
		return -EINVAL;
L
Linus Torvalds 已提交
4619 4620

	retval = -ESRCH;
4621
	rcu_read_lock();
L
Linus Torvalds 已提交
4622 4623 4624 4625
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4626 4627
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4628
	}
4629
	rcu_read_unlock();
L
Linus Torvalds 已提交
4630 4631 4632 4633
	return retval;
}

/**
4634
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4635 4636 4637
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4638
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4639 4640
{
	struct sched_param lp;
4641
	struct task_struct *p;
4642
	int retval;
L
Linus Torvalds 已提交
4643 4644

	if (!param || pid < 0)
4645
		return -EINVAL;
L
Linus Torvalds 已提交
4646

4647
	rcu_read_lock();
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4658
	rcu_read_unlock();
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4668
	rcu_read_unlock();
L
Linus Torvalds 已提交
4669 4670 4671
	return retval;
}

4672
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4673
{
4674
	cpumask_var_t cpus_allowed, new_mask;
4675 4676
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4677

4678
	get_online_cpus();
4679
	rcu_read_lock();
L
Linus Torvalds 已提交
4680 4681 4682

	p = find_process_by_pid(pid);
	if (!p) {
4683
		rcu_read_unlock();
4684
		put_online_cpus();
L
Linus Torvalds 已提交
4685 4686 4687
		return -ESRCH;
	}

4688
	/* Prevent p going away */
L
Linus Torvalds 已提交
4689
	get_task_struct(p);
4690
	rcu_read_unlock();
L
Linus Torvalds 已提交
4691

4692 4693 4694 4695 4696 4697 4698 4699
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4700
	retval = -EPERM;
4701
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4702 4703
		goto out_unlock;

4704 4705 4706 4707
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4708 4709
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4710
 again:
4711
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4712

P
Paul Menage 已提交
4713
	if (!retval) {
4714 4715
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4716 4717 4718 4719 4720
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4721
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4722 4723 4724
			goto again;
		}
	}
L
Linus Torvalds 已提交
4725
out_unlock:
4726 4727 4728 4729
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4730
	put_task_struct(p);
4731
	put_online_cpus();
L
Linus Torvalds 已提交
4732 4733 4734 4735
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4736
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4737
{
4738 4739 4740 4741 4742
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4752 4753
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4754
{
4755
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4756 4757
	int retval;

4758 4759
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4760

4761 4762 4763 4764 4765
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4766 4767
}

4768
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4769
{
4770
	struct task_struct *p;
4771 4772
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4773 4774
	int retval;

4775
	get_online_cpus();
4776
	rcu_read_lock();
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4783 4784 4785 4786
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4787
	rq = task_rq_lock(p, &flags);
4788
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4789
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4790 4791

out_unlock:
4792
	rcu_read_unlock();
4793
	put_online_cpus();
L
Linus Torvalds 已提交
4794

4795
	return retval;
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4804 4805
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4806 4807
{
	int ret;
4808
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4809

4810 4811 4812
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4813 4814
		return -EINVAL;

4815 4816
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4817

4818 4819
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4820
		size_t retlen = min_t(size_t, len, cpumask_size());
4821 4822

		if (copy_to_user(user_mask_ptr, mask, retlen))
4823 4824
			ret = -EFAULT;
		else
4825
			ret = retlen;
4826 4827
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4828

4829
	return ret;
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4835 4836
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4837
 */
4838
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4839
{
4840
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4841

4842
	schedstat_inc(rq, yld_count);
4843
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4850
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4851
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4859 4860 4861 4862 4863
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4864
static void __cond_resched(void)
L
Linus Torvalds 已提交
4865
{
4866 4867 4868
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4869 4870
}

4871
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4872
{
P
Peter Zijlstra 已提交
4873
	if (should_resched()) {
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878
		__cond_resched();
		return 1;
	}
	return 0;
}
4879
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4880 4881

/*
4882
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4883 4884
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4885
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4886 4887 4888
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4889
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4890
{
P
Peter Zijlstra 已提交
4891
	int resched = should_resched();
J
Jan Kara 已提交
4892 4893
	int ret = 0;

4894 4895
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4896
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4897
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4898
		if (resched)
N
Nick Piggin 已提交
4899 4900 4901
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4902
		ret = 1;
L
Linus Torvalds 已提交
4903 4904
		spin_lock(lock);
	}
J
Jan Kara 已提交
4905
	return ret;
L
Linus Torvalds 已提交
4906
}
4907
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4908

4909
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4910 4911 4912
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4913
	if (should_resched()) {
4914
		local_bh_enable();
L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4921
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4922 4923 4924 4925

/**
 * yield - yield the current processor to other threads.
 *
4926
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4937
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4938 4939 4940 4941
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4942
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4943

4944
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4945
	atomic_inc(&rq->nr_iowait);
4946
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4947
	schedule();
4948
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4949
	atomic_dec(&rq->nr_iowait);
4950
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4956
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4957 4958
	long ret;

4959
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4960
	atomic_inc(&rq->nr_iowait);
4961
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4962
	ret = schedule_timeout(timeout);
4963
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4964
	atomic_dec(&rq->nr_iowait);
4965
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4976
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4986
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4987
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5001
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5011
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5012
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5026
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5027
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5028
{
5029
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5030
	unsigned int time_slice;
5031 5032
	unsigned long flags;
	struct rq *rq;
5033
	int retval;
L
Linus Torvalds 已提交
5034 5035 5036
	struct timespec t;

	if (pid < 0)
5037
		return -EINVAL;
L
Linus Torvalds 已提交
5038 5039

	retval = -ESRCH;
5040
	rcu_read_lock();
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5049 5050 5051
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5052

5053
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5054
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5055 5056
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5057

L
Linus Torvalds 已提交
5058
out_unlock:
5059
	rcu_read_unlock();
L
Linus Torvalds 已提交
5060 5061 5062
	return retval;
}

5063
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5064

5065
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5066 5067
{
	unsigned long free = 0;
5068
	unsigned state;
L
Linus Torvalds 已提交
5069 5070

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5071
	printk(KERN_INFO "%-13.13s %c", p->comm,
5072
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5073
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5074
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5075
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5076
	else
P
Peter Zijlstra 已提交
5077
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5078 5079
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5080
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5081
	else
P
Peter Zijlstra 已提交
5082
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5083 5084
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5085
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5086
#endif
P
Peter Zijlstra 已提交
5087
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5088 5089
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5090

5091
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5092 5093
}

I
Ingo Molnar 已提交
5094
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5095
{
5096
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5097

5098
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5099 5100
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5101
#else
P
Peter Zijlstra 已提交
5102 5103
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5112
		if (!state_filter || (p->state & state_filter))
5113
			sched_show_task(p);
L
Linus Torvalds 已提交
5114 5115
	} while_each_thread(g, p);

5116 5117
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5118 5119 5120
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5121
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5122 5123 5124
	/*
	 * Only show locks if all tasks are dumped:
	 */
5125
	if (!state_filter)
I
Ingo Molnar 已提交
5126
		debug_show_all_locks();
L
Linus Torvalds 已提交
5127 5128
}

I
Ingo Molnar 已提交
5129 5130
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5131
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5132 5133
}

5134 5135 5136 5137 5138 5139 5140 5141
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5142
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5143
{
5144
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5145 5146
	unsigned long flags;

5147
	raw_spin_lock_irqsave(&rq->lock, flags);
5148

I
Ingo Molnar 已提交
5149
	__sched_fork(idle);
5150
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5151 5152
	idle->se.exec_start = sched_clock();

5153
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5154
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5155 5156

	rq->curr = rq->idle = idle;
5157 5158 5159
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5160
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5161 5162

	/* Set the preempt count _outside_ the spinlocks! */
5163 5164 5165
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5166
	task_thread_info(idle)->preempt_count = 0;
5167
#endif
I
Ingo Molnar 已提交
5168 5169 5170 5171
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5172
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5180
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5181
 */
5182
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5183

I
Ingo Molnar 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5193
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5194
{
5195
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5210

5211 5212
	return factor;
}
I
Ingo Molnar 已提交
5213

5214 5215 5216
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5217

5218 5219 5220 5221 5222 5223 5224 5225
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5226

5227 5228 5229
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5230 5231
}

L
Linus Torvalds 已提交
5232 5233 5234 5235
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5236
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5255
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5256 5257
 * call is not atomic; no spinlocks may be held.
 */
5258
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5259
{
5260
	struct migration_req req;
L
Linus Torvalds 已提交
5261
	unsigned long flags;
5262
	struct rq *rq;
5263
	int ret = 0;
L
Linus Torvalds 已提交
5264 5265

	rq = task_rq_lock(p, &flags);
5266

5267
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5268 5269 5270 5271
		ret = -EINVAL;
		goto out;
	}

5272
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5273
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5274 5275 5276 5277
		ret = -EINVAL;
		goto out;
	}

5278
	if (p->sched_class->set_cpus_allowed)
5279
		p->sched_class->set_cpus_allowed(p, new_mask);
5280
	else {
5281 5282
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5283 5284
	}

L
Linus Torvalds 已提交
5285
	/* Can the task run on the task's current CPU? If so, we're done */
5286
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5287 5288
		goto out;

5289
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5290
		/* Need help from migration thread: drop lock and wait. */
5291 5292 5293
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5294 5295
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5296
		put_task_struct(mt);
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301 5302
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5303

L
Linus Torvalds 已提交
5304 5305
	return ret;
}
5306
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5307 5308

/*
I
Ingo Molnar 已提交
5309
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5310 5311 5312 5313 5314 5315
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5316 5317
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5318
 */
5319
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5320
{
5321
	struct rq *rq_dest, *rq_src;
5322
	int ret = 0;
L
Linus Torvalds 已提交
5323

5324
	if (unlikely(!cpu_active(dest_cpu)))
5325
		return ret;
L
Linus Torvalds 已提交
5326 5327 5328 5329 5330 5331 5332

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5333
		goto done;
L
Linus Torvalds 已提交
5334
	/* Affinity changed (again). */
5335
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5336
		goto fail;
L
Linus Torvalds 已提交
5337

5338 5339 5340 5341 5342
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5343
		deactivate_task(rq_src, p, 0);
5344
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5345
		activate_task(rq_dest, p, 0);
5346
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5347
	}
L
Linus Torvalds 已提交
5348
done:
5349
	ret = 1;
L
Linus Torvalds 已提交
5350
fail:
L
Linus Torvalds 已提交
5351
	double_rq_unlock(rq_src, rq_dest);
5352
	return ret;
L
Linus Torvalds 已提交
5353 5354
}

5355 5356 5357 5358 5359
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5360 5361 5362 5363 5364
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5365
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5366
{
5367
	int badcpu;
L
Linus Torvalds 已提交
5368
	int cpu = (long)data;
5369
	struct rq *rq;
L
Linus Torvalds 已提交
5370 5371 5372 5373 5374 5375

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5376
		struct migration_req *req;
L
Linus Torvalds 已提交
5377 5378
		struct list_head *head;

5379
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5380 5381

		if (cpu_is_offline(cpu)) {
5382
			raw_spin_unlock_irq(&rq->lock);
5383
			break;
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5394
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5395 5396 5397 5398
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5399
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5400 5401
		list_del_init(head->next);

5402
		if (req->task != NULL) {
5403
			raw_spin_unlock(&rq->lock);
5404 5405 5406
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5407
			raw_spin_unlock(&rq->lock);
5408 5409
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5410
			raw_spin_unlock(&rq->lock);
5411 5412
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5413
		local_irq_enable();
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5423
/*
5424
 * Figure out where task on dead CPU should go, use force if necessary.
5425
 */
5426
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5427
{
5428 5429 5430
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5431

5432 5433 5434 5435 5436 5437 5438
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5439 5440 5441 5442
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5443
	if (needs_cpu)
5444
		__migrate_task(p, dead_cpu, dest_cpu);
5445
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5455
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5456
{
5457
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5471
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5472

5473
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5474

5475 5476
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5477 5478
			continue;

5479 5480 5481
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5482

5483
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5484 5485
}

I
Ingo Molnar 已提交
5486 5487
/*
 * Schedules idle task to be the next runnable task on current CPU.
5488 5489
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5490 5491 5492
 */
void sched_idle_next(void)
{
5493
	int this_cpu = smp_processor_id();
5494
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5495 5496 5497 5498
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5499
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5500

5501 5502 5503
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5504
	 */
5505
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5506

I
Ingo Molnar 已提交
5507
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5508

5509
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5510

5511
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5512 5513
}

5514 5515
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5529
/* called under rq->lock with disabled interrupts */
5530
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5531
{
5532
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5533 5534

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5535
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5536 5537

	/* Cannot have done final schedule yet: would have vanished. */
5538
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5539

5540
	get_task_struct(p);
L
Linus Torvalds 已提交
5541 5542 5543

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5544
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5545 5546
	 * fine.
	 */
5547
	raw_spin_unlock_irq(&rq->lock);
5548
	move_task_off_dead_cpu(dead_cpu, p);
5549
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5550

5551
	put_task_struct(p);
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5557
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5558
	struct task_struct *next;
5559

I
Ingo Molnar 已提交
5560 5561 5562
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5563
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5564 5565
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5566
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5567
		migrate_dead(dead_cpu, next);
5568

L
Linus Torvalds 已提交
5569 5570
	}
}
5571 5572 5573 5574 5575 5576 5577

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5578
	rq->calc_load_active = 0;
5579
}
L
Linus Torvalds 已提交
5580 5581
#endif /* CONFIG_HOTPLUG_CPU */

5582 5583 5584
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5585 5586
	{
		.procname	= "sched_domain",
5587
		.mode		= 0555,
5588
	},
5589
	{}
5590 5591 5592
};

static struct ctl_table sd_ctl_root[] = {
5593 5594
	{
		.procname	= "kernel",
5595
		.mode		= 0555,
5596 5597
		.child		= sd_ctl_dir,
	},
5598
	{}
5599 5600 5601 5602 5603
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5604
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5605 5606 5607 5608

	return entry;
}

5609 5610
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5611
	struct ctl_table *entry;
5612

5613 5614 5615
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5616
	 * will always be set. In the lowest directory the names are
5617 5618 5619
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5620 5621
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5622 5623 5624
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5625 5626 5627 5628 5629

	kfree(*tablep);
	*tablep = NULL;
}

5630
static void
5631
set_table_entry(struct ctl_table *entry,
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5645
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5646

5647 5648 5649
	if (table == NULL)
		return NULL;

5650
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5651
		sizeof(long), 0644, proc_doulongvec_minmax);
5652
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5653
		sizeof(long), 0644, proc_doulongvec_minmax);
5654
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5655
		sizeof(int), 0644, proc_dointvec_minmax);
5656
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5657
		sizeof(int), 0644, proc_dointvec_minmax);
5658
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5659
		sizeof(int), 0644, proc_dointvec_minmax);
5660
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5661
		sizeof(int), 0644, proc_dointvec_minmax);
5662
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5663
		sizeof(int), 0644, proc_dointvec_minmax);
5664
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5665
		sizeof(int), 0644, proc_dointvec_minmax);
5666
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5667
		sizeof(int), 0644, proc_dointvec_minmax);
5668
	set_table_entry(&table[9], "cache_nice_tries",
5669 5670
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5671
	set_table_entry(&table[10], "flags", &sd->flags,
5672
		sizeof(int), 0644, proc_dointvec_minmax);
5673 5674 5675
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5676 5677 5678 5679

	return table;
}

5680
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5681 5682 5683 5684 5685 5686 5687 5688 5689
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5690 5691
	if (table == NULL)
		return NULL;
5692 5693 5694 5695 5696

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5697
		entry->mode = 0555;
5698 5699 5700 5701 5702 5703 5704 5705
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5706
static void register_sched_domain_sysctl(void)
5707
{
5708
	int i, cpu_num = num_possible_cpus();
5709 5710 5711
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5712 5713 5714
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5715 5716 5717
	if (entry == NULL)
		return;

5718
	for_each_possible_cpu(i) {
5719 5720
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5721
		entry->mode = 0555;
5722
		entry->child = sd_alloc_ctl_cpu_table(i);
5723
		entry++;
5724
	}
5725 5726

	WARN_ON(sd_sysctl_header);
5727 5728
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5729

5730
/* may be called multiple times per register */
5731 5732
static void unregister_sched_domain_sysctl(void)
{
5733 5734
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5735
	sd_sysctl_header = NULL;
5736 5737
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5738
}
5739
#else
5740 5741 5742 5743
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5744 5745 5746 5747
{
}
#endif

5748 5749 5750 5751 5752
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5753
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5773
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5774 5775 5776 5777
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5778 5779 5780 5781
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5782 5783
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5784 5785
{
	struct task_struct *p;
5786
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5787
	unsigned long flags;
5788
	struct rq *rq;
L
Linus Torvalds 已提交
5789 5790

	switch (action) {
5791

L
Linus Torvalds 已提交
5792
	case CPU_UP_PREPARE:
5793
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5794
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5800
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5801
		task_rq_unlock(rq, &flags);
5802
		get_task_struct(p);
L
Linus Torvalds 已提交
5803
		cpu_rq(cpu)->migration_thread = p;
5804
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5805
		break;
5806

L
Linus Torvalds 已提交
5807
	case CPU_ONLINE:
5808
	case CPU_ONLINE_FROZEN:
5809
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5810
		wake_up_process(cpu_rq(cpu)->migration_thread);
5811 5812 5813

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5814
		raw_spin_lock_irqsave(&rq->lock, flags);
5815
		if (rq->rd) {
5816
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5817 5818

			set_rq_online(rq);
5819
		}
5820
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5821
		break;
5822

L
Linus Torvalds 已提交
5823 5824
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5825
	case CPU_UP_CANCELED_FROZEN:
5826 5827
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5828
		/* Unbind it from offline cpu so it can run. Fall thru. */
5829
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5830
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5831
		kthread_stop(cpu_rq(cpu)->migration_thread);
5832
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5833 5834
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5835

L
Linus Torvalds 已提交
5836
	case CPU_DEAD:
5837
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5838 5839 5840
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5841
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5842 5843
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5844
		raw_spin_lock_irq(&rq->lock);
5845
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5846 5847
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5848
		migrate_dead_tasks(cpu);
5849
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5850 5851
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5852
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5853 5854 5855 5856 5857
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5858
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5859
		while (!list_empty(&rq->migration_queue)) {
5860 5861
			struct migration_req *req;

L
Linus Torvalds 已提交
5862
			req = list_entry(rq->migration_queue.next,
5863
					 struct migration_req, list);
L
Linus Torvalds 已提交
5864
			list_del_init(&req->list);
5865
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5866
			complete(&req->done);
5867
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5868
		}
5869
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5870
		break;
G
Gregory Haskins 已提交
5871

5872 5873
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5874 5875
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5876
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5877
		if (rq->rd) {
5878
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5879
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5880
		}
5881
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5882
		break;
L
Linus Torvalds 已提交
5883 5884 5885 5886 5887
#endif
	}
	return NOTIFY_OK;
}

5888 5889 5890
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5891
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5892
 */
5893
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5894 5895 5896 5897
	.notifier_call = migration_call,
	.priority = 10
};

5898
static int __init migration_init(void)
L
Linus Torvalds 已提交
5899 5900
{
	void *cpu = (void *)(long)smp_processor_id();
5901
	int err;
5902 5903

	/* Start one for the boot CPU: */
5904 5905
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5906 5907
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5908

5909
	return 0;
L
Linus Torvalds 已提交
5910
}
5911
early_initcall(migration_init);
L
Linus Torvalds 已提交
5912 5913 5914
#endif

#ifdef CONFIG_SMP
5915

5916
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5917

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5928
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5929
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5930
{
I
Ingo Molnar 已提交
5931
	struct sched_group *group = sd->groups;
5932
	char str[256];
L
Linus Torvalds 已提交
5933

R
Rusty Russell 已提交
5934
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5935
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5936 5937 5938 5939

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5940
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5941
		if (sd->parent)
P
Peter Zijlstra 已提交
5942 5943
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5944
		return -1;
N
Nick Piggin 已提交
5945 5946
	}

P
Peter Zijlstra 已提交
5947
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5948

5949
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5950 5951
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5952
	}
5953
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5954 5955
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5956
	}
L
Linus Torvalds 已提交
5957

I
Ingo Molnar 已提交
5958
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5959
	do {
I
Ingo Molnar 已提交
5960
		if (!group) {
P
Peter Zijlstra 已提交
5961 5962
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5963 5964 5965
			break;
		}

5966
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5967 5968 5969
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5970 5971
			break;
		}
L
Linus Torvalds 已提交
5972

5973
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5974 5975
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5976 5977
			break;
		}
L
Linus Torvalds 已提交
5978

5979
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5980 5981
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5982 5983
			break;
		}
L
Linus Torvalds 已提交
5984

5985
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5986

R
Rusty Russell 已提交
5987
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5988

P
Peter Zijlstra 已提交
5989
		printk(KERN_CONT " %s", str);
5990
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5991 5992
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5993
		}
L
Linus Torvalds 已提交
5994

I
Ingo Molnar 已提交
5995 5996
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5997
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5998

5999
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6000
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6001

6002 6003
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6004 6005
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6006 6007
	return 0;
}
L
Linus Torvalds 已提交
6008

I
Ingo Molnar 已提交
6009 6010
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6011
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6012
	int level = 0;
L
Linus Torvalds 已提交
6013

6014 6015 6016
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6017 6018 6019 6020
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6021

I
Ingo Molnar 已提交
6022 6023
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6024
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6025 6026 6027 6028
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6029
	for (;;) {
6030
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6031
			break;
L
Linus Torvalds 已提交
6032 6033
		level++;
		sd = sd->parent;
6034
		if (!sd)
I
Ingo Molnar 已提交
6035 6036
			break;
	}
6037
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6038
}
6039
#else /* !CONFIG_SCHED_DEBUG */
6040
# define sched_domain_debug(sd, cpu) do { } while (0)
6041
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6042

6043
static int sd_degenerate(struct sched_domain *sd)
6044
{
6045
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6046 6047 6048 6049 6050 6051
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6052 6053 6054
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6055 6056 6057 6058 6059
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6060
	if (sd->flags & (SD_WAKE_AFFINE))
6061 6062 6063 6064 6065
		return 0;

	return 1;
}

6066 6067
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6068 6069 6070 6071 6072 6073
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6074
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6075 6076 6077 6078 6079 6080 6081
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6082 6083 6084
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6085 6086
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6087 6088 6089 6090 6091 6092 6093
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6094 6095
static void free_rootdomain(struct root_domain *rd)
{
6096 6097
	synchronize_sched();

6098 6099
	cpupri_cleanup(&rd->cpupri);

6100 6101 6102 6103 6104 6105
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6106 6107
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6108
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6109 6110
	unsigned long flags;

6111
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6112 6113

	if (rq->rd) {
I
Ingo Molnar 已提交
6114
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6115

6116
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6117
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6118

6119
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6120

I
Ingo Molnar 已提交
6121 6122 6123 6124 6125 6126 6127
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6128 6129 6130 6131 6132
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6133
	cpumask_set_cpu(rq->cpu, rd->span);
6134
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6135
		set_rq_online(rq);
G
Gregory Haskins 已提交
6136

6137
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6138 6139 6140

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6141 6142
}

L
Li Zefan 已提交
6143
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6144
{
6145 6146
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6147 6148
	memset(rd, 0, sizeof(*rd));

6149 6150
	if (bootmem)
		gfp = GFP_NOWAIT;
6151

6152
	if (!alloc_cpumask_var(&rd->span, gfp))
6153
		goto out;
6154
	if (!alloc_cpumask_var(&rd->online, gfp))
6155
		goto free_span;
6156
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6157
		goto free_online;
6158

P
Pekka Enberg 已提交
6159
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6160
		goto free_rto_mask;
6161
	return 0;
6162

6163 6164
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6165 6166 6167 6168
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6169
out:
6170
	return -ENOMEM;
G
Gregory Haskins 已提交
6171 6172 6173 6174
}

static void init_defrootdomain(void)
{
6175 6176
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6177 6178 6179
	atomic_set(&def_root_domain.refcount, 1);
}

6180
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6181 6182 6183 6184 6185 6186 6187
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6188 6189 6190 6191
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6192 6193 6194 6195

	return rd;
}

L
Linus Torvalds 已提交
6196
/*
I
Ingo Molnar 已提交
6197
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6198 6199
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6200 6201
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6202
{
6203
	struct rq *rq = cpu_rq(cpu);
6204 6205 6206
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6207
	for (tmp = sd; tmp; ) {
6208 6209 6210
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6211

6212
		if (sd_parent_degenerate(tmp, parent)) {
6213
			tmp->parent = parent->parent;
6214 6215
			if (parent->parent)
				parent->parent->child = tmp;
6216 6217
		} else
			tmp = tmp->parent;
6218 6219
	}

6220
	if (sd && sd_degenerate(sd)) {
6221
		sd = sd->parent;
6222 6223 6224
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6225 6226 6227

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6228
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6229
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6230 6231 6232
}

/* cpus with isolated domains */
6233
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6234 6235 6236 6237

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6238
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6239
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6240 6241 6242
	return 1;
}

I
Ingo Molnar 已提交
6243
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6244 6245

/*
6246 6247
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6248 6249
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6250 6251 6252 6253 6254
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6255
static void
6256 6257 6258
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6259
					struct sched_group **sg,
6260 6261
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6262 6263 6264 6265
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6266
	cpumask_clear(covered);
6267

6268
	for_each_cpu(i, span) {
6269
		struct sched_group *sg;
6270
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6271 6272
		int j;

6273
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6274 6275
			continue;

6276
		cpumask_clear(sched_group_cpus(sg));
6277
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6278

6279
		for_each_cpu(j, span) {
6280
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6281 6282
				continue;

6283
			cpumask_set_cpu(j, covered);
6284
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6295
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6296

6297
#ifdef CONFIG_NUMA
6298

6299 6300 6301 6302 6303
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6304
 * Find the next node to include in a given scheduling domain. Simply
6305 6306 6307 6308
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6309
static int find_next_best_node(int node, nodemask_t *used_nodes)
6310 6311 6312 6313 6314
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6315
	for (i = 0; i < nr_node_ids; i++) {
6316
		/* Start at @node */
6317
		n = (node + i) % nr_node_ids;
6318 6319 6320 6321 6322

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6323
		if (node_isset(n, *used_nodes))
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6335
	node_set(best_node, *used_nodes);
6336 6337 6338 6339 6340 6341
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6342
 * @span: resulting cpumask
6343
 *
I
Ingo Molnar 已提交
6344
 * Given a node, construct a good cpumask for its sched_domain to span. It
6345 6346 6347
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6348
static void sched_domain_node_span(int node, struct cpumask *span)
6349
{
6350
	nodemask_t used_nodes;
6351
	int i;
6352

6353
	cpumask_clear(span);
6354
	nodes_clear(used_nodes);
6355

6356
	cpumask_or(span, span, cpumask_of_node(node));
6357
	node_set(node, used_nodes);
6358 6359

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6360
		int next_node = find_next_best_node(node, &used_nodes);
6361

6362
		cpumask_or(span, span, cpumask_of_node(next_node));
6363 6364
	}
}
6365
#endif /* CONFIG_NUMA */
6366

6367
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6368

6369 6370
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6371 6372 6373
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6418
/*
6419
 * SMT sched-domains:
6420
 */
L
Linus Torvalds 已提交
6421
#ifdef CONFIG_SCHED_SMT
6422
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6423
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6424

I
Ingo Molnar 已提交
6425
static int
6426 6427
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6428
{
6429
	if (sg)
6430
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6431 6432
	return cpu;
}
6433
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6434

6435 6436 6437
/*
 * multi-core sched-domains:
 */
6438
#ifdef CONFIG_SCHED_MC
6439 6440
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6441
#endif /* CONFIG_SCHED_MC */
6442 6443

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6444
static int
6445 6446
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6447
{
6448
	int group;
6449

6450
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6451
	group = cpumask_first(mask);
6452
	if (sg)
6453
		*sg = &per_cpu(sched_group_core, group).sg;
6454
	return group;
6455 6456
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6457
static int
6458 6459
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6460
{
6461
	if (sg)
6462
		*sg = &per_cpu(sched_group_core, cpu).sg;
6463 6464 6465 6466
	return cpu;
}
#endif

6467 6468
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6469

I
Ingo Molnar 已提交
6470
static int
6471 6472
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6473
{
6474
	int group;
6475
#ifdef CONFIG_SCHED_MC
6476
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6477
	group = cpumask_first(mask);
6478
#elif defined(CONFIG_SCHED_SMT)
6479
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6480
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6481
#else
6482
	group = cpu;
L
Linus Torvalds 已提交
6483
#endif
6484
	if (sg)
6485
		*sg = &per_cpu(sched_group_phys, group).sg;
6486
	return group;
L
Linus Torvalds 已提交
6487 6488 6489 6490
}

#ifdef CONFIG_NUMA
/*
6491 6492 6493
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6494
 */
6495
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6496
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6497

6498
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6499
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6500

6501 6502 6503
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6504
{
6505 6506
	int group;

6507
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6508
	group = cpumask_first(nodemask);
6509 6510

	if (sg)
6511
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6512
	return group;
L
Linus Torvalds 已提交
6513
}
6514

6515 6516 6517 6518 6519 6520 6521
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6522
	do {
6523
		for_each_cpu(j, sched_group_cpus(sg)) {
6524
			struct sched_domain *sd;
6525

6526
			sd = &per_cpu(phys_domains, j).sd;
6527
			if (j != group_first_cpu(sd->groups)) {
6528 6529 6530 6531 6532 6533
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6534

6535
			sg->cpu_power += sd->groups->cpu_power;
6536 6537 6538
		}
		sg = sg->next;
	} while (sg != group_head);
6539
}
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6561 6562
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6563 6564 6565 6566 6567 6568 6569 6570 6571
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6572
	sg->cpu_power = 0;
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6591 6592
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6593 6594
			return -ENOMEM;
		}
6595
		sg->cpu_power = 0;
6596 6597 6598 6599 6600 6601 6602 6603 6604
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6605
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6606

6607
#ifdef CONFIG_NUMA
6608
/* Free memory allocated for various sched_group structures */
6609 6610
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6611
{
6612
	int cpu, i;
6613

6614
	for_each_cpu(cpu, cpu_map) {
6615 6616 6617 6618 6619 6620
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6621
		for (i = 0; i < nr_node_ids; i++) {
6622 6623
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6624
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6625
			if (cpumask_empty(nodemask))
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6642
#else /* !CONFIG_NUMA */
6643 6644
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6645 6646
{
}
6647
#endif /* CONFIG_NUMA */
6648

6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6663 6664
	long power;
	int weight;
6665 6666 6667

	WARN_ON(!sd || !sd->groups);

6668
	if (cpu != group_first_cpu(sd->groups))
6669 6670 6671 6672
		return;

	child = sd->child;

6673
	sd->groups->cpu_power = 0;
6674

6675 6676 6677 6678 6679
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6680 6681 6682
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6683
		 */
P
Peter Zijlstra 已提交
6684 6685
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6686
			power /= weight;
P
Peter Zijlstra 已提交
6687 6688
			power >>= SCHED_LOAD_SHIFT;
		}
6689
		sd->groups->cpu_power += power;
6690 6691 6692 6693
		return;
	}

	/*
6694
	 * Add cpu_power of each child group to this groups cpu_power.
6695 6696 6697
	 */
	group = child->groups;
	do {
6698
		sd->groups->cpu_power += group->cpu_power;
6699 6700 6701 6702
		group = group->next;
	} while (group != child->groups);
}

6703 6704 6705 6706 6707
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6708 6709 6710 6711 6712 6713
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6714
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6715

6716 6717 6718 6719 6720
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6721
	sd->level = SD_LV_##type;				\
6722
	SD_INIT_NAME(sd, type);					\
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6737 6738 6739 6740
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6741 6742 6743 6744 6745 6746
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6765
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6766 6767
	} else {
		/* turn on idle balance on this domain */
6768
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6769 6770 6771
	}
}

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6792
#ifdef CONFIG_NUMA
6793 6794 6795 6796 6797 6798 6799
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6800
#endif
6801 6802 6803 6804
	case sa_none:
		break;
	}
}
6805

6806 6807 6808
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6809
#ifdef CONFIG_NUMA
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6820
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6821
		return sa_notcovered;
6822
	}
6823
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6824
#endif
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6837
		printk(KERN_WARNING "Cannot alloc root domain\n");
6838
		return sa_tmpmask;
G
Gregory Haskins 已提交
6839
	}
6840 6841
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6842

6843 6844 6845 6846
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6847
#ifdef CONFIG_NUMA
6848
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6849

6850 6851 6852 6853 6854
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6855
		set_domain_attribute(sd, attr);
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6870
#endif
6871 6872
	return sd;
}
L
Linus Torvalds 已提交
6873

6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6889

6890 6891 6892 6893 6894
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6895
#ifdef CONFIG_SCHED_MC
6896 6897 6898 6899 6900 6901 6902
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6903
#endif
6904 6905
	return sd;
}
6906

6907 6908 6909 6910 6911
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6912
#ifdef CONFIG_SCHED_SMT
6913 6914 6915 6916 6917 6918 6919
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6920
#endif
6921 6922
	return sd;
}
L
Linus Torvalds 已提交
6923

6924 6925 6926 6927
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6928
#ifdef CONFIG_SCHED_SMT
6929 6930 6931 6932 6933 6934 6935 6936
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6937
#endif
6938
#ifdef CONFIG_SCHED_MC
6939 6940 6941 6942 6943 6944 6945
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6946
#endif
6947 6948 6949 6950 6951 6952 6953
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6954
#ifdef CONFIG_NUMA
6955 6956 6957 6958 6959
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6960 6961
	default:
		break;
6962
	}
6963
}
6964

6965 6966 6967 6968 6969 6970 6971 6972 6973
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6974
	struct sched_domain *sd;
6975
	int i;
6976
#ifdef CONFIG_NUMA
6977
	d.sd_allnodes = 0;
6978
#endif
6979

6980 6981 6982 6983
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6984

L
Linus Torvalds 已提交
6985
	/*
6986
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6987
	 */
6988
	for_each_cpu(i, cpu_map) {
6989 6990
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6991

6992
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6993
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6994
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6995
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
6996
	}
6997

6998
	for_each_cpu(i, cpu_map) {
6999
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7000
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7001
	}
7002

L
Linus Torvalds 已提交
7003
	/* Set up physical groups */
7004 7005
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7006

L
Linus Torvalds 已提交
7007 7008
#ifdef CONFIG_NUMA
	/* Set up node groups */
7009 7010
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7011

7012 7013
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7014
			goto error;
L
Linus Torvalds 已提交
7015 7016 7017
#endif

	/* Calculate CPU power for physical packages and nodes */
7018
#ifdef CONFIG_SCHED_SMT
7019
	for_each_cpu(i, cpu_map) {
7020
		sd = &per_cpu(cpu_domains, i).sd;
7021
		init_sched_groups_power(i, sd);
7022
	}
L
Linus Torvalds 已提交
7023
#endif
7024
#ifdef CONFIG_SCHED_MC
7025
	for_each_cpu(i, cpu_map) {
7026
		sd = &per_cpu(core_domains, i).sd;
7027
		init_sched_groups_power(i, sd);
7028 7029
	}
#endif
7030

7031
	for_each_cpu(i, cpu_map) {
7032
		sd = &per_cpu(phys_domains, i).sd;
7033
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7034 7035
	}

7036
#ifdef CONFIG_NUMA
7037
	for (i = 0; i < nr_node_ids; i++)
7038
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7039

7040
	if (d.sd_allnodes) {
7041
		struct sched_group *sg;
7042

7043
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7044
								d.tmpmask);
7045 7046
		init_numa_sched_groups_power(sg);
	}
7047 7048
#endif

L
Linus Torvalds 已提交
7049
	/* Attach the domains */
7050
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7051
#ifdef CONFIG_SCHED_SMT
7052
		sd = &per_cpu(cpu_domains, i).sd;
7053
#elif defined(CONFIG_SCHED_MC)
7054
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7055
#else
7056
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7057
#endif
7058
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7059
	}
7060

7061 7062 7063
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7064 7065

error:
7066 7067
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7068
}
P
Paul Jackson 已提交
7069

7070
static int build_sched_domains(const struct cpumask *cpu_map)
7071 7072 7073 7074
{
	return __build_sched_domains(cpu_map, NULL);
}

7075
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7076
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7077 7078
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7079 7080 7081

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7082 7083
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7084
 */
7085
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7086

7087 7088 7089 7090 7091 7092
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7093
{
7094
	return 0;
7095 7096
}

7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7122
/*
I
Ingo Molnar 已提交
7123
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7124 7125
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7126
 */
7127
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7128
{
7129 7130
	int err;

7131
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7132
	ndoms_cur = 1;
7133
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7134
	if (!doms_cur)
7135 7136
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7137
	dattr_cur = NULL;
7138
	err = build_sched_domains(doms_cur[0]);
7139
	register_sched_domain_sysctl();
7140 7141

	return err;
7142 7143
}

7144 7145
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7146
{
7147
	free_sched_groups(cpu_map, tmpmask);
7148
}
L
Linus Torvalds 已提交
7149

7150 7151 7152 7153
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7154
static void detach_destroy_domains(const struct cpumask *cpu_map)
7155
{
7156 7157
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7158 7159
	int i;

7160
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7161
		cpu_attach_domain(NULL, &def_root_domain, i);
7162
	synchronize_sched();
7163
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7164 7165
}

7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7182 7183
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7184
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7185 7186 7187
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7188
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7189 7190 7191
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7192 7193 7194
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7195 7196 7197 7198 7199 7200
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7201
 *
7202
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7203 7204
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7205
 *
P
Paul Jackson 已提交
7206 7207
 * Call with hotplug lock held
 */
7208
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7209
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7210
{
7211
	int i, j, n;
7212
	int new_topology;
P
Paul Jackson 已提交
7213

7214
	mutex_lock(&sched_domains_mutex);
7215

7216 7217 7218
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7219 7220 7221
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7222
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7223 7224 7225

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7226
		for (j = 0; j < n && !new_topology; j++) {
7227
			if (cpumask_equal(doms_cur[i], doms_new[j])
7228
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7229 7230 7231
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7232
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7233 7234 7235 7236
match1:
		;
	}

7237 7238
	if (doms_new == NULL) {
		ndoms_cur = 0;
7239
		doms_new = &fallback_doms;
7240
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7241
		WARN_ON_ONCE(dattr_new);
7242 7243
	}

P
Paul Jackson 已提交
7244 7245
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7246
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7247
			if (cpumask_equal(doms_new[i], doms_cur[j])
7248
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7249 7250 7251
				goto match2;
		}
		/* no match - add a new doms_new */
7252
		__build_sched_domains(doms_new[i],
7253
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7254 7255 7256 7257 7258
match2:
		;
	}

	/* Remember the new sched domains */
7259 7260
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7261
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7262
	doms_cur = doms_new;
7263
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7264
	ndoms_cur = ndoms_new;
7265 7266

	register_sched_domain_sysctl();
7267

7268
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7269 7270
}

7271
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7272
static void arch_reinit_sched_domains(void)
7273
{
7274
	get_online_cpus();
7275 7276 7277 7278

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7279
	rebuild_sched_domains();
7280
	put_online_cpus();
7281 7282 7283 7284
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7285
	unsigned int level = 0;
7286

7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7298 7299 7300
		return -EINVAL;

	if (smt)
7301
		sched_smt_power_savings = level;
7302
	else
7303
		sched_mc_power_savings = level;
7304

7305
	arch_reinit_sched_domains();
7306

7307
	return count;
7308 7309 7310
}

#ifdef CONFIG_SCHED_MC
7311
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7312
					   struct sysdev_class_attribute *attr,
7313
					   char *page)
7314 7315 7316
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7317
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7318
					    struct sysdev_class_attribute *attr,
7319
					    const char *buf, size_t count)
7320 7321 7322
{
	return sched_power_savings_store(buf, count, 0);
}
7323 7324 7325
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7326 7327 7328
#endif

#ifdef CONFIG_SCHED_SMT
7329
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7330
					    struct sysdev_class_attribute *attr,
7331
					    char *page)
7332 7333 7334
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7335
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7336
					     struct sysdev_class_attribute *attr,
7337
					     const char *buf, size_t count)
7338 7339 7340
{
	return sched_power_savings_store(buf, count, 1);
}
7341 7342
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7343 7344 7345
		   sched_smt_power_savings_store);
#endif

7346
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7362
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7363

7364
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7365
/*
7366 7367
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7368 7369 7370
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7371 7372 7373 7374
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7375 7376 7377 7378
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7379
		partition_sched_domains(1, NULL, NULL);
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7390
{
P
Peter Zijlstra 已提交
7391 7392
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7393 7394
	switch (action) {
	case CPU_DOWN_PREPARE:
7395
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7396
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7397 7398 7399
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7400
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7401
	case CPU_ONLINE:
7402
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7403
		enable_runtime(cpu_rq(cpu));
7404 7405
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7406 7407 7408 7409 7410 7411 7412
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7413 7414 7415
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7416
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7417

7418 7419 7420 7421 7422
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7423
	get_online_cpus();
7424
	mutex_lock(&sched_domains_mutex);
7425
	arch_init_sched_domains(cpu_active_mask);
7426 7427 7428
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7429
	mutex_unlock(&sched_domains_mutex);
7430
	put_online_cpus();
7431 7432

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7433 7434
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7435 7436 7437 7438 7439
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7440
	init_hrtick();
7441 7442

	/* Move init over to a non-isolated CPU */
7443
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7444
		BUG();
I
Ingo Molnar 已提交
7445
	sched_init_granularity();
7446
	free_cpumask_var(non_isolated_cpus);
7447

7448
	init_sched_rt_class();
L
Linus Torvalds 已提交
7449 7450 7451 7452
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7453
	sched_init_granularity();
L
Linus Torvalds 已提交
7454 7455 7456
}
#endif /* CONFIG_SMP */

7457 7458
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7459 7460 7461 7462 7463 7464 7465
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7466
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7467 7468
{
	cfs_rq->tasks_timeline = RB_ROOT;
7469
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7470 7471 7472
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7473
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7474 7475
}

P
Peter Zijlstra 已提交
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7489
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7490
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7491
#ifdef CONFIG_SMP
7492
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7493 7494
#endif
#endif
P
Peter Zijlstra 已提交
7495 7496 7497
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7498
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7499 7500 7501 7502
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7503
	rt_rq->rt_runtime = 0;
7504
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7505

7506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7507
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7508 7509
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7510 7511
}

P
Peter Zijlstra 已提交
7512
#ifdef CONFIG_FAIR_GROUP_SCHED
7513 7514 7515
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7516
{
7517
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7518 7519 7520 7521 7522 7523 7524
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7525 7526 7527 7528
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7529 7530 7531 7532 7533
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7534 7535
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7536
	se->load.inv_weight = 0;
7537
	se->parent = parent;
P
Peter Zijlstra 已提交
7538
}
7539
#endif
P
Peter Zijlstra 已提交
7540

7541
#ifdef CONFIG_RT_GROUP_SCHED
7542 7543 7544
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7545
{
7546 7547
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7548 7549 7550
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7551
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7552 7553 7554 7555
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7556 7557 7558
	if (!rt_se)
		return;

7559 7560 7561 7562 7563
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7564
	rt_se->my_q = rt_rq;
7565
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7566 7567 7568 7569
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7570 7571
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7572
	int i, j;
7573 7574 7575 7576 7577 7578 7579
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7580
#endif
7581
#ifdef CONFIG_CPUMASK_OFFSTACK
7582
	alloc_size += num_possible_cpus() * cpumask_size();
7583 7584
#endif
	if (alloc_size) {
7585
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7586 7587 7588 7589 7590 7591 7592

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7593

7594
#endif /* CONFIG_FAIR_GROUP_SCHED */
7595 7596 7597 7598 7599
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7600 7601
		ptr += nr_cpu_ids * sizeof(void **);

7602
#endif /* CONFIG_RT_GROUP_SCHED */
7603 7604 7605 7606 7607 7608
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7609
	}
I
Ingo Molnar 已提交
7610

G
Gregory Haskins 已提交
7611 7612 7613 7614
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7615 7616 7617 7618 7619 7620
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7621
#endif /* CONFIG_RT_GROUP_SCHED */
7622

D
Dhaval Giani 已提交
7623
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7624
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7625 7626
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7627
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7628

7629 7630 7631 7632
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7633
	for_each_possible_cpu(i) {
7634
		struct rq *rq;
L
Linus Torvalds 已提交
7635 7636

		rq = cpu_rq(i);
7637
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7638
		rq->nr_running = 0;
7639 7640
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7641
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7642
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7643
#ifdef CONFIG_FAIR_GROUP_SCHED
7644
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7645
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7661
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7662 7663 7664 7665
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7666
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7667
#endif
D
Dhaval Giani 已提交
7668 7669 7670
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7671
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7672
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7673
#ifdef CONFIG_CGROUP_SCHED
7674
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7675
#endif
I
Ingo Molnar 已提交
7676
#endif
L
Linus Torvalds 已提交
7677

I
Ingo Molnar 已提交
7678 7679
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7680
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7681
		rq->sd = NULL;
G
Gregory Haskins 已提交
7682
		rq->rd = NULL;
7683
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7684
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7685
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7686
		rq->push_cpu = 0;
7687
		rq->cpu = i;
7688
		rq->online = 0;
L
Linus Torvalds 已提交
7689
		rq->migration_thread = NULL;
7690 7691
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7692
		INIT_LIST_HEAD(&rq->migration_queue);
7693
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7694
#endif
P
Peter Zijlstra 已提交
7695
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7696 7697 7698
		atomic_set(&rq->nr_iowait, 0);
	}

7699
	set_load_weight(&init_task);
7700

7701 7702 7703 7704
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7705
#ifdef CONFIG_SMP
7706
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7707 7708
#endif

7709
#ifdef CONFIG_RT_MUTEXES
7710
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7711 7712
#endif

L
Linus Torvalds 已提交
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7726 7727 7728

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7729 7730 7731 7732
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7733

7734
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7735
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7736
#ifdef CONFIG_SMP
7737
#ifdef CONFIG_NO_HZ
7738
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7739
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7740
#endif
R
Rusty Russell 已提交
7741 7742 7743
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7744
#endif /* SMP */
7745

7746
	perf_event_init();
7747

7748
	scheduler_running = 1;
L
Linus Torvalds 已提交
7749 7750 7751
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7752 7753
static inline int preempt_count_equals(int preempt_offset)
{
7754
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7755 7756 7757 7758

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7759
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7760
{
7761
#ifdef in_atomic
L
Linus Torvalds 已提交
7762 7763
	static unsigned long prev_jiffy;	/* ratelimiting */

7764 7765
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7766 7767 7768 7769 7770
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7771 7772 7773 7774 7775 7776 7777
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7778 7779 7780 7781 7782

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7783 7784 7785 7786 7787 7788
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7789 7790 7791
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7792

7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7803 7804
void normalize_rt_tasks(void)
{
7805
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7806
	unsigned long flags;
7807
	struct rq *rq;
L
Linus Torvalds 已提交
7808

7809
	read_lock_irqsave(&tasklist_lock, flags);
7810
	do_each_thread(g, p) {
7811 7812 7813 7814 7815 7816
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7817 7818
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7819 7820 7821
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7822
#endif
I
Ingo Molnar 已提交
7823 7824 7825 7826 7827 7828 7829 7830

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7831
			continue;
I
Ingo Molnar 已提交
7832
		}
L
Linus Torvalds 已提交
7833

7834
		raw_spin_lock(&p->pi_lock);
7835
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7836

7837
		normalize_task(rq, p);
7838

7839
		__task_rq_unlock(rq);
7840
		raw_spin_unlock(&p->pi_lock);
7841 7842
	} while_each_thread(g, p);

7843
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7844 7845 7846
}

#endif /* CONFIG_MAGIC_SYSRQ */
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7865
struct task_struct *curr_task(int cpu)
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7876 7877
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7878 7879 7880 7881 7882 7883 7884
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7885
void set_curr_task(int cpu, struct task_struct *p)
7886 7887 7888 7889 7890
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7891

7892 7893
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7908 7909
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7910 7911
{
	struct cfs_rq *cfs_rq;
7912
	struct sched_entity *se;
7913
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7914 7915
	int i;

7916
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7917 7918
	if (!tg->cfs_rq)
		goto err;
7919
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7920 7921
	if (!tg->se)
		goto err;
7922 7923

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7924 7925

	for_each_possible_cpu(i) {
7926
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7927

7928 7929
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7930 7931 7932
		if (!cfs_rq)
			goto err;

7933 7934
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7935
		if (!se)
7936
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7937

7938
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7939 7940 7941 7942
	}

	return 1;

7943 7944
 err_free_rq:
	kfree(cfs_rq);
7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7959
#else /* !CONFG_FAIR_GROUP_SCHED */
7960 7961 7962 7963
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7964 7965
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7977
#endif /* CONFIG_FAIR_GROUP_SCHED */
7978 7979

#ifdef CONFIG_RT_GROUP_SCHED
7980 7981 7982 7983
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7984 7985
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7997 7998
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7999 8000
{
	struct rt_rq *rt_rq;
8001
	struct sched_rt_entity *rt_se;
8002 8003 8004
	struct rq *rq;
	int i;

8005
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8006 8007
	if (!tg->rt_rq)
		goto err;
8008
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8009 8010 8011
	if (!tg->rt_se)
		goto err;

8012 8013
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8014 8015 8016 8017

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8018 8019
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8020 8021
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8022

8023 8024
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8025
		if (!rt_se)
8026
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8027

8028
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8029 8030
	}

8031 8032
	return 1;

8033 8034
 err_free_rq:
	kfree(rt_rq);
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8049
#else /* !CONFIG_RT_GROUP_SCHED */
8050 8051 8052 8053
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8054 8055
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8067
#endif /* CONFIG_RT_GROUP_SCHED */
8068

D
Dhaval Giani 已提交
8069
#ifdef CONFIG_CGROUP_SCHED
8070 8071 8072 8073 8074 8075 8076 8077
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8078
struct task_group *sched_create_group(struct task_group *parent)
8079 8080 8081 8082 8083 8084 8085 8086 8087
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8088
	if (!alloc_fair_sched_group(tg, parent))
8089 8090
		goto err;

8091
	if (!alloc_rt_sched_group(tg, parent))
8092 8093
		goto err;

8094
	spin_lock_irqsave(&task_group_lock, flags);
8095
	for_each_possible_cpu(i) {
8096 8097
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8098
	}
P
Peter Zijlstra 已提交
8099
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8100 8101 8102 8103 8104

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8105
	list_add_rcu(&tg->siblings, &parent->children);
8106
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8107

8108
	return tg;
S
Srivatsa Vaddagiri 已提交
8109 8110

err:
P
Peter Zijlstra 已提交
8111
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8112 8113 8114
	return ERR_PTR(-ENOMEM);
}

8115
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8116
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8117 8118
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8119
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8120 8121
}

8122
/* Destroy runqueue etc associated with a task group */
8123
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8124
{
8125
	unsigned long flags;
8126
	int i;
S
Srivatsa Vaddagiri 已提交
8127

8128
	spin_lock_irqsave(&task_group_lock, flags);
8129
	for_each_possible_cpu(i) {
8130 8131
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8132
	}
P
Peter Zijlstra 已提交
8133
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8134
	list_del_rcu(&tg->siblings);
8135
	spin_unlock_irqrestore(&task_group_lock, flags);
8136 8137

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8138
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8139 8140
}

8141
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8142 8143 8144
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8145 8146
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8147 8148 8149 8150 8151 8152 8153
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8154
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8155 8156
	on_rq = tsk->se.on_rq;

8157
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8158
		dequeue_task(rq, tsk, 0);
8159 8160
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8161

P
Peter Zijlstra 已提交
8162
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8163

P
Peter Zijlstra 已提交
8164 8165
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8166
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8167 8168
#endif

8169 8170 8171
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8172
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8173 8174 8175

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8176
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8177

8178
#ifdef CONFIG_FAIR_GROUP_SCHED
8179
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8180 8181 8182 8183 8184
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8185
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8186 8187 8188
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8189
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8190

8191
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8192
		enqueue_entity(cfs_rq, se, 0);
8193
}
8194

8195 8196 8197 8198 8199 8200
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8201
	raw_spin_lock_irqsave(&rq->lock, flags);
8202
	__set_se_shares(se, shares);
8203
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8204 8205
}

8206 8207
static DEFINE_MUTEX(shares_mutex);

8208
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8209 8210
{
	int i;
8211
	unsigned long flags;
8212

8213 8214 8215 8216 8217 8218
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8219 8220
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8221 8222
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8223

8224
	mutex_lock(&shares_mutex);
8225
	if (tg->shares == shares)
8226
		goto done;
S
Srivatsa Vaddagiri 已提交
8227

8228
	spin_lock_irqsave(&task_group_lock, flags);
8229 8230
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8231
	list_del_rcu(&tg->siblings);
8232
	spin_unlock_irqrestore(&task_group_lock, flags);
8233 8234 8235 8236 8237 8238 8239 8240

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8241
	tg->shares = shares;
8242 8243 8244 8245 8246
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8247
		set_se_shares(tg->se[i], shares);
8248
	}
S
Srivatsa Vaddagiri 已提交
8249

8250 8251 8252 8253
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8254
	spin_lock_irqsave(&task_group_lock, flags);
8255 8256
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8257
	list_add_rcu(&tg->siblings, &tg->parent->children);
8258
	spin_unlock_irqrestore(&task_group_lock, flags);
8259
done:
8260
	mutex_unlock(&shares_mutex);
8261
	return 0;
S
Srivatsa Vaddagiri 已提交
8262 8263
}

8264 8265 8266 8267
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8268
#endif
8269

8270
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8271
/*
P
Peter Zijlstra 已提交
8272
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8273
 */
P
Peter Zijlstra 已提交
8274 8275 8276 8277 8278
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8279
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8280

P
Peter Zijlstra 已提交
8281
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8282 8283
}

P
Peter Zijlstra 已提交
8284 8285
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8286
{
P
Peter Zijlstra 已提交
8287
	struct task_struct *g, *p;
8288

P
Peter Zijlstra 已提交
8289 8290 8291 8292
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8293

P
Peter Zijlstra 已提交
8294 8295
	return 0;
}
8296

P
Peter Zijlstra 已提交
8297 8298 8299 8300 8301
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8302

P
Peter Zijlstra 已提交
8303 8304 8305 8306 8307 8308
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8309

P
Peter Zijlstra 已提交
8310 8311
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8312

P
Peter Zijlstra 已提交
8313 8314 8315
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8316 8317
	}

8318 8319 8320 8321 8322
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8323

8324 8325 8326
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8327 8328
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8329

P
Peter Zijlstra 已提交
8330
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8331

8332 8333 8334 8335 8336
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8337

8338 8339 8340
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8341 8342 8343
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8344

P
Peter Zijlstra 已提交
8345 8346 8347 8348
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8349

P
Peter Zijlstra 已提交
8350
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8351
	}
P
Peter Zijlstra 已提交
8352

P
Peter Zijlstra 已提交
8353 8354 8355 8356
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8357 8358
}

P
Peter Zijlstra 已提交
8359
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8360
{
P
Peter Zijlstra 已提交
8361 8362 8363 8364 8365 8366 8367
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8368 8369
}

8370 8371
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8372
{
P
Peter Zijlstra 已提交
8373
	int i, err = 0;
P
Peter Zijlstra 已提交
8374 8375

	mutex_lock(&rt_constraints_mutex);
8376
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8377 8378
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8379
		goto unlock;
P
Peter Zijlstra 已提交
8380

8381
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8382 8383
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8384 8385 8386 8387

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8388
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8389
		rt_rq->rt_runtime = rt_runtime;
8390
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8391
	}
8392
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8393
 unlock:
8394
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8395 8396 8397
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8398 8399
}

8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8412 8413 8414 8415
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8416
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8417 8418
		return -1;

8419
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8420 8421 8422
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8423 8424 8425 8426 8427 8428 8429 8430

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8431 8432 8433
	if (rt_period == 0)
		return -EINVAL;

8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8448
	u64 runtime, period;
8449 8450
	int ret = 0;

8451 8452 8453
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8454 8455 8456 8457 8458 8459 8460 8461
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8462

8463
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8464
	read_lock(&tasklist_lock);
8465
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8466
	read_unlock(&tasklist_lock);
8467 8468 8469 8470
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8481
#else /* !CONFIG_RT_GROUP_SCHED */
8482 8483
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8484 8485 8486
	unsigned long flags;
	int i;

8487 8488 8489
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8490 8491 8492 8493 8494 8495 8496
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8497
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8498 8499 8500
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8501
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8502
		rt_rq->rt_runtime = global_rt_runtime();
8503
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8504
	}
8505
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8506

8507 8508
	return 0;
}
8509
#endif /* CONFIG_RT_GROUP_SCHED */
8510 8511

int sched_rt_handler(struct ctl_table *table, int write,
8512
		void __user *buffer, size_t *lenp,
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8523
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8540

8541
#ifdef CONFIG_CGROUP_SCHED
8542 8543

/* return corresponding task_group object of a cgroup */
8544
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8545
{
8546 8547
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8548 8549 8550
}

static struct cgroup_subsys_state *
8551
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8552
{
8553
	struct task_group *tg, *parent;
8554

8555
	if (!cgrp->parent) {
8556 8557 8558 8559
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8560 8561
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8562 8563 8564 8565 8566 8567
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8568 8569
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8570
{
8571
	struct task_group *tg = cgroup_tg(cgrp);
8572 8573 8574 8575

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8576
static int
8577
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8578
{
8579
#ifdef CONFIG_RT_GROUP_SCHED
8580
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8581 8582
		return -EINVAL;
#else
8583 8584 8585
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8586
#endif
8587 8588
	return 0;
}
8589

8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8609 8610 8611 8612
	return 0;
}

static void
8613
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8614 8615
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8616 8617
{
	sched_move_task(tsk);
8618 8619 8620 8621 8622 8623 8624 8625
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8626 8627
}

8628
#ifdef CONFIG_FAIR_GROUP_SCHED
8629
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8630
				u64 shareval)
8631
{
8632
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8633 8634
}

8635
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8636
{
8637
	struct task_group *tg = cgroup_tg(cgrp);
8638 8639 8640

	return (u64) tg->shares;
}
8641
#endif /* CONFIG_FAIR_GROUP_SCHED */
8642

8643
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8644
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8645
				s64 val)
P
Peter Zijlstra 已提交
8646
{
8647
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8648 8649
}

8650
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8651
{
8652
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8653
}
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8665
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8666

8667
static struct cftype cpu_files[] = {
8668
#ifdef CONFIG_FAIR_GROUP_SCHED
8669 8670
	{
		.name = "shares",
8671 8672
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8673
	},
8674 8675
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8676
	{
P
Peter Zijlstra 已提交
8677
		.name = "rt_runtime_us",
8678 8679
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8680
	},
8681 8682
	{
		.name = "rt_period_us",
8683 8684
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8685
	},
8686
#endif
8687 8688 8689 8690
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8691
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8692 8693 8694
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8695 8696 8697 8698 8699 8700 8701
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8702 8703 8704
	.early_init	= 1,
};

8705
#endif	/* CONFIG_CGROUP_SCHED */
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8716
/* track cpu usage of a group of tasks and its child groups */
8717 8718 8719
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8720
	u64 __percpu *cpuusage;
8721
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8722
	struct cpuacct *parent;
8723 8724 8725 8726 8727
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8728
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8729
{
8730
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8743
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8744 8745
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8746
	int i;
8747 8748

	if (!ca)
8749
		goto out;
8750 8751

	ca->cpuusage = alloc_percpu(u64);
8752 8753 8754 8755 8756 8757
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8758

8759 8760 8761
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8762
	return &ca->css;
8763 8764 8765 8766 8767 8768 8769 8770 8771

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8772 8773 8774
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8775
static void
8776
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8777
{
8778
	struct cpuacct *ca = cgroup_ca(cgrp);
8779
	int i;
8780

8781 8782
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8783 8784 8785 8786
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8787 8788
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8789
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8790 8791 8792 8793 8794 8795
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8796
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8797
	data = *cpuusage;
8798
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8799 8800 8801 8802 8803 8804 8805 8806 8807
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8808
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8809 8810 8811 8812 8813

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8814
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8815
	*cpuusage = val;
8816
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8817 8818 8819 8820 8821
#else
	*cpuusage = val;
#endif
}

8822
/* return total cpu usage (in nanoseconds) of a group */
8823
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8824
{
8825
	struct cpuacct *ca = cgroup_ca(cgrp);
8826 8827 8828
	u64 totalcpuusage = 0;
	int i;

8829 8830
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8831 8832 8833 8834

	return totalcpuusage;
}

8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8847 8848
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8849 8850 8851 8852 8853

out:
	return err;
}

8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8888 8889 8890
static struct cftype files[] = {
	{
		.name = "usage",
8891 8892
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8893
	},
8894 8895 8896 8897
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8898 8899 8900 8901
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8902 8903
};

8904
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8905
{
8906
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8907 8908 8909 8910 8911 8912 8913 8914 8915 8916
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8917
	int cpu;
8918

L
Li Zefan 已提交
8919
	if (unlikely(!cpuacct_subsys.active))
8920 8921
		return;

8922
	cpu = task_cpu(tsk);
8923 8924 8925

	rcu_read_lock();

8926 8927
	ca = task_ca(tsk);

8928
	for (; ca; ca = ca->parent) {
8929
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8930 8931
		*cpuusage += cputime;
	}
8932 8933

	rcu_read_unlock();
8934 8935
}

8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8953 8954 8955 8956 8957 8958 8959
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8960
	int batch = CPUACCT_BATCH;
8961 8962 8963 8964 8965 8966 8967 8968

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8969
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8970 8971 8972 8973 8974
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8975 8976 8977 8978 8979 8980 8981 8982
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9068
		raw_spin_lock_irqsave(&rq->lock, flags);
9069
		list_add(&req->list, &rq->migration_queue);
9070
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9071 9072 9073 9074 9075 9076 9077
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9078
		raw_spin_lock_irqsave(&rq->lock, flags);
9079 9080 9081
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9082
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9083 9084
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9085
	synchronize_sched_expedited_count++;
9086 9087 9088 9089 9090 9091 9092 9093
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */