sched.c 217.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937
	struct rq *rq;

938
	for (;;) {
939 940 941
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
942
		raw_spin_lock(&rq->lock);
943
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
944
			return rq;
945
		raw_spin_unlock(&rq->lock);
946 947 948
	}
}

L
Linus Torvalds 已提交
949 950
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
951
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
952 953
 * explicitly disabling preemption.
 */
954
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958

959
	for (;;) {
960 961
		while (task_is_waking(p))
			cpu_relax();
962 963
		local_irq_save(*flags);
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
965
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
966
			return rq;
967
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
	}
}

971 972 973 974 975
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976
	raw_spin_unlock_wait(&rq->lock);
977 978
}

A
Alexey Dobriyan 已提交
979
static void __task_rq_unlock(struct rq *rq)
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock(&rq->lock);
983 984
}

985
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
986 987
	__releases(rq->lock)
{
988
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
989 990 991
}

/*
992
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
993
 */
A
Alexey Dobriyan 已提交
994
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998 999 1000

	local_irq_disable();
	rq = this_rq();
1001
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1002 1003 1004 1005

	return rq;
}

P
Peter Zijlstra 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1027
	if (!cpu_active(cpu_of(rq)))
1028
		return 0;
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1048
	raw_spin_lock(&rq->lock);
1049
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1050
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1052 1053 1054 1055

	return HRTIMER_NORESTART;
}

1056
#ifdef CONFIG_SMP
1057 1058 1059 1060
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1061
{
1062
	struct rq *rq = arg;
1063

1064
	raw_spin_lock(&rq->lock);
1065 1066
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1067
	raw_spin_unlock(&rq->lock);
1068 1069
}

1070 1071 1072 1073 1074 1075
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1076
{
1077 1078
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079

1080
	hrtimer_set_expires(timer, time);
1081 1082 1083 1084

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1085
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 1087
		rq->hrtick_csd_pending = 1;
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1102
		hrtick_clear(cpu_rq(cpu));
1103 1104 1105 1106 1107 1108
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1109
static __init void init_hrtick(void)
1110 1111 1112
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1113 1114 1115 1116 1117 1118 1119 1120
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1121
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122
			HRTIMER_MODE_REL_PINNED, 0);
1123
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1142
}
A
Andrew Morton 已提交
1143
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1144 1145 1146 1147 1148 1149 1150 1151
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1152 1153 1154
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1155
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1156

I
Ingo Molnar 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1170
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1171 1172 1173
{
	int cpu;

1174
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1175

1176
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1177 1178
		return;

1179
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1196
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1197 1198
		return;
	resched_task(cpu_curr(cpu));
1199
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1200
}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1253
#endif /* CONFIG_NO_HZ */
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1276
#else /* !CONFIG_SMP */
1277
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1278
{
1279
	assert_raw_spin_locked(&task_rq(p)->lock);
1280
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1281
}
1282 1283 1284 1285

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

1396 1397 1398 1399 1400 1401 1402 1403
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1404 1405
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 1407
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1408 1409
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 1411
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1412 1413
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1424
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1425
typedef int (*tg_visitor)(struct task_group *, void *);
1426 1427 1428 1429 1430

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1431
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 1433
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1434
	int ret;
1435 1436 1437 1438

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1449 1450 1451
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1452 1453 1454 1455 1456

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1457
out_unlock:
1458
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1459 1460

	return ret;
1461 1462
}

P
Peter Zijlstra 已提交
1463 1464 1465
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1466
}
P
Peter Zijlstra 已提交
1467 1468 1469
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1509 1510
static struct sched_group *group_of(int cpu)
{
1511
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1534
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1535

1536 1537
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1538 1539
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1545

1546
static __read_mostly unsigned long __percpu *update_shares_data;
1547

1548 1549 1550 1551 1552
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1553 1554 1555
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1556
				    unsigned long *usd_rq_weight)
1557
{
1558
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1559
	int boost = 0;
1560

1561
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1562 1563 1564 1565
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1566

1567
	/*
P
Peter Zijlstra 已提交
1568 1569 1570
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1571
	 */
1572
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1573
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574

1575 1576 1577 1578
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1579

1580
		raw_spin_lock_irqsave(&rq->lock, flags);
1581
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1582
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583
		__set_se_shares(tg->se[cpu], shares);
1584
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1585
	}
1586
}
1587 1588

/*
1589 1590 1591
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1592
 */
P
Peter Zijlstra 已提交
1593
static int tg_shares_up(struct task_group *tg, void *data)
1594
{
1595
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1597
	struct sched_domain *sd = data;
1598
	unsigned long flags;
1599
	int i;
1600

1601 1602 1603 1604
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1605
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606

1607
	for_each_cpu(i, sched_domain_span(sd)) {
1608
		weight = tg->cfs_rq[i]->load.weight;
1609
		usd_rq_weight[i] = weight;
1610

1611
		rq_weight += weight;
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1620
		sum_weight += weight;
1621
		shares += tg->cfs_rq[i]->shares;
1622 1623
	}

1624 1625 1626
	if (!rq_weight)
		rq_weight = sum_weight;

1627 1628 1629 1630 1631
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1632

1633
	for_each_cpu(i, sched_domain_span(sd))
1634
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 1636

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1637 1638

	return 0;
1639 1640 1641
}

/*
1642 1643 1644
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1645
 */
P
Peter Zijlstra 已提交
1646
static int tg_load_down(struct task_group *tg, void *data)
1647
{
1648
	unsigned long load;
P
Peter Zijlstra 已提交
1649
	long cpu = (long)data;
1650

1651 1652 1653 1654 1655 1656 1657
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1658

1659
	tg->cfs_rq[cpu]->h_load = load;
1660

P
Peter Zijlstra 已提交
1661
	return 0;
1662 1663
}

1664
static void update_shares(struct sched_domain *sd)
1665
{
1666 1667 1668 1669 1670 1671 1672 1673
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1674 1675 1676

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1677
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1678
	}
1679 1680
}

P
Peter Zijlstra 已提交
1681
static void update_h_load(long cpu)
1682
{
1683 1684 1685
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1686
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 1688 1689 1690
}

#else

1691
static inline void update_shares(struct sched_domain *sd)
1692 1693 1694
{
}

1695 1696
#endif

1697 1698
#ifdef CONFIG_PREEMPT

1699 1700
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1701
/*
1702 1703 1704 1705 1706 1707
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1708
 */
1709 1710 1711 1712 1713
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1714
	raw_spin_unlock(&this_rq->lock);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 1730 1731 1732 1733 1734
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1735
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736
		if (busiest < this_rq) {
1737 1738 1739 1740
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742
			ret = 1;
		} else
1743 1744
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1745 1746 1747 1748
	}
	return ret;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1758
		raw_spin_unlock(&this_rq->lock);
1759 1760 1761 1762 1763 1764
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1765 1766 1767
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1768
	raw_spin_unlock(&busiest->lock);
1769 1770
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1814 1815
#endif

V
Vegard Nossum 已提交
1816
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1817 1818
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1819
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1820 1821 1822
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1823
#endif
1824

1825
static void calc_load_account_active(struct rq *this_rq);
1826
static void update_sysctl(void);
1827
static int get_update_sysctl_factor(void);
1828

P
Peter Zijlstra 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1842

1843
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1844 1845

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849 1850
#include "sched_stats.h"

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882 1883 1884 1885 1886 1887
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1888 1889
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1890
{
1891
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1892
	sched_info_queued(p);
1893
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 1;
1895 1896
}

1897
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898
{
1899
	update_rq_clock(rq);
1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1913
	enqueue_task(rq, p, wakeup, false);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1936
/*
I
Ingo Molnar 已提交
1937
 * __normal_prio - return the priority that is based on the static prio
1938 1939 1940
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1941
	return p->static_prio;
1942 1943
}

1944 1945 1946 1947 1948 1949 1950
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1951
static inline int normal_prio(struct task_struct *p)
1952 1953 1954
{
	int prio;

1955
	if (task_has_rt_policy(p))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1969
static int effective_prio(struct task_struct *p)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1982 1983 1984 1985
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1986
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990
{
	return cpu_curr(task_cpu(p)) == p;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2003
#ifdef CONFIG_SMP
2004 2005 2006
/*
 * Is this task likely cache-hot:
 */
2007
static int
2008 2009 2010 2011
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2012 2013 2014
	if (p->sched_class != &fair_sched_class)
		return 0;

2015 2016 2017
	/*
	 * Buddy candidates are cache hot:
	 */
2018
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2019 2020
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2021 2022
		return 1;

2023 2024 2025 2026 2027
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2028 2029 2030 2031 2032
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2033
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2034
{
2035 2036 2037 2038 2039
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2040 2041
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 2043
#endif

2044
	trace_sched_migrate_task(p, new_cpu);
2045

2046 2047 2048 2049
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2050 2051

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2052 2053
}

2054
struct migration_req {
L
Linus Torvalds 已提交
2055 2056
	struct list_head list;

2057
	struct task_struct *task;
L
Linus Torvalds 已提交
2058 2059 2060
	int dest_cpu;

	struct completion done;
2061
};
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2067
static int
2068
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2071 2072 2073

	/*
	 * If the task is not on a runqueue (and not running), then
2074
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2075
	 */
2076
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2083

L
Linus Torvalds 已提交
2084 2085 2086
	return 1;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2130 2131 2132
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138 2139
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2146
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2147 2148
{
	unsigned long flags;
I
Ingo Molnar 已提交
2149
	int running, on_rq;
R
Roland McGrath 已提交
2150
	unsigned long ncsw;
2151
	struct rq *rq;
L
Linus Torvalds 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2173 2174 2175
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2176
			cpu_relax();
R
Roland McGrath 已提交
2177
		}
2178

2179 2180 2181 2182 2183 2184
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2185
		trace_sched_wait_task(rq, p);
2186 2187
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2188
		ncsw = 0;
2189
		if (!match_state || p->state == match_state)
2190
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191
		task_rq_unlock(rq, &flags);
2192

R
Roland McGrath 已提交
2193 2194 2195 2196 2197 2198
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2209

2210 2211 2212 2213 2214
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2215
		 * So if it was still runnable (but just not actively
2216 2217 2218 2219 2220 2221 2222
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2223

2224 2225 2226 2227 2228 2229 2230
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2231 2232

	return ncsw;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2248
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2258
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2259
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2260

T
Thomas Gleixner 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2282
#ifdef CONFIG_SMP
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2320
/*
2321 2322 2323
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2324
 *
2325 2326
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2327
 */
2328 2329 2330
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2344
		     !cpu_online(cpu)))
2345
		cpu = select_fallback_rq(task_cpu(p), p);
2346 2347

	return cpu;
2348 2349 2350
}
#endif

L
Linus Torvalds 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2365 2366
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2367
{
2368
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2369
	unsigned long flags;
2370
	struct rq *rq;
L
Linus Torvalds 已提交
2371

P
Peter Zijlstra 已提交
2372
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2373

2374
	smp_wmb();
2375
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2376
	if (!(p->state & state))
L
Linus Torvalds 已提交
2377 2378
		goto out;

I
Ingo Molnar 已提交
2379
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2380 2381 2382
		goto out_running;

	cpu = task_cpu(p);
2383
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2384 2385 2386 2387 2388

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2389 2390 2391
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2392 2393
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2394
	 */
2395 2396
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2397
	p->state = TASK_WAKING;
2398 2399 2400 2401

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2402
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2403

2404
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2405 2406 2407 2408 2409 2410
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2411
		set_task_cpu(p, cpu);
2412
	}
P
Peter Zijlstra 已提交
2413

2414 2415
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2416

2417 2418 2419 2420 2421 2422 2423
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2424
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2425

2426 2427 2428 2429 2430 2431 2432
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2433
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2434 2435 2436 2437 2438
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2439
#endif /* CONFIG_SCHEDSTATS */
2440

L
Linus Torvalds 已提交
2441 2442
out_activate:
#endif /* CONFIG_SMP */
2443
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2444
	if (wake_flags & WF_SYNC)
2445
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2446
	if (orig_cpu != cpu)
2447
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2448
	if (cpu == this_cpu)
2449
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2450
	else
2451
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2452
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2453 2454 2455
	success = 1;

out_running:
2456
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2457
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2458

L
Linus Torvalds 已提交
2459
	p->state = TASK_RUNNING;
2460
#ifdef CONFIG_SMP
2461 2462
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2474
#endif
L
Linus Torvalds 已提交
2475 2476
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2477
	put_cpu();
L
Linus Torvalds 已提交
2478 2479 2480 2481

	return success;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2493
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2494
{
2495
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2496 2497 2498
}
EXPORT_SYMBOL(wake_up_process);

2499
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2507 2508 2509 2510 2511 2512 2513
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2514
	p->se.prev_sum_exec_runtime	= 0;
2515
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2516 2517

#ifdef CONFIG_SCHEDSTATS
2518
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2519
#endif
N
Nick Piggin 已提交
2520

P
Peter Zijlstra 已提交
2521
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2522
	p->se.on_rq = 0;
2523
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2524

2525 2526 2527
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2538 2539 2540 2541 2542 2543
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2544

2545 2546 2547 2548
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2549
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2550
			p->policy = SCHED_NORMAL;
2551 2552
			p->normal_prio = p->static_prio;
		}
2553

2554 2555
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2556
			p->normal_prio = p->static_prio;
2557 2558 2559
			set_load_weight(p);
		}

2560 2561 2562 2563 2564 2565
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2566

2567 2568 2569 2570 2571
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2572 2573
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2574

P
Peter Zijlstra 已提交
2575 2576 2577
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2578 2579
	set_task_cpu(p, cpu);

2580
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2581
	if (likely(sched_info_on()))
2582
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2583
#endif
2584
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2585 2586
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2587
#ifdef CONFIG_PREEMPT
2588
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2589
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2590
#endif
2591 2592
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2593
	put_cpu();
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2603
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2604 2605
{
	unsigned long flags;
I
Ingo Molnar 已提交
2606
	struct rq *rq;
2607
	int cpu __maybe_unused = get_cpu();
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2622

2623 2624 2625 2626 2627 2628 2629
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2630 2631
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
P
Peter Zijlstra 已提交
2632
	activate_task(rq, p, 0);
2633
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2634
	check_preempt_curr(rq, p, WF_FORK);
2635
#ifdef CONFIG_SMP
2636 2637
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2638
#endif
I
Ingo Molnar 已提交
2639
	task_rq_unlock(rq, &flags);
2640
	put_cpu();
L
Linus Torvalds 已提交
2641 2642
}

2643 2644 2645
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2646
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2647
 * @notifier: notifier struct to register
2648 2649 2650 2651 2652 2653 2654 2655 2656
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2657
 * @notifier: notifier struct to unregister
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2687
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2699
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2700

2701 2702 2703
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2704
 * @prev: the current task that is being switched out
2705 2706 2707 2708 2709 2710 2711 2712 2713
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2714 2715 2716
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2717
{
2718
	fire_sched_out_preempt_notifiers(prev, next);
2719 2720 2721 2722
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2723 2724
/**
 * finish_task_switch - clean up after a task-switch
2725
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2726 2727
 * @prev: the thread we just switched away from.
 *
2728 2729 2730 2731
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2732 2733
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2734
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2735 2736 2737
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2738
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2739 2740 2741
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2742
	long prev_state;
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2748
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2749 2750
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2751
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2757
	prev_state = prev->state;
2758
	finish_arch_switch(prev);
2759 2760 2761
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2762
	perf_event_task_sched_in(current);
2763 2764 2765
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2766
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2767

2768
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2769 2770
	if (mm)
		mmdrop(mm);
2771
	if (unlikely(prev_state == TASK_DEAD)) {
2772 2773 2774
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2775
		 */
2776
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2777
		put_task_struct(prev);
2778
	}
L
Linus Torvalds 已提交
2779 2780
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2796
		raw_spin_lock_irqsave(&rq->lock, flags);
2797 2798
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2799
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2800 2801 2802 2803 2804 2805

		rq->post_schedule = 0;
	}
}

#else
2806

2807 2808 2809 2810 2811 2812
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2813 2814
}

2815 2816
#endif

L
Linus Torvalds 已提交
2817 2818 2819 2820
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2821
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2822 2823
	__releases(rq->lock)
{
2824 2825
	struct rq *rq = this_rq();

2826
	finish_task_switch(rq, prev);
2827

2828 2829 2830 2831 2832
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2833

2834 2835 2836 2837
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2838
	if (current->set_child_tid)
2839
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844 2845
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2846
static inline void
2847
context_switch(struct rq *rq, struct task_struct *prev,
2848
	       struct task_struct *next)
L
Linus Torvalds 已提交
2849
{
I
Ingo Molnar 已提交
2850
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2851

2852
	prepare_task_switch(rq, prev, next);
2853
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2854 2855
	mm = next->mm;
	oldmm = prev->active_mm;
2856 2857 2858 2859 2860
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2861
	arch_start_context_switch(prev);
2862

2863
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2870
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2871 2872 2873
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2874 2875 2876 2877 2878 2879 2880
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2881
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2882
#endif
L
Linus Torvalds 已提交
2883 2884 2885 2886

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2887 2888 2889 2890 2891 2892 2893
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2911
}
L
Linus Torvalds 已提交
2912 2913

unsigned long nr_uninterruptible(void)
2914
{
L
Linus Torvalds 已提交
2915
	unsigned long i, sum = 0;
2916

2917
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2918
		sum += cpu_rq(i)->nr_uninterruptible;
2919 2920

	/*
L
Linus Torvalds 已提交
2921 2922
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2923
	 */
L
Linus Torvalds 已提交
2924 2925
	if (unlikely((long)sum < 0))
		sum = 0;
2926

L
Linus Torvalds 已提交
2927
	return sum;
2928 2929
}

L
Linus Torvalds 已提交
2930
unsigned long long nr_context_switches(void)
2931
{
2932 2933
	int i;
	unsigned long long sum = 0;
2934

2935
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2936
		sum += cpu_rq(i)->nr_switches;
2937

L
Linus Torvalds 已提交
2938 2939
	return sum;
}
2940

L
Linus Torvalds 已提交
2941 2942 2943
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2944

2945
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2946
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2947

L
Linus Torvalds 已提交
2948 2949
	return sum;
}
2950

2951 2952 2953 2954 2955
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2956

2957 2958 2959 2960 2961
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2962

2963

2964 2965 2966 2967 2968
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2983 2984
}

2985 2986
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2987
{
2988 2989 2990 2991
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2992 2993

/*
2994 2995
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2996
 */
2997
void calc_global_load(void)
2998
{
2999 3000
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3001

3002 3003
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3004

3005 3006
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3007

3008 3009 3010
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3011

3012 3013
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3014

3015 3016 3017 3018 3019 3020
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3021

3022 3023
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3024

3025 3026 3027 3028
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3029
	}
3030 3031 3032
}

/*
I
Ingo Molnar 已提交
3033 3034
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3035
 */
I
Ingo Molnar 已提交
3036
static void update_cpu_load(struct rq *this_rq)
3037
{
3038
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3039
	int i, scale;
3040

I
Ingo Molnar 已提交
3041
	this_rq->nr_load_updates++;
3042

I
Ingo Molnar 已提交
3043 3044 3045
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3046

I
Ingo Molnar 已提交
3047
		/* scale is effectively 1 << i now, and >> i divides by scale */
3048

I
Ingo Molnar 已提交
3049 3050
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3051 3052 3053 3054 3055 3056 3057
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3058 3059
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3060

3061 3062 3063
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3064 3065 3066
	}
}

I
Ingo Molnar 已提交
3067
#ifdef CONFIG_SMP
3068

3069
/*
P
Peter Zijlstra 已提交
3070 3071
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3072
 */
P
Peter Zijlstra 已提交
3073
void sched_exec(void)
3074
{
P
Peter Zijlstra 已提交
3075
	struct task_struct *p = current;
3076
	struct migration_req req;
P
Peter Zijlstra 已提交
3077
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3078
	unsigned long flags;
3079
	struct rq *rq;
3080

P
Peter Zijlstra 已提交
3081 3082 3083 3084 3085 3086
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3087 3088
	}

L
Linus Torvalds 已提交
3089
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3090 3091
	put_cpu();

3092
	/*
P
Peter Zijlstra 已提交
3093
	 * select_task_rq() can race against ->cpus_allowed
3094
	 */
3095
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3096 3097 3098
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3099 3100
	}

L
Linus Torvalds 已提交
3101 3102 3103 3104
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3105

L
Linus Torvalds 已提交
3106 3107 3108 3109 3110
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3111

L
Linus Torvalds 已提交
3112 3113 3114 3115
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3116

L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122 3123
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3124
 * Return any ns on the sched_clock that have not yet been accounted in
3125
 * @p in case that task is currently running.
3126 3127
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3128
 */
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3143
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3144 3145
{
	unsigned long flags;
3146
	struct rq *rq;
3147
	u64 ns = 0;
3148

3149
	rq = task_rq_lock(p, &flags);
3150 3151
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3152

3153 3154
	return ns;
}
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3193
	task_rq_unlock(rq, &flags);
3194

L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3202
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3203
 */
3204 3205
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3206 3207 3208 3209
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3210
	/* Add user time to process. */
L
Linus Torvalds 已提交
3211
	p->utime = cputime_add(p->utime, cputime);
3212
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3213
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3214 3215 3216 3217 3218 3219 3220

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3221 3222

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3223 3224
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3225 3226
}

3227 3228 3229 3230
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3231
 * @cputime_scaled: cputime scaled by cpu frequency
3232
 */
3233 3234
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3235 3236 3237 3238 3239 3240
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3241
	/* Add guest time to process. */
3242
	p->utime = cputime_add(p->utime, cputime);
3243
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3244
	account_group_user_time(p, cputime);
3245 3246
	p->gtime = cputime_add(p->gtime, cputime);

3247
	/* Add guest time to cpustat. */
3248 3249 3250 3251 3252 3253 3254
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3255 3256
}

L
Linus Torvalds 已提交
3257 3258 3259 3260 3261
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3262
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3263 3264
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3265
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3266 3267 3268 3269
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3270
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3271
		account_guest_time(p, cputime, cputime_scaled);
3272 3273
		return;
	}
3274

3275
	/* Add system time to process. */
L
Linus Torvalds 已提交
3276
	p->stime = cputime_add(p->stime, cputime);
3277
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3278
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3279 3280 3281 3282 3283 3284 3285 3286

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3287 3288
		cpustat->system = cputime64_add(cpustat->system, tmp);

3289 3290
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3291 3292 3293 3294
	/* Account for system time used */
	acct_update_integrals(p);
}

3295
/*
L
Linus Torvalds 已提交
3296 3297
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3298
 */
3299
void account_steal_time(cputime_t cputime)
3300
{
3301 3302 3303 3304
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3305 3306
}

L
Linus Torvalds 已提交
3307
/*
3308 3309
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3310
 */
3311
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3312 3313
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3314
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3315
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3316

3317 3318 3319 3320
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3321 3322
}

3323 3324 3325 3326 3327 3328 3329 3330 3331
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3332
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3333 3334 3335
	struct rq *rq = this_rq();

	if (user_tick)
3336
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3337
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3338
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3339 3340
				    one_jiffy_scaled);
	else
3341
		account_idle_time(cputime_one_jiffy);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3361 3362
}

3363 3364
#endif

3365 3366 3367 3368
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3369
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3370
{
3371 3372
	*ut = p->utime;
	*st = p->stime;
3373 3374
}

3375
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3376
{
3377 3378 3379 3380 3381 3382
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3383 3384
}
#else
3385 3386

#ifndef nsecs_to_cputime
3387
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3388 3389
#endif

3390
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3391
{
3392
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3393 3394 3395 3396

	/*
	 * Use CFS's precise accounting:
	 */
3397
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3398 3399

	if (total) {
3400 3401 3402
		u64 temp;

		temp = (u64)(rtime * utime);
3403
		do_div(temp, total);
3404 3405 3406
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3407

3408 3409 3410
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3411
	p->prev_utime = max(p->prev_utime, utime);
3412
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3413

3414 3415
	*ut = p->prev_utime;
	*st = p->prev_stime;
3416 3417
}

3418 3419 3420 3421
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3422
{
3423 3424 3425
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3426

3427
	thread_group_cputime(p, &cputime);
3428

3429 3430
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3431

3432 3433
	if (total) {
		u64 temp;
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3447 3448 3449
}
#endif

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3461
	struct task_struct *curr = rq->curr;
3462 3463

	sched_clock_tick();
I
Ingo Molnar 已提交
3464

3465
	raw_spin_lock(&rq->lock);
3466
	update_rq_clock(rq);
3467
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3468
	curr->sched_class->task_tick(rq, curr, 0);
3469
	raw_spin_unlock(&rq->lock);
3470

3471
	perf_event_task_tick(curr);
3472

3473
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3474 3475
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3476
#endif
L
Linus Torvalds 已提交
3477 3478
}

3479
notrace unsigned long get_parent_ip(unsigned long addr)
3480 3481 3482 3483 3484 3485 3486 3487
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3488

3489 3490 3491
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3492
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3493
{
3494
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3495 3496 3497
	/*
	 * Underflow?
	 */
3498 3499
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3500
#endif
L
Linus Torvalds 已提交
3501
	preempt_count() += val;
3502
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3503 3504 3505
	/*
	 * Spinlock count overflowing soon?
	 */
3506 3507
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3508 3509 3510
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3511 3512 3513
}
EXPORT_SYMBOL(add_preempt_count);

3514
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3515
{
3516
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3517 3518 3519
	/*
	 * Underflow?
	 */
3520
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3521
		return;
L
Linus Torvalds 已提交
3522 3523 3524
	/*
	 * Is the spinlock portion underflowing?
	 */
3525 3526 3527
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3528
#endif
3529

3530 3531
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3539
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3540
 */
I
Ingo Molnar 已提交
3541
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3542
{
3543 3544
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3545 3546
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3547

I
Ingo Molnar 已提交
3548
	debug_show_held_locks(prev);
3549
	print_modules();
I
Ingo Molnar 已提交
3550 3551
	if (irqs_disabled())
		print_irqtrace_events(prev);
3552 3553 3554 3555 3556

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3557
}
L
Linus Torvalds 已提交
3558

I
Ingo Molnar 已提交
3559 3560 3561 3562 3563
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3564
	/*
I
Ingo Molnar 已提交
3565
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3566 3567 3568
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3569
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3570 3571
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3572 3573
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3574
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3575 3576
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3577 3578
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3579 3580
	}
#endif
I
Ingo Molnar 已提交
3581 3582
}

P
Peter Zijlstra 已提交
3583
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3584
{
3585 3586 3587
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3588
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3589 3590
}

I
Ingo Molnar 已提交
3591 3592 3593 3594
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3595
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3596
{
3597
	const struct sched_class *class;
I
Ingo Molnar 已提交
3598
	struct task_struct *p;
L
Linus Torvalds 已提交
3599 3600

	/*
I
Ingo Molnar 已提交
3601 3602
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3603
	 */
I
Ingo Molnar 已提交
3604
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3605
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3606 3607
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3608 3609
	}

I
Ingo Molnar 已提交
3610 3611
	class = sched_class_highest;
	for ( ; ; ) {
3612
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3622

I
Ingo Molnar 已提交
3623 3624 3625
/*
 * schedule() is the main scheduler function.
 */
3626
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3627 3628
{
	struct task_struct *prev, *next;
3629
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3630
	struct rq *rq;
3631
	int cpu;
I
Ingo Molnar 已提交
3632

3633 3634
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3635 3636
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3637
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3638 3639 3640 3641 3642 3643 3644
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3645

3646
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3647
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3648

3649
	raw_spin_lock_irq(&rq->lock);
3650
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3651 3652

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3653
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3654
			prev->state = TASK_RUNNING;
3655
		else
3656
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3657
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3658 3659
	}

3660
	pre_schedule(rq, prev);
3661

I
Ingo Molnar 已提交
3662
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3663 3664
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3665
	put_prev_task(rq, prev);
3666
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3667 3668

	if (likely(prev != next)) {
3669
		sched_info_switch(prev, next);
3670
		perf_event_task_sched_out(prev, next);
3671

L
Linus Torvalds 已提交
3672 3673 3674 3675
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3676
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3677 3678 3679 3680 3681 3682
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3683
	} else
3684
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3685

3686
	post_schedule(rq);
L
Linus Torvalds 已提交
3687

3688 3689 3690
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3691
		goto need_resched_nonpreemptible;
3692
	}
P
Peter Zijlstra 已提交
3693

L
Linus Torvalds 已提交
3694
	preempt_enable_no_resched();
3695
	if (need_resched())
L
Linus Torvalds 已提交
3696 3697 3698 3699
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3700
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3761 3762
#ifdef CONFIG_PREEMPT
/*
3763
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3764
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3765 3766 3767 3768 3769
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3770

L
Linus Torvalds 已提交
3771 3772
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3773
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3774
	 */
N
Nick Piggin 已提交
3775
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3776 3777
		return;

3778 3779 3780 3781
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3782

3783 3784 3785 3786 3787
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3788
	} while (need_resched());
L
Linus Torvalds 已提交
3789 3790 3791 3792
}
EXPORT_SYMBOL(preempt_schedule);

/*
3793
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3801

3802
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3803 3804
	BUG_ON(ti->preempt_count || !irqs_disabled());

3805 3806 3807 3808 3809 3810
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3811

3812 3813 3814 3815 3816
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3817
	} while (need_resched());
L
Linus Torvalds 已提交
3818 3819 3820 3821
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3822
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3823
			  void *key)
L
Linus Torvalds 已提交
3824
{
P
Peter Zijlstra 已提交
3825
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3826 3827 3828 3829
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3830 3831
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3832 3833 3834
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3835
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3836 3837
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3838
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3839
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3840
{
3841
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3842

3843
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3844 3845
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3846
		if (curr->func(curr, mode, wake_flags, key) &&
3847
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3857
 * @key: is directly passed to the wakeup function
3858 3859 3860
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3861
 */
3862
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3863
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3876
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3877 3878 3879 3880
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3881 3882 3883 3884 3885
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3886
/**
3887
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3888 3889 3890
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3891
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896 3897 3898
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3899 3900 3901
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3902
 */
3903 3904
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3905 3906
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3907
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3908 3909 3910 3911 3912

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3913
		wake_flags = 0;
L
Linus Torvalds 已提交
3914 3915

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3916
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3917 3918
	spin_unlock_irqrestore(&q->lock, flags);
}
3919 3920 3921 3922 3923 3924 3925 3926 3927
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3928 3929
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3930 3931 3932 3933 3934 3935 3936 3937
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3938 3939 3940
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3941
 */
3942
void complete(struct completion *x)
L
Linus Torvalds 已提交
3943 3944 3945 3946 3947
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3948
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3949 3950 3951 3952
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3953 3954 3955 3956 3957
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3958 3959 3960
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3961
 */
3962
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3968
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3969 3970 3971 3972
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3973 3974
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3982
			if (signal_pending_state(state, current)) {
3983 3984
				timeout = -ERESTARTSYS;
				break;
3985 3986
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3987 3988 3989
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3990
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3991
		__remove_wait_queue(&x->wait, &wait);
3992 3993
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3994 3995
	}
	x->done--;
3996
	return timeout ?: 1;
L
Linus Torvalds 已提交
3997 3998
}

3999 4000
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4001 4002 4003 4004
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4005
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4006
	spin_unlock_irq(&x->wait.lock);
4007 4008
	return timeout;
}
L
Linus Torvalds 已提交
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4020
void __sched wait_for_completion(struct completion *x)
4021 4022
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4023
}
4024
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4035
unsigned long __sched
4036
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4037
{
4038
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4039
}
4040
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4041

4042 4043 4044 4045 4046 4047 4048
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4049
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4050
{
4051 4052 4053 4054
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4055
}
4056
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061 4062 4063 4064 4065
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4066
unsigned long __sched
4067 4068
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4069
{
4070
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4071
}
4072
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4073

4074 4075 4076 4077 4078 4079 4080
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4104
	unsigned long flags;
4105 4106
	int ret = 1;

4107
	spin_lock_irqsave(&x->wait.lock, flags);
4108 4109 4110 4111
	if (!x->done)
		ret = 0;
	else
		x->done--;
4112
	spin_unlock_irqrestore(&x->wait.lock, flags);
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4127
	unsigned long flags;
4128 4129
	int ret = 1;

4130
	spin_lock_irqsave(&x->wait.lock, flags);
4131 4132
	if (!x->done)
		ret = 0;
4133
	spin_unlock_irqrestore(&x->wait.lock, flags);
4134 4135 4136 4137
	return ret;
}
EXPORT_SYMBOL(completion_done);

4138 4139
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4140
{
I
Ingo Molnar 已提交
4141 4142 4143 4144
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4145

4146
	__set_current_state(state);
L
Linus Torvalds 已提交
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4162 4163 4164
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4165
long __sched
I
Ingo Molnar 已提交
4166
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4167
{
4168
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4169 4170 4171
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4172
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4173
{
4174
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4175 4176 4177
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4178
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4179
{
4180
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4181 4182 4183
}
EXPORT_SYMBOL(sleep_on_timeout);

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4196
void rt_mutex_setprio(struct task_struct *p, int prio)
4197 4198
{
	unsigned long flags;
4199
	int oldprio, on_rq, running;
4200
	struct rq *rq;
4201
	const struct sched_class *prev_class;
4202 4203 4204 4205 4206

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4207
	oldprio = p->prio;
4208
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4209
	on_rq = p->se.on_rq;
4210
	running = task_current(rq, p);
4211
	if (on_rq)
4212
		dequeue_task(rq, p, 0);
4213 4214
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4215 4216 4217 4218 4219 4220

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4221 4222
	p->prio = prio;

4223 4224
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4225
	if (on_rq) {
4226
		enqueue_task(rq, p, 0, oldprio < prio);
4227 4228

		check_class_changed(rq, p, prev_class, oldprio, running);
4229 4230 4231 4232 4233 4234
	}
	task_rq_unlock(rq, &flags);
}

#endif

4235
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4236
{
I
Ingo Molnar 已提交
4237
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4238
	unsigned long flags;
4239
	struct rq *rq;
L
Linus Torvalds 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4252
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4253
	 */
4254
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4255 4256 4257
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4258
	on_rq = p->se.on_rq;
4259
	if (on_rq)
4260
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4261 4262

	p->static_prio = NICE_TO_PRIO(nice);
4263
	set_load_weight(p);
4264 4265 4266
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4267

I
Ingo Molnar 已提交
4268
	if (on_rq) {
4269
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4270
		/*
4271 4272
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4273
		 */
4274
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4282 4283 4284 4285 4286
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4287
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4288
{
4289 4290
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4291

4292
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4293 4294 4295
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4305
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4306
{
4307
	long nice, retval;
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312 4313

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4314 4315
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4316 4317 4318
	if (increment > 40)
		increment = 40;

4319
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4325 4326 4327
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4346
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4355
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4356 4357 4358
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4359
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4374
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381 4382
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4383
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4384
{
4385
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4386 4387 4388
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4389 4390
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4391
{
I
Ingo Molnar 已提交
4392
	BUG_ON(p->se.on_rq);
4393

L
Linus Torvalds 已提交
4394 4395
	p->policy = policy;
	p->rt_priority = prio;
4396 4397 4398
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4399 4400 4401 4402
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4403
	set_load_weight(p);
L
Linus Torvalds 已提交
4404 4405
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4422 4423
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4424
{
4425
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4426
	unsigned long flags;
4427
	const struct sched_class *prev_class;
4428
	struct rq *rq;
4429
	int reset_on_fork;
L
Linus Torvalds 已提交
4430

4431 4432
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4433 4434
recheck:
	/* double check policy once rq lock held */
4435 4436
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4437
		policy = oldpolicy = p->policy;
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4448 4449
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4450 4451
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4452 4453
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4454
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4455
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4456
		return -EINVAL;
4457
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4458 4459
		return -EINVAL;

4460 4461 4462
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4463
	if (user && !capable(CAP_SYS_NICE)) {
4464
		if (rt_policy(policy)) {
4465 4466 4467 4468
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4469
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4481 4482 4483 4484 4485 4486
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4487

4488
		/* can't change other user's priorities */
4489
		if (!check_same_owner(p))
4490
			return -EPERM;
4491 4492 4493 4494

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4495
	}
L
Linus Torvalds 已提交
4496

4497
	if (user) {
4498
#ifdef CONFIG_RT_GROUP_SCHED
4499 4500 4501 4502
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4503 4504
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4505
			return -EPERM;
4506 4507
#endif

4508 4509 4510 4511 4512
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4513 4514 4515 4516
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4517
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4518 4519 4520 4521
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4522
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4523 4524 4525
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4526
		__task_rq_unlock(rq);
4527
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4528 4529
		goto recheck;
	}
I
Ingo Molnar 已提交
4530
	on_rq = p->se.on_rq;
4531
	running = task_current(rq, p);
4532
	if (on_rq)
4533
		deactivate_task(rq, p, 0);
4534 4535
	if (running)
		p->sched_class->put_prev_task(rq, p);
4536

4537 4538
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4539
	oldprio = p->prio;
4540
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4541
	__setscheduler(rq, p, policy, param->sched_priority);
4542

4543 4544
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4545 4546
	if (on_rq) {
		activate_task(rq, p, 0);
4547 4548

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4549
	}
4550
	__task_rq_unlock(rq);
4551
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4552

4553 4554
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4555 4556
	return 0;
}
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4571 4572
EXPORT_SYMBOL_GPL(sched_setscheduler);

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4590 4591
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4592 4593 4594
{
	struct sched_param lparam;
	struct task_struct *p;
4595
	int retval;
L
Linus Torvalds 已提交
4596 4597 4598 4599 4600

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4601 4602 4603

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4604
	p = find_process_by_pid(pid);
4605 4606 4607
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4608

L
Linus Torvalds 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4618 4619
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4620
{
4621 4622 4623 4624
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4633
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4634 4635 4636 4637 4638 4639 4640 4641
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4642
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4643
{
4644
	struct task_struct *p;
4645
	int retval;
L
Linus Torvalds 已提交
4646 4647

	if (pid < 0)
4648
		return -EINVAL;
L
Linus Torvalds 已提交
4649 4650

	retval = -ESRCH;
4651
	rcu_read_lock();
L
Linus Torvalds 已提交
4652 4653 4654 4655
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4656 4657
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4658
	}
4659
	rcu_read_unlock();
L
Linus Torvalds 已提交
4660 4661 4662 4663
	return retval;
}

/**
4664
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4665 4666 4667
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4668
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4669 4670
{
	struct sched_param lp;
4671
	struct task_struct *p;
4672
	int retval;
L
Linus Torvalds 已提交
4673 4674

	if (!param || pid < 0)
4675
		return -EINVAL;
L
Linus Torvalds 已提交
4676

4677
	rcu_read_lock();
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4688
	rcu_read_unlock();
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4698
	rcu_read_unlock();
L
Linus Torvalds 已提交
4699 4700 4701
	return retval;
}

4702
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4703
{
4704
	cpumask_var_t cpus_allowed, new_mask;
4705 4706
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4707

4708
	get_online_cpus();
4709
	rcu_read_lock();
L
Linus Torvalds 已提交
4710 4711 4712

	p = find_process_by_pid(pid);
	if (!p) {
4713
		rcu_read_unlock();
4714
		put_online_cpus();
L
Linus Torvalds 已提交
4715 4716 4717
		return -ESRCH;
	}

4718
	/* Prevent p going away */
L
Linus Torvalds 已提交
4719
	get_task_struct(p);
4720
	rcu_read_unlock();
L
Linus Torvalds 已提交
4721

4722 4723 4724 4725 4726 4727 4728 4729
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4730
	retval = -EPERM;
4731
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4732 4733
		goto out_unlock;

4734 4735 4736 4737
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4738 4739
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4740
 again:
4741
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4742

P
Paul Menage 已提交
4743
	if (!retval) {
4744 4745
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4746 4747 4748 4749 4750
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4751
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4752 4753 4754
			goto again;
		}
	}
L
Linus Torvalds 已提交
4755
out_unlock:
4756 4757 4758 4759
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4760
	put_task_struct(p);
4761
	put_online_cpus();
L
Linus Torvalds 已提交
4762 4763 4764 4765
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4766
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4767
{
4768 4769 4770 4771 4772
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4782 4783
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4784
{
4785
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4786 4787
	int retval;

4788 4789
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4790

4791 4792 4793 4794 4795
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4796 4797
}

4798
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4799
{
4800
	struct task_struct *p;
4801 4802
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4803 4804
	int retval;

4805
	get_online_cpus();
4806
	rcu_read_lock();
L
Linus Torvalds 已提交
4807 4808 4809 4810 4811 4812

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4813 4814 4815 4816
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4817
	rq = task_rq_lock(p, &flags);
4818
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4819
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4820 4821

out_unlock:
4822
	rcu_read_unlock();
4823
	put_online_cpus();
L
Linus Torvalds 已提交
4824

4825
	return retval;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830 4831 4832 4833
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4834 4835
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4836 4837
{
	int ret;
4838
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4839

4840 4841 4842
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4843 4844
		return -EINVAL;

4845 4846
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4847

4848 4849
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4850
		size_t retlen = min_t(size_t, len, cpumask_size());
4851 4852

		if (copy_to_user(user_mask_ptr, mask, retlen))
4853 4854
			ret = -EFAULT;
		else
4855
			ret = retlen;
4856 4857
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4858

4859
	return ret;
L
Linus Torvalds 已提交
4860 4861 4862 4863 4864
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4865 4866
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4867
 */
4868
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4869
{
4870
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4871

4872
	schedstat_inc(rq, yld_count);
4873
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878 4879

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4880
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4881
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4882 4883 4884 4885 4886 4887 4888
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4889 4890 4891 4892 4893
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4894
static void __cond_resched(void)
L
Linus Torvalds 已提交
4895
{
4896 4897 4898
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4899 4900
}

4901
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4902
{
P
Peter Zijlstra 已提交
4903
	if (should_resched()) {
L
Linus Torvalds 已提交
4904 4905 4906 4907 4908
		__cond_resched();
		return 1;
	}
	return 0;
}
4909
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4910 4911

/*
4912
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4913 4914
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4915
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4916 4917 4918
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4919
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4920
{
P
Peter Zijlstra 已提交
4921
	int resched = should_resched();
J
Jan Kara 已提交
4922 4923
	int ret = 0;

4924 4925
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4926
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4927
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4928
		if (resched)
N
Nick Piggin 已提交
4929 4930 4931
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4932
		ret = 1;
L
Linus Torvalds 已提交
4933 4934
		spin_lock(lock);
	}
J
Jan Kara 已提交
4935
	return ret;
L
Linus Torvalds 已提交
4936
}
4937
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4938

4939
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4940 4941 4942
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4943
	if (should_resched()) {
4944
		local_bh_enable();
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4951
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4952 4953 4954 4955

/**
 * yield - yield the current processor to other threads.
 *
4956
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4967
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4968 4969 4970 4971
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4972
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4973

4974
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4975
	atomic_inc(&rq->nr_iowait);
4976
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4977
	schedule();
4978
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4979
	atomic_dec(&rq->nr_iowait);
4980
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4981 4982 4983 4984 4985
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4986
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4987 4988
	long ret;

4989
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4990
	atomic_inc(&rq->nr_iowait);
4991
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4992
	ret = schedule_timeout(timeout);
4993
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4994
	atomic_dec(&rq->nr_iowait);
4995
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5006
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5007 5008 5009 5010 5011 5012 5013 5014 5015
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5016
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5017
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5031
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5041
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5042
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5056
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5057
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5058
{
5059
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5060
	unsigned int time_slice;
5061 5062
	unsigned long flags;
	struct rq *rq;
5063
	int retval;
L
Linus Torvalds 已提交
5064 5065 5066
	struct timespec t;

	if (pid < 0)
5067
		return -EINVAL;
L
Linus Torvalds 已提交
5068 5069

	retval = -ESRCH;
5070
	rcu_read_lock();
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5079 5080 5081
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5082

5083
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5084
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5085 5086
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5087

L
Linus Torvalds 已提交
5088
out_unlock:
5089
	rcu_read_unlock();
L
Linus Torvalds 已提交
5090 5091 5092
	return retval;
}

5093
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5094

5095
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5096 5097
{
	unsigned long free = 0;
5098
	unsigned state;
L
Linus Torvalds 已提交
5099 5100

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5101
	printk(KERN_INFO "%-13.13s %c", p->comm,
5102
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5103
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5104
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5105
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5106
	else
P
Peter Zijlstra 已提交
5107
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5108 5109
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5110
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5111
	else
P
Peter Zijlstra 已提交
5112
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5113 5114
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5115
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5116
#endif
P
Peter Zijlstra 已提交
5117
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5118 5119
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5120

5121
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5122 5123
}

I
Ingo Molnar 已提交
5124
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5125
{
5126
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5127

5128
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5129 5130
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5131
#else
P
Peter Zijlstra 已提交
5132 5133
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5134 5135 5136 5137 5138 5139 5140 5141
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5142
		if (!state_filter || (p->state & state_filter))
5143
			sched_show_task(p);
L
Linus Torvalds 已提交
5144 5145
	} while_each_thread(g, p);

5146 5147
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5148 5149 5150
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5151
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5152 5153 5154
	/*
	 * Only show locks if all tasks are dumped:
	 */
5155
	if (!state_filter)
I
Ingo Molnar 已提交
5156
		debug_show_all_locks();
L
Linus Torvalds 已提交
5157 5158
}

I
Ingo Molnar 已提交
5159 5160
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5161
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5162 5163
}

5164 5165 5166 5167 5168 5169 5170 5171
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5172
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5173
{
5174
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5175 5176
	unsigned long flags;

5177
	raw_spin_lock_irqsave(&rq->lock, flags);
5178

I
Ingo Molnar 已提交
5179
	__sched_fork(idle);
5180
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5181 5182
	idle->se.exec_start = sched_clock();

5183
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5184
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5185 5186

	rq->curr = rq->idle = idle;
5187 5188 5189
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5190
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5191 5192

	/* Set the preempt count _outside_ the spinlocks! */
5193 5194 5195
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5196
	task_thread_info(idle)->preempt_count = 0;
5197
#endif
I
Ingo Molnar 已提交
5198 5199 5200 5201
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5202
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5210
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5211
 */
5212
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5213

I
Ingo Molnar 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5223
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5224
{
5225
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5240

5241 5242
	return factor;
}
I
Ingo Molnar 已提交
5243

5244 5245 5246
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5247

5248 5249 5250 5251 5252 5253 5254 5255
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5256

5257 5258 5259
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5260 5261
}

L
Linus Torvalds 已提交
5262 5263 5264 5265
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5266
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5285
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5286 5287
 * call is not atomic; no spinlocks may be held.
 */
5288
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5289
{
5290
	struct migration_req req;
L
Linus Torvalds 已提交
5291
	unsigned long flags;
5292
	struct rq *rq;
5293
	int ret = 0;
L
Linus Torvalds 已提交
5294 5295

	rq = task_rq_lock(p, &flags);
5296

5297
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5298 5299 5300 5301
		ret = -EINVAL;
		goto out;
	}

5302
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5303
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5304 5305 5306 5307
		ret = -EINVAL;
		goto out;
	}

5308
	if (p->sched_class->set_cpus_allowed)
5309
		p->sched_class->set_cpus_allowed(p, new_mask);
5310
	else {
5311 5312
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5313 5314
	}

L
Linus Torvalds 已提交
5315
	/* Can the task run on the task's current CPU? If so, we're done */
5316
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5317 5318
		goto out;

5319
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5320
		/* Need help from migration thread: drop lock and wait. */
5321 5322 5323
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5324 5325
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5326
		put_task_struct(mt);
L
Linus Torvalds 已提交
5327 5328 5329 5330 5331 5332
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5333

L
Linus Torvalds 已提交
5334 5335
	return ret;
}
5336
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5337 5338

/*
I
Ingo Molnar 已提交
5339
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5346 5347
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5348
 */
5349
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5350
{
5351
	struct rq *rq_dest, *rq_src;
5352
	int ret = 0;
L
Linus Torvalds 已提交
5353

5354
	if (unlikely(!cpu_active(dest_cpu)))
5355
		return ret;
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360 5361 5362

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5363
		goto done;
L
Linus Torvalds 已提交
5364
	/* Affinity changed (again). */
5365
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5366
		goto fail;
L
Linus Torvalds 已提交
5367

5368 5369 5370 5371 5372
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5373
		deactivate_task(rq_src, p, 0);
5374
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5375
		activate_task(rq_dest, p, 0);
5376
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5377
	}
L
Linus Torvalds 已提交
5378
done:
5379
	ret = 1;
L
Linus Torvalds 已提交
5380
fail:
L
Linus Torvalds 已提交
5381
	double_rq_unlock(rq_src, rq_dest);
5382
	return ret;
L
Linus Torvalds 已提交
5383 5384
}

5385 5386 5387 5388 5389
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5390 5391 5392 5393 5394
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5395
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5396
{
5397
	int badcpu;
L
Linus Torvalds 已提交
5398
	int cpu = (long)data;
5399
	struct rq *rq;
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5406
		struct migration_req *req;
L
Linus Torvalds 已提交
5407 5408
		struct list_head *head;

5409
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5410 5411

		if (cpu_is_offline(cpu)) {
5412
			raw_spin_unlock_irq(&rq->lock);
5413
			break;
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5424
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5425 5426 5427 5428
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5429
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5430 5431
		list_del_init(head->next);

5432
		if (req->task != NULL) {
5433
			raw_spin_unlock(&rq->lock);
5434 5435 5436
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5437
			raw_spin_unlock(&rq->lock);
5438 5439
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5440
			raw_spin_unlock(&rq->lock);
5441 5442
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5443
		local_irq_enable();
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5464
/*
5465
 * Figure out where task on dead CPU should go, use force if necessary.
5466
 */
5467
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5468
{
5469
	int dest_cpu;
5470 5471

again:
5472
	dest_cpu = select_fallback_rq(dead_cpu, p);
5473 5474 5475 5476

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5486
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5487
{
5488
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5502
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5503

5504
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5505

5506 5507
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5508 5509
			continue;

5510 5511 5512
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5513

5514
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5515 5516
}

I
Ingo Molnar 已提交
5517 5518
/*
 * Schedules idle task to be the next runnable task on current CPU.
5519 5520
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5521 5522 5523
 */
void sched_idle_next(void)
{
5524
	int this_cpu = smp_processor_id();
5525
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5526 5527 5528 5529
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5530
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5531

5532 5533 5534
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5535
	 */
5536
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5537

I
Ingo Molnar 已提交
5538
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5539

5540
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5541

5542
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5543 5544
}

5545 5546
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5560
/* called under rq->lock with disabled interrupts */
5561
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5562
{
5563
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5564 5565

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5566
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5567 5568

	/* Cannot have done final schedule yet: would have vanished. */
5569
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5570

5571
	get_task_struct(p);
L
Linus Torvalds 已提交
5572 5573 5574

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5575
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5576 5577
	 * fine.
	 */
5578
	raw_spin_unlock_irq(&rq->lock);
5579
	move_task_off_dead_cpu(dead_cpu, p);
5580
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5581

5582
	put_task_struct(p);
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5588
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5589
	struct task_struct *next;
5590

I
Ingo Molnar 已提交
5591 5592 5593
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5594
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5595 5596
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5597
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5598
		migrate_dead(dead_cpu, next);
5599

L
Linus Torvalds 已提交
5600 5601
	}
}
5602 5603 5604 5605 5606 5607 5608

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5609
	rq->calc_load_active = 0;
5610
}
L
Linus Torvalds 已提交
5611 5612
#endif /* CONFIG_HOTPLUG_CPU */

5613 5614 5615
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5616 5617
	{
		.procname	= "sched_domain",
5618
		.mode		= 0555,
5619
	},
5620
	{}
5621 5622 5623
};

static struct ctl_table sd_ctl_root[] = {
5624 5625
	{
		.procname	= "kernel",
5626
		.mode		= 0555,
5627 5628
		.child		= sd_ctl_dir,
	},
5629
	{}
5630 5631 5632 5633 5634
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5635
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5636 5637 5638 5639

	return entry;
}

5640 5641
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5642
	struct ctl_table *entry;
5643

5644 5645 5646
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5647
	 * will always be set. In the lowest directory the names are
5648 5649 5650
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5651 5652
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5653 5654 5655
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5656 5657 5658 5659 5660

	kfree(*tablep);
	*tablep = NULL;
}

5661
static void
5662
set_table_entry(struct ctl_table *entry,
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5676
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5677

5678 5679 5680
	if (table == NULL)
		return NULL;

5681
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5682
		sizeof(long), 0644, proc_doulongvec_minmax);
5683
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5684
		sizeof(long), 0644, proc_doulongvec_minmax);
5685
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5686
		sizeof(int), 0644, proc_dointvec_minmax);
5687
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5688
		sizeof(int), 0644, proc_dointvec_minmax);
5689
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5690
		sizeof(int), 0644, proc_dointvec_minmax);
5691
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5692
		sizeof(int), 0644, proc_dointvec_minmax);
5693
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5694
		sizeof(int), 0644, proc_dointvec_minmax);
5695
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5696
		sizeof(int), 0644, proc_dointvec_minmax);
5697
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5698
		sizeof(int), 0644, proc_dointvec_minmax);
5699
	set_table_entry(&table[9], "cache_nice_tries",
5700 5701
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5702
	set_table_entry(&table[10], "flags", &sd->flags,
5703
		sizeof(int), 0644, proc_dointvec_minmax);
5704 5705 5706
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5707 5708 5709 5710

	return table;
}

5711
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5712 5713 5714 5715 5716 5717 5718 5719 5720
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5721 5722
	if (table == NULL)
		return NULL;
5723 5724 5725 5726 5727

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5728
		entry->mode = 0555;
5729 5730 5731 5732 5733 5734 5735 5736
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5737
static void register_sched_domain_sysctl(void)
5738
{
5739
	int i, cpu_num = num_possible_cpus();
5740 5741 5742
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5743 5744 5745
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5746 5747 5748
	if (entry == NULL)
		return;

5749
	for_each_possible_cpu(i) {
5750 5751
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5752
		entry->mode = 0555;
5753
		entry->child = sd_alloc_ctl_cpu_table(i);
5754
		entry++;
5755
	}
5756 5757

	WARN_ON(sd_sysctl_header);
5758 5759
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5760

5761
/* may be called multiple times per register */
5762 5763
static void unregister_sched_domain_sysctl(void)
{
5764 5765
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5766
	sd_sysctl_header = NULL;
5767 5768
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5769
}
5770
#else
5771 5772 5773 5774
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5775 5776 5777 5778
{
}
#endif

5779 5780 5781 5782 5783
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5784
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5804
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5805 5806 5807 5808
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5809 5810 5811 5812
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5813 5814
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5815 5816
{
	struct task_struct *p;
5817
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5818
	unsigned long flags;
5819
	struct rq *rq;
L
Linus Torvalds 已提交
5820 5821

	switch (action) {
5822

L
Linus Torvalds 已提交
5823
	case CPU_UP_PREPARE:
5824
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5825
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5826 5827 5828 5829 5830
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5831
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5832
		task_rq_unlock(rq, &flags);
5833
		get_task_struct(p);
L
Linus Torvalds 已提交
5834
		cpu_rq(cpu)->migration_thread = p;
5835
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5836
		break;
5837

L
Linus Torvalds 已提交
5838
	case CPU_ONLINE:
5839
	case CPU_ONLINE_FROZEN:
5840
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5841
		wake_up_process(cpu_rq(cpu)->migration_thread);
5842 5843 5844

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5845
		raw_spin_lock_irqsave(&rq->lock, flags);
5846
		if (rq->rd) {
5847
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5848 5849

			set_rq_online(rq);
5850
		}
5851
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5852
		break;
5853

L
Linus Torvalds 已提交
5854 5855
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5856
	case CPU_UP_CANCELED_FROZEN:
5857 5858
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5859
		/* Unbind it from offline cpu so it can run. Fall thru. */
5860
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5861
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5862
		kthread_stop(cpu_rq(cpu)->migration_thread);
5863
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5864 5865
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5866

L
Linus Torvalds 已提交
5867
	case CPU_DEAD:
5868
	case CPU_DEAD_FROZEN:
5869
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5870 5871 5872
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5873
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5874 5875
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5876
		raw_spin_lock_irq(&rq->lock);
5877
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5878 5879
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5880
		migrate_dead_tasks(cpu);
5881
		raw_spin_unlock_irq(&rq->lock);
5882
		cpuset_unlock();
L
Linus Torvalds 已提交
5883 5884
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5885
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5886 5887 5888 5889 5890
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5891
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5892
		while (!list_empty(&rq->migration_queue)) {
5893 5894
			struct migration_req *req;

L
Linus Torvalds 已提交
5895
			req = list_entry(rq->migration_queue.next,
5896
					 struct migration_req, list);
L
Linus Torvalds 已提交
5897
			list_del_init(&req->list);
5898
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5899
			complete(&req->done);
5900
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5901
		}
5902
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5903
		break;
G
Gregory Haskins 已提交
5904

5905 5906
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5907 5908
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5909
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5910
		if (rq->rd) {
5911
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5912
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5913
		}
5914
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5915
		break;
L
Linus Torvalds 已提交
5916 5917 5918 5919 5920
#endif
	}
	return NOTIFY_OK;
}

5921 5922 5923
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5924
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5925
 */
5926
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5927 5928 5929 5930
	.notifier_call = migration_call,
	.priority = 10
};

5931
static int __init migration_init(void)
L
Linus Torvalds 已提交
5932 5933
{
	void *cpu = (void *)(long)smp_processor_id();
5934
	int err;
5935 5936

	/* Start one for the boot CPU: */
5937 5938
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5939 5940
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5941

5942
	return 0;
L
Linus Torvalds 已提交
5943
}
5944
early_initcall(migration_init);
L
Linus Torvalds 已提交
5945 5946 5947
#endif

#ifdef CONFIG_SMP
5948

5949
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5950

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5961
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5962
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5963
{
I
Ingo Molnar 已提交
5964
	struct sched_group *group = sd->groups;
5965
	char str[256];
L
Linus Torvalds 已提交
5966

R
Rusty Russell 已提交
5967
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5968
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5969 5970 5971 5972

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5973
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5974
		if (sd->parent)
P
Peter Zijlstra 已提交
5975 5976
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5977
		return -1;
N
Nick Piggin 已提交
5978 5979
	}

P
Peter Zijlstra 已提交
5980
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5981

5982
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5983 5984
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5985
	}
5986
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5987 5988
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5989
	}
L
Linus Torvalds 已提交
5990

I
Ingo Molnar 已提交
5991
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5992
	do {
I
Ingo Molnar 已提交
5993
		if (!group) {
P
Peter Zijlstra 已提交
5994 5995
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5996 5997 5998
			break;
		}

5999
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6000 6001 6002
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6003 6004
			break;
		}
L
Linus Torvalds 已提交
6005

6006
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6007 6008
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6009 6010
			break;
		}
L
Linus Torvalds 已提交
6011

6012
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6013 6014
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6015 6016
			break;
		}
L
Linus Torvalds 已提交
6017

6018
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6019

R
Rusty Russell 已提交
6020
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6021

P
Peter Zijlstra 已提交
6022
		printk(KERN_CONT " %s", str);
6023
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6024 6025
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6026
		}
L
Linus Torvalds 已提交
6027

I
Ingo Molnar 已提交
6028 6029
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6030
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6031

6032
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6033
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6034

6035 6036
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6037 6038
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6039 6040
	return 0;
}
L
Linus Torvalds 已提交
6041

I
Ingo Molnar 已提交
6042 6043
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6044
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6045
	int level = 0;
L
Linus Torvalds 已提交
6046

6047 6048 6049
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6050 6051 6052 6053
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6054

I
Ingo Molnar 已提交
6055 6056
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6057
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6058 6059 6060 6061
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6062
	for (;;) {
6063
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6064
			break;
L
Linus Torvalds 已提交
6065 6066
		level++;
		sd = sd->parent;
6067
		if (!sd)
I
Ingo Molnar 已提交
6068 6069
			break;
	}
6070
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6071
}
6072
#else /* !CONFIG_SCHED_DEBUG */
6073
# define sched_domain_debug(sd, cpu) do { } while (0)
6074
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6075

6076
static int sd_degenerate(struct sched_domain *sd)
6077
{
6078
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6079 6080 6081 6082 6083 6084
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6085 6086 6087
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6088 6089 6090 6091 6092
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6093
	if (sd->flags & (SD_WAKE_AFFINE))
6094 6095 6096 6097 6098
		return 0;

	return 1;
}

6099 6100
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6101 6102 6103 6104 6105 6106
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6107
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6108 6109 6110 6111 6112 6113 6114
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6115 6116 6117
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6118 6119
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6120 6121 6122 6123 6124 6125 6126
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6127 6128
static void free_rootdomain(struct root_domain *rd)
{
6129 6130
	synchronize_sched();

6131 6132
	cpupri_cleanup(&rd->cpupri);

6133 6134 6135 6136 6137 6138
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6139 6140
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6141
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6142 6143
	unsigned long flags;

6144
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6145 6146

	if (rq->rd) {
I
Ingo Molnar 已提交
6147
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6148

6149
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6150
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6151

6152
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6153

I
Ingo Molnar 已提交
6154 6155 6156 6157 6158 6159 6160
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6161 6162 6163 6164 6165
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6166
	cpumask_set_cpu(rq->cpu, rd->span);
6167
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6168
		set_rq_online(rq);
G
Gregory Haskins 已提交
6169

6170
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6171 6172 6173

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6174 6175
}

L
Li Zefan 已提交
6176
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6177
{
6178 6179
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6180 6181
	memset(rd, 0, sizeof(*rd));

6182 6183
	if (bootmem)
		gfp = GFP_NOWAIT;
6184

6185
	if (!alloc_cpumask_var(&rd->span, gfp))
6186
		goto out;
6187
	if (!alloc_cpumask_var(&rd->online, gfp))
6188
		goto free_span;
6189
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6190
		goto free_online;
6191

P
Pekka Enberg 已提交
6192
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6193
		goto free_rto_mask;
6194
	return 0;
6195

6196 6197
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6198 6199 6200 6201
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6202
out:
6203
	return -ENOMEM;
G
Gregory Haskins 已提交
6204 6205 6206 6207
}

static void init_defrootdomain(void)
{
6208 6209
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6210 6211 6212
	atomic_set(&def_root_domain.refcount, 1);
}

6213
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6214 6215 6216 6217 6218 6219 6220
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6221 6222 6223 6224
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6225 6226 6227 6228

	return rd;
}

L
Linus Torvalds 已提交
6229
/*
I
Ingo Molnar 已提交
6230
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6231 6232
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6233 6234
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6235
{
6236
	struct rq *rq = cpu_rq(cpu);
6237 6238 6239
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6240
	for (tmp = sd; tmp; ) {
6241 6242 6243
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6244

6245
		if (sd_parent_degenerate(tmp, parent)) {
6246
			tmp->parent = parent->parent;
6247 6248
			if (parent->parent)
				parent->parent->child = tmp;
6249 6250
		} else
			tmp = tmp->parent;
6251 6252
	}

6253
	if (sd && sd_degenerate(sd)) {
6254
		sd = sd->parent;
6255 6256 6257
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6258 6259 6260

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6261
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6262
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6263 6264 6265
}

/* cpus with isolated domains */
6266
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6267 6268 6269 6270

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6271
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6272
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6273 6274 6275
	return 1;
}

I
Ingo Molnar 已提交
6276
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6277 6278

/*
6279 6280
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6281 6282
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6283 6284 6285 6286 6287
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6288
static void
6289 6290 6291
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6292
					struct sched_group **sg,
6293 6294
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6295 6296 6297 6298
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6299
	cpumask_clear(covered);
6300

6301
	for_each_cpu(i, span) {
6302
		struct sched_group *sg;
6303
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6304 6305
		int j;

6306
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6307 6308
			continue;

6309
		cpumask_clear(sched_group_cpus(sg));
6310
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6311

6312
		for_each_cpu(j, span) {
6313
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6314 6315
				continue;

6316
			cpumask_set_cpu(j, covered);
6317
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6328
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6329

6330
#ifdef CONFIG_NUMA
6331

6332 6333 6334 6335 6336
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6337
 * Find the next node to include in a given scheduling domain. Simply
6338 6339 6340 6341
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6342
static int find_next_best_node(int node, nodemask_t *used_nodes)
6343 6344 6345 6346 6347
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6348
	for (i = 0; i < nr_node_ids; i++) {
6349
		/* Start at @node */
6350
		n = (node + i) % nr_node_ids;
6351 6352 6353 6354 6355

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6356
		if (node_isset(n, *used_nodes))
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6368
	node_set(best_node, *used_nodes);
6369 6370 6371 6372 6373 6374
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6375
 * @span: resulting cpumask
6376
 *
I
Ingo Molnar 已提交
6377
 * Given a node, construct a good cpumask for its sched_domain to span. It
6378 6379 6380
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6381
static void sched_domain_node_span(int node, struct cpumask *span)
6382
{
6383
	nodemask_t used_nodes;
6384
	int i;
6385

6386
	cpumask_clear(span);
6387
	nodes_clear(used_nodes);
6388

6389
	cpumask_or(span, span, cpumask_of_node(node));
6390
	node_set(node, used_nodes);
6391 6392

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6393
		int next_node = find_next_best_node(node, &used_nodes);
6394

6395
		cpumask_or(span, span, cpumask_of_node(next_node));
6396 6397
	}
}
6398
#endif /* CONFIG_NUMA */
6399

6400
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6401

6402 6403
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6404 6405 6406
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6451
/*
6452
 * SMT sched-domains:
6453
 */
L
Linus Torvalds 已提交
6454
#ifdef CONFIG_SCHED_SMT
6455
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6456
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6457

I
Ingo Molnar 已提交
6458
static int
6459 6460
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6461
{
6462
	if (sg)
6463
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6464 6465
	return cpu;
}
6466
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6467

6468 6469 6470
/*
 * multi-core sched-domains:
 */
6471
#ifdef CONFIG_SCHED_MC
6472 6473
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6474
#endif /* CONFIG_SCHED_MC */
6475 6476

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6477
static int
6478 6479
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6480
{
6481
	int group;
6482

6483
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6484
	group = cpumask_first(mask);
6485
	if (sg)
6486
		*sg = &per_cpu(sched_group_core, group).sg;
6487
	return group;
6488 6489
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6490
static int
6491 6492
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6493
{
6494
	if (sg)
6495
		*sg = &per_cpu(sched_group_core, cpu).sg;
6496 6497 6498 6499
	return cpu;
}
#endif

6500 6501
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6502

I
Ingo Molnar 已提交
6503
static int
6504 6505
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6506
{
6507
	int group;
6508
#ifdef CONFIG_SCHED_MC
6509
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6510
	group = cpumask_first(mask);
6511
#elif defined(CONFIG_SCHED_SMT)
6512
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6513
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6514
#else
6515
	group = cpu;
L
Linus Torvalds 已提交
6516
#endif
6517
	if (sg)
6518
		*sg = &per_cpu(sched_group_phys, group).sg;
6519
	return group;
L
Linus Torvalds 已提交
6520 6521 6522 6523
}

#ifdef CONFIG_NUMA
/*
6524 6525 6526
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6527
 */
6528
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6529
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6530

6531
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6532
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6533

6534 6535 6536
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6537
{
6538 6539
	int group;

6540
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6541
	group = cpumask_first(nodemask);
6542 6543

	if (sg)
6544
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6545
	return group;
L
Linus Torvalds 已提交
6546
}
6547

6548 6549 6550 6551 6552 6553 6554
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6555
	do {
6556
		for_each_cpu(j, sched_group_cpus(sg)) {
6557
			struct sched_domain *sd;
6558

6559
			sd = &per_cpu(phys_domains, j).sd;
6560
			if (j != group_first_cpu(sd->groups)) {
6561 6562 6563 6564 6565 6566
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6567

6568
			sg->cpu_power += sd->groups->cpu_power;
6569 6570 6571
		}
		sg = sg->next;
	} while (sg != group_head);
6572
}
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6594 6595
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6596 6597 6598 6599 6600 6601 6602 6603 6604
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6605
	sg->cpu_power = 0;
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6624 6625
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6626 6627
			return -ENOMEM;
		}
6628
		sg->cpu_power = 0;
6629 6630 6631 6632 6633 6634 6635 6636 6637
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6638
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6639

6640
#ifdef CONFIG_NUMA
6641
/* Free memory allocated for various sched_group structures */
6642 6643
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6644
{
6645
	int cpu, i;
6646

6647
	for_each_cpu(cpu, cpu_map) {
6648 6649 6650 6651 6652 6653
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6654
		for (i = 0; i < nr_node_ids; i++) {
6655 6656
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6657
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6658
			if (cpumask_empty(nodemask))
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6675
#else /* !CONFIG_NUMA */
6676 6677
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6678 6679
{
}
6680
#endif /* CONFIG_NUMA */
6681

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6696 6697
	long power;
	int weight;
6698 6699 6700

	WARN_ON(!sd || !sd->groups);

6701
	if (cpu != group_first_cpu(sd->groups))
6702 6703 6704 6705
		return;

	child = sd->child;

6706
	sd->groups->cpu_power = 0;
6707

6708 6709 6710 6711 6712
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6713 6714 6715
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6716
		 */
P
Peter Zijlstra 已提交
6717 6718
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6719
			power /= weight;
P
Peter Zijlstra 已提交
6720 6721
			power >>= SCHED_LOAD_SHIFT;
		}
6722
		sd->groups->cpu_power += power;
6723 6724 6725 6726
		return;
	}

	/*
6727
	 * Add cpu_power of each child group to this groups cpu_power.
6728 6729 6730
	 */
	group = child->groups;
	do {
6731
		sd->groups->cpu_power += group->cpu_power;
6732 6733 6734 6735
		group = group->next;
	} while (group != child->groups);
}

6736 6737 6738 6739 6740
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6741 6742 6743 6744 6745 6746
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6747
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6748

6749 6750 6751 6752 6753
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6754
	sd->level = SD_LV_##type;				\
6755
	SD_INIT_NAME(sd, type);					\
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6770 6771 6772 6773
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6774 6775 6776 6777 6778 6779
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6798
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6799 6800
	} else {
		/* turn on idle balance on this domain */
6801
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6802 6803 6804
	}
}

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6825
#ifdef CONFIG_NUMA
6826 6827 6828 6829 6830 6831 6832
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6833
#endif
6834 6835 6836 6837
	case sa_none:
		break;
	}
}
6838

6839 6840 6841
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6842
#ifdef CONFIG_NUMA
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6853
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6854
		return sa_notcovered;
6855
	}
6856
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6857
#endif
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6870
		printk(KERN_WARNING "Cannot alloc root domain\n");
6871
		return sa_tmpmask;
G
Gregory Haskins 已提交
6872
	}
6873 6874
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6875

6876 6877 6878 6879
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6880
#ifdef CONFIG_NUMA
6881
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6882

6883 6884 6885 6886 6887
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6888
		set_domain_attribute(sd, attr);
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6903
#endif
6904 6905
	return sd;
}
L
Linus Torvalds 已提交
6906

6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6922

6923 6924 6925 6926 6927
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6928
#ifdef CONFIG_SCHED_MC
6929 6930 6931 6932 6933 6934 6935
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6936
#endif
6937 6938
	return sd;
}
6939

6940 6941 6942 6943 6944
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6945
#ifdef CONFIG_SCHED_SMT
6946 6947 6948 6949 6950 6951 6952
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6953
#endif
6954 6955
	return sd;
}
L
Linus Torvalds 已提交
6956

6957 6958 6959 6960
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6961
#ifdef CONFIG_SCHED_SMT
6962 6963 6964 6965 6966 6967 6968 6969
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6970
#endif
6971
#ifdef CONFIG_SCHED_MC
6972 6973 6974 6975 6976 6977 6978
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6979
#endif
6980 6981 6982 6983 6984 6985 6986
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6987
#ifdef CONFIG_NUMA
6988 6989 6990 6991 6992
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6993 6994
	default:
		break;
6995
	}
6996
}
6997

6998 6999 7000 7001 7002 7003 7004 7005 7006
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7007
	struct sched_domain *sd;
7008
	int i;
7009
#ifdef CONFIG_NUMA
7010
	d.sd_allnodes = 0;
7011
#endif
7012

7013 7014 7015 7016
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7017

L
Linus Torvalds 已提交
7018
	/*
7019
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7020
	 */
7021
	for_each_cpu(i, cpu_map) {
7022 7023
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7024

7025
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7026
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7027
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7028
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7029
	}
7030

7031
	for_each_cpu(i, cpu_map) {
7032
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7033
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7034
	}
7035

L
Linus Torvalds 已提交
7036
	/* Set up physical groups */
7037 7038
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7039

L
Linus Torvalds 已提交
7040 7041
#ifdef CONFIG_NUMA
	/* Set up node groups */
7042 7043
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7044

7045 7046
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7047
			goto error;
L
Linus Torvalds 已提交
7048 7049 7050
#endif

	/* Calculate CPU power for physical packages and nodes */
7051
#ifdef CONFIG_SCHED_SMT
7052
	for_each_cpu(i, cpu_map) {
7053
		sd = &per_cpu(cpu_domains, i).sd;
7054
		init_sched_groups_power(i, sd);
7055
	}
L
Linus Torvalds 已提交
7056
#endif
7057
#ifdef CONFIG_SCHED_MC
7058
	for_each_cpu(i, cpu_map) {
7059
		sd = &per_cpu(core_domains, i).sd;
7060
		init_sched_groups_power(i, sd);
7061 7062
	}
#endif
7063

7064
	for_each_cpu(i, cpu_map) {
7065
		sd = &per_cpu(phys_domains, i).sd;
7066
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7067 7068
	}

7069
#ifdef CONFIG_NUMA
7070
	for (i = 0; i < nr_node_ids; i++)
7071
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7072

7073
	if (d.sd_allnodes) {
7074
		struct sched_group *sg;
7075

7076
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7077
								d.tmpmask);
7078 7079
		init_numa_sched_groups_power(sg);
	}
7080 7081
#endif

L
Linus Torvalds 已提交
7082
	/* Attach the domains */
7083
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7084
#ifdef CONFIG_SCHED_SMT
7085
		sd = &per_cpu(cpu_domains, i).sd;
7086
#elif defined(CONFIG_SCHED_MC)
7087
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7088
#else
7089
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7090
#endif
7091
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7092
	}
7093

7094 7095 7096
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7097 7098

error:
7099 7100
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7101
}
P
Paul Jackson 已提交
7102

7103
static int build_sched_domains(const struct cpumask *cpu_map)
7104 7105 7106 7107
{
	return __build_sched_domains(cpu_map, NULL);
}

7108
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7109
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7110 7111
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7112 7113 7114

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7115 7116
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7117
 */
7118
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7119

7120 7121 7122 7123 7124 7125
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7126
{
7127
	return 0;
7128 7129
}

7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7155
/*
I
Ingo Molnar 已提交
7156
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7157 7158
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7159
 */
7160
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7161
{
7162 7163
	int err;

7164
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7165
	ndoms_cur = 1;
7166
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7167
	if (!doms_cur)
7168 7169
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7170
	dattr_cur = NULL;
7171
	err = build_sched_domains(doms_cur[0]);
7172
	register_sched_domain_sysctl();
7173 7174

	return err;
7175 7176
}

7177 7178
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7179
{
7180
	free_sched_groups(cpu_map, tmpmask);
7181
}
L
Linus Torvalds 已提交
7182

7183 7184 7185 7186
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7187
static void detach_destroy_domains(const struct cpumask *cpu_map)
7188
{
7189 7190
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7191 7192
	int i;

7193
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7194
		cpu_attach_domain(NULL, &def_root_domain, i);
7195
	synchronize_sched();
7196
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7197 7198
}

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7215 7216
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7217
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7218 7219 7220
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7221
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7222 7223 7224
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7225 7226 7227
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7228 7229 7230 7231 7232 7233
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7234
 *
7235
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7236 7237
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7238
 *
P
Paul Jackson 已提交
7239 7240
 * Call with hotplug lock held
 */
7241
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7242
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7243
{
7244
	int i, j, n;
7245
	int new_topology;
P
Paul Jackson 已提交
7246

7247
	mutex_lock(&sched_domains_mutex);
7248

7249 7250 7251
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7252 7253 7254
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7255
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7256 7257 7258

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7259
		for (j = 0; j < n && !new_topology; j++) {
7260
			if (cpumask_equal(doms_cur[i], doms_new[j])
7261
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7262 7263 7264
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7265
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7266 7267 7268 7269
match1:
		;
	}

7270 7271
	if (doms_new == NULL) {
		ndoms_cur = 0;
7272
		doms_new = &fallback_doms;
7273
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7274
		WARN_ON_ONCE(dattr_new);
7275 7276
	}

P
Paul Jackson 已提交
7277 7278
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7279
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7280
			if (cpumask_equal(doms_new[i], doms_cur[j])
7281
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7282 7283 7284
				goto match2;
		}
		/* no match - add a new doms_new */
7285
		__build_sched_domains(doms_new[i],
7286
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7287 7288 7289 7290 7291
match2:
		;
	}

	/* Remember the new sched domains */
7292 7293
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7294
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7295
	doms_cur = doms_new;
7296
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7297
	ndoms_cur = ndoms_new;
7298 7299

	register_sched_domain_sysctl();
7300

7301
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7302 7303
}

7304
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7305
static void arch_reinit_sched_domains(void)
7306
{
7307
	get_online_cpus();
7308 7309 7310 7311

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7312
	rebuild_sched_domains();
7313
	put_online_cpus();
7314 7315 7316 7317
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7318
	unsigned int level = 0;
7319

7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7331 7332 7333
		return -EINVAL;

	if (smt)
7334
		sched_smt_power_savings = level;
7335
	else
7336
		sched_mc_power_savings = level;
7337

7338
	arch_reinit_sched_domains();
7339

7340
	return count;
7341 7342 7343
}

#ifdef CONFIG_SCHED_MC
7344
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7345
					   struct sysdev_class_attribute *attr,
7346
					   char *page)
7347 7348 7349
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7350
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7351
					    struct sysdev_class_attribute *attr,
7352
					    const char *buf, size_t count)
7353 7354 7355
{
	return sched_power_savings_store(buf, count, 0);
}
7356 7357 7358
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7359 7360 7361
#endif

#ifdef CONFIG_SCHED_SMT
7362
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7363
					    struct sysdev_class_attribute *attr,
7364
					    char *page)
7365 7366 7367
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7368
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7369
					     struct sysdev_class_attribute *attr,
7370
					     const char *buf, size_t count)
7371 7372 7373
{
	return sched_power_savings_store(buf, count, 1);
}
7374 7375
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7376 7377 7378
		   sched_smt_power_savings_store);
#endif

7379
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7395
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7396

7397
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7398
/*
7399 7400
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7401 7402 7403
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7404 7405 7406 7407
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7408 7409 7410 7411
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7412
		partition_sched_domains(1, NULL, NULL);
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7423
{
P
Peter Zijlstra 已提交
7424 7425
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7426 7427
	switch (action) {
	case CPU_DOWN_PREPARE:
7428
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7429
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7430 7431 7432
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7433
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7434
	case CPU_ONLINE:
7435
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7436
		enable_runtime(cpu_rq(cpu));
7437 7438
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7439 7440 7441 7442 7443 7444 7445
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7446 7447 7448
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7449
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7450

7451 7452 7453 7454 7455
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7456
	get_online_cpus();
7457
	mutex_lock(&sched_domains_mutex);
7458
	arch_init_sched_domains(cpu_active_mask);
7459 7460 7461
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7462
	mutex_unlock(&sched_domains_mutex);
7463
	put_online_cpus();
7464 7465

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7466 7467
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7468 7469 7470 7471 7472
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7473
	init_hrtick();
7474 7475

	/* Move init over to a non-isolated CPU */
7476
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7477
		BUG();
I
Ingo Molnar 已提交
7478
	sched_init_granularity();
7479
	free_cpumask_var(non_isolated_cpus);
7480

7481
	init_sched_rt_class();
L
Linus Torvalds 已提交
7482 7483 7484 7485
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7486
	sched_init_granularity();
L
Linus Torvalds 已提交
7487 7488 7489
}
#endif /* CONFIG_SMP */

7490 7491
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7492 7493 7494 7495 7496 7497 7498
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7499
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7500 7501
{
	cfs_rq->tasks_timeline = RB_ROOT;
7502
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7503 7504 7505
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7506
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7507 7508
}

P
Peter Zijlstra 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7522
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7523
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7524
#ifdef CONFIG_SMP
7525
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7526 7527
#endif
#endif
P
Peter Zijlstra 已提交
7528 7529 7530
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7531
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7532 7533 7534 7535
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7536
	rt_rq->rt_runtime = 0;
7537
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7538

7539
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7540
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7541 7542
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7543 7544
}

P
Peter Zijlstra 已提交
7545
#ifdef CONFIG_FAIR_GROUP_SCHED
7546 7547 7548
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7549
{
7550
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7551 7552 7553 7554 7555 7556 7557
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7558 7559 7560 7561
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7562 7563 7564 7565 7566
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7567 7568
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7569
	se->load.inv_weight = 0;
7570
	se->parent = parent;
P
Peter Zijlstra 已提交
7571
}
7572
#endif
P
Peter Zijlstra 已提交
7573

7574
#ifdef CONFIG_RT_GROUP_SCHED
7575 7576 7577
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7578
{
7579 7580
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7581 7582 7583
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7584
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7585 7586 7587 7588
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7589 7590 7591
	if (!rt_se)
		return;

7592 7593 7594 7595 7596
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7597
	rt_se->my_q = rt_rq;
7598
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7599 7600 7601 7602
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7603 7604
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7605
	int i, j;
7606 7607 7608 7609 7610 7611 7612
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7613
#endif
7614
#ifdef CONFIG_CPUMASK_OFFSTACK
7615
	alloc_size += num_possible_cpus() * cpumask_size();
7616 7617
#endif
	if (alloc_size) {
7618
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7619 7620 7621 7622 7623 7624 7625

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7626

7627
#endif /* CONFIG_FAIR_GROUP_SCHED */
7628 7629 7630 7631 7632
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7633 7634
		ptr += nr_cpu_ids * sizeof(void **);

7635
#endif /* CONFIG_RT_GROUP_SCHED */
7636 7637 7638 7639 7640 7641
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7642
	}
I
Ingo Molnar 已提交
7643

G
Gregory Haskins 已提交
7644 7645 7646 7647
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7648 7649 7650 7651 7652 7653
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7654
#endif /* CONFIG_RT_GROUP_SCHED */
7655

D
Dhaval Giani 已提交
7656
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7657
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7658 7659
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7660
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7661

7662 7663 7664 7665
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7666
	for_each_possible_cpu(i) {
7667
		struct rq *rq;
L
Linus Torvalds 已提交
7668 7669

		rq = cpu_rq(i);
7670
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7671
		rq->nr_running = 0;
7672 7673
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7674
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7675
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7676
#ifdef CONFIG_FAIR_GROUP_SCHED
7677
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7678
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7694
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7695 7696 7697 7698
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7699
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7700
#endif
D
Dhaval Giani 已提交
7701 7702 7703
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7704
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7705
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7706
#ifdef CONFIG_CGROUP_SCHED
7707
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7708
#endif
I
Ingo Molnar 已提交
7709
#endif
L
Linus Torvalds 已提交
7710

I
Ingo Molnar 已提交
7711 7712
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7713
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7714
		rq->sd = NULL;
G
Gregory Haskins 已提交
7715
		rq->rd = NULL;
7716
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7717
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7718
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7719
		rq->push_cpu = 0;
7720
		rq->cpu = i;
7721
		rq->online = 0;
L
Linus Torvalds 已提交
7722
		rq->migration_thread = NULL;
7723 7724
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7725
		INIT_LIST_HEAD(&rq->migration_queue);
7726
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7727
#endif
P
Peter Zijlstra 已提交
7728
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7729 7730 7731
		atomic_set(&rq->nr_iowait, 0);
	}

7732
	set_load_weight(&init_task);
7733

7734 7735 7736 7737
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7738
#ifdef CONFIG_SMP
7739
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7740 7741
#endif

7742
#ifdef CONFIG_RT_MUTEXES
7743
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7744 7745
#endif

L
Linus Torvalds 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7759 7760 7761

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7762 7763 7764 7765
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7766

7767
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7768
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7769
#ifdef CONFIG_SMP
7770
#ifdef CONFIG_NO_HZ
7771
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7772
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7773
#endif
R
Rusty Russell 已提交
7774 7775 7776
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7777
#endif /* SMP */
7778

7779
	perf_event_init();
7780

7781
	scheduler_running = 1;
L
Linus Torvalds 已提交
7782 7783 7784
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7785 7786
static inline int preempt_count_equals(int preempt_offset)
{
7787
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7788 7789 7790 7791

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7792
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7793
{
7794
#ifdef in_atomic
L
Linus Torvalds 已提交
7795 7796
	static unsigned long prev_jiffy;	/* ratelimiting */

7797 7798
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7799 7800 7801 7802 7803
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7804 7805 7806 7807 7808 7809 7810
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7811 7812 7813 7814 7815

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7816 7817 7818 7819 7820 7821
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7822 7823 7824
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7825

7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7836 7837
void normalize_rt_tasks(void)
{
7838
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7839
	unsigned long flags;
7840
	struct rq *rq;
L
Linus Torvalds 已提交
7841

7842
	read_lock_irqsave(&tasklist_lock, flags);
7843
	do_each_thread(g, p) {
7844 7845 7846 7847 7848 7849
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7850 7851
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7852 7853 7854
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7855
#endif
I
Ingo Molnar 已提交
7856 7857 7858 7859 7860 7861 7862 7863

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7864
			continue;
I
Ingo Molnar 已提交
7865
		}
L
Linus Torvalds 已提交
7866

7867
		raw_spin_lock(&p->pi_lock);
7868
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7869

7870
		normalize_task(rq, p);
7871

7872
		__task_rq_unlock(rq);
7873
		raw_spin_unlock(&p->pi_lock);
7874 7875
	} while_each_thread(g, p);

7876
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7877 7878 7879
}

#endif /* CONFIG_MAGIC_SYSRQ */
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7898
struct task_struct *curr_task(int cpu)
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7909 7910
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7911 7912 7913 7914 7915 7916 7917
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7918
void set_curr_task(int cpu, struct task_struct *p)
7919 7920 7921 7922 7923
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7924

7925 7926
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7941 7942
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7943 7944
{
	struct cfs_rq *cfs_rq;
7945
	struct sched_entity *se;
7946
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7947 7948
	int i;

7949
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7950 7951
	if (!tg->cfs_rq)
		goto err;
7952
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7953 7954
	if (!tg->se)
		goto err;
7955 7956

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7957 7958

	for_each_possible_cpu(i) {
7959
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7960

7961 7962
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7963 7964 7965
		if (!cfs_rq)
			goto err;

7966 7967
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7968
		if (!se)
7969
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7970

7971
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7972 7973 7974 7975
	}

	return 1;

7976 7977
 err_free_rq:
	kfree(cfs_rq);
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7992
#else /* !CONFG_FAIR_GROUP_SCHED */
7993 7994 7995 7996
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7997 7998
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8010
#endif /* CONFIG_FAIR_GROUP_SCHED */
8011 8012

#ifdef CONFIG_RT_GROUP_SCHED
8013 8014 8015 8016
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8017 8018
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8030 8031
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8032 8033
{
	struct rt_rq *rt_rq;
8034
	struct sched_rt_entity *rt_se;
8035 8036 8037
	struct rq *rq;
	int i;

8038
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8039 8040
	if (!tg->rt_rq)
		goto err;
8041
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8042 8043 8044
	if (!tg->rt_se)
		goto err;

8045 8046
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8047 8048 8049 8050

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8051 8052
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8053 8054
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8055

8056 8057
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8058
		if (!rt_se)
8059
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8060

8061
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8062 8063
	}

8064 8065
	return 1;

8066 8067
 err_free_rq:
	kfree(rt_rq);
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8082
#else /* !CONFIG_RT_GROUP_SCHED */
8083 8084 8085 8086
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8087 8088
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8100
#endif /* CONFIG_RT_GROUP_SCHED */
8101

D
Dhaval Giani 已提交
8102
#ifdef CONFIG_CGROUP_SCHED
8103 8104 8105 8106 8107 8108 8109 8110
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8111
struct task_group *sched_create_group(struct task_group *parent)
8112 8113 8114 8115 8116 8117 8118 8119 8120
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8121
	if (!alloc_fair_sched_group(tg, parent))
8122 8123
		goto err;

8124
	if (!alloc_rt_sched_group(tg, parent))
8125 8126
		goto err;

8127
	spin_lock_irqsave(&task_group_lock, flags);
8128
	for_each_possible_cpu(i) {
8129 8130
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8131
	}
P
Peter Zijlstra 已提交
8132
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8133 8134 8135 8136 8137

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8138
	list_add_rcu(&tg->siblings, &parent->children);
8139
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8140

8141
	return tg;
S
Srivatsa Vaddagiri 已提交
8142 8143

err:
P
Peter Zijlstra 已提交
8144
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8145 8146 8147
	return ERR_PTR(-ENOMEM);
}

8148
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8149
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8150 8151
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8152
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8153 8154
}

8155
/* Destroy runqueue etc associated with a task group */
8156
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8157
{
8158
	unsigned long flags;
8159
	int i;
S
Srivatsa Vaddagiri 已提交
8160

8161
	spin_lock_irqsave(&task_group_lock, flags);
8162
	for_each_possible_cpu(i) {
8163 8164
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8165
	}
P
Peter Zijlstra 已提交
8166
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8167
	list_del_rcu(&tg->siblings);
8168
	spin_unlock_irqrestore(&task_group_lock, flags);
8169 8170

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8171
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8172 8173
}

8174
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8175 8176 8177
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8178 8179
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8180 8181 8182 8183 8184 8185 8186
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8187
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8188 8189
	on_rq = tsk->se.on_rq;

8190
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8191
		dequeue_task(rq, tsk, 0);
8192 8193
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8194

P
Peter Zijlstra 已提交
8195
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8196

P
Peter Zijlstra 已提交
8197 8198
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8199
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8200 8201
#endif

8202 8203 8204
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8205
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8206 8207 8208

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8209
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8210

8211
#ifdef CONFIG_FAIR_GROUP_SCHED
8212
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8213 8214 8215 8216 8217
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8218
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8219 8220 8221
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8222
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8223

8224
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8225
		enqueue_entity(cfs_rq, se, 0);
8226
}
8227

8228 8229 8230 8231 8232 8233
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8234
	raw_spin_lock_irqsave(&rq->lock, flags);
8235
	__set_se_shares(se, shares);
8236
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8237 8238
}

8239 8240
static DEFINE_MUTEX(shares_mutex);

8241
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8242 8243
{
	int i;
8244
	unsigned long flags;
8245

8246 8247 8248 8249 8250 8251
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8252 8253
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8254 8255
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8256

8257
	mutex_lock(&shares_mutex);
8258
	if (tg->shares == shares)
8259
		goto done;
S
Srivatsa Vaddagiri 已提交
8260

8261
	spin_lock_irqsave(&task_group_lock, flags);
8262 8263
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8264
	list_del_rcu(&tg->siblings);
8265
	spin_unlock_irqrestore(&task_group_lock, flags);
8266 8267 8268 8269 8270 8271 8272 8273

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8274
	tg->shares = shares;
8275 8276 8277 8278 8279
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8280
		set_se_shares(tg->se[i], shares);
8281
	}
S
Srivatsa Vaddagiri 已提交
8282

8283 8284 8285 8286
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8287
	spin_lock_irqsave(&task_group_lock, flags);
8288 8289
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8290
	list_add_rcu(&tg->siblings, &tg->parent->children);
8291
	spin_unlock_irqrestore(&task_group_lock, flags);
8292
done:
8293
	mutex_unlock(&shares_mutex);
8294
	return 0;
S
Srivatsa Vaddagiri 已提交
8295 8296
}

8297 8298 8299 8300
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8301
#endif
8302

8303
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8304
/*
P
Peter Zijlstra 已提交
8305
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8306
 */
P
Peter Zijlstra 已提交
8307 8308 8309 8310 8311
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8312
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8313

P
Peter Zijlstra 已提交
8314
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8315 8316
}

P
Peter Zijlstra 已提交
8317 8318
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8319
{
P
Peter Zijlstra 已提交
8320
	struct task_struct *g, *p;
8321

P
Peter Zijlstra 已提交
8322 8323 8324 8325
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8326

P
Peter Zijlstra 已提交
8327 8328
	return 0;
}
8329

P
Peter Zijlstra 已提交
8330 8331 8332 8333 8334
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8335

P
Peter Zijlstra 已提交
8336 8337 8338 8339 8340 8341
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8342

P
Peter Zijlstra 已提交
8343 8344
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8345

P
Peter Zijlstra 已提交
8346 8347 8348
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8349 8350
	}

8351 8352 8353 8354 8355
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8356

8357 8358 8359
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8360 8361
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8362

P
Peter Zijlstra 已提交
8363
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8364

8365 8366 8367 8368 8369
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8370

8371 8372 8373
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8374 8375 8376
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8377

P
Peter Zijlstra 已提交
8378 8379 8380 8381
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8382

P
Peter Zijlstra 已提交
8383
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8384
	}
P
Peter Zijlstra 已提交
8385

P
Peter Zijlstra 已提交
8386 8387 8388 8389
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8390 8391
}

P
Peter Zijlstra 已提交
8392
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8393
{
P
Peter Zijlstra 已提交
8394 8395 8396 8397 8398 8399 8400
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8401 8402
}

8403 8404
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8405
{
P
Peter Zijlstra 已提交
8406
	int i, err = 0;
P
Peter Zijlstra 已提交
8407 8408

	mutex_lock(&rt_constraints_mutex);
8409
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8410 8411
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8412
		goto unlock;
P
Peter Zijlstra 已提交
8413

8414
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8415 8416
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8417 8418 8419 8420

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8421
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8422
		rt_rq->rt_runtime = rt_runtime;
8423
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8424
	}
8425
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8426
 unlock:
8427
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8428 8429 8430
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8431 8432
}

8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8445 8446 8447 8448
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8449
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8450 8451
		return -1;

8452
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8453 8454 8455
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8456 8457 8458 8459 8460 8461 8462 8463

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8464 8465 8466
	if (rt_period == 0)
		return -EINVAL;

8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8481
	u64 runtime, period;
8482 8483
	int ret = 0;

8484 8485 8486
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8487 8488 8489 8490 8491 8492 8493 8494
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8495

8496
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8497
	read_lock(&tasklist_lock);
8498
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8499
	read_unlock(&tasklist_lock);
8500 8501 8502 8503
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8514
#else /* !CONFIG_RT_GROUP_SCHED */
8515 8516
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8517 8518 8519
	unsigned long flags;
	int i;

8520 8521 8522
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8523 8524 8525 8526 8527 8528 8529
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8530
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8531 8532 8533
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8534
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8535
		rt_rq->rt_runtime = global_rt_runtime();
8536
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8537
	}
8538
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8539

8540 8541
	return 0;
}
8542
#endif /* CONFIG_RT_GROUP_SCHED */
8543 8544

int sched_rt_handler(struct ctl_table *table, int write,
8545
		void __user *buffer, size_t *lenp,
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8556
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8573

8574
#ifdef CONFIG_CGROUP_SCHED
8575 8576

/* return corresponding task_group object of a cgroup */
8577
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8578
{
8579 8580
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8581 8582 8583
}

static struct cgroup_subsys_state *
8584
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8585
{
8586
	struct task_group *tg, *parent;
8587

8588
	if (!cgrp->parent) {
8589 8590 8591 8592
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8593 8594
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8595 8596 8597 8598 8599 8600
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8601 8602
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8603
{
8604
	struct task_group *tg = cgroup_tg(cgrp);
8605 8606 8607 8608

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8609
static int
8610
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8611
{
8612
#ifdef CONFIG_RT_GROUP_SCHED
8613
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8614 8615
		return -EINVAL;
#else
8616 8617 8618
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8619
#endif
8620 8621
	return 0;
}
8622

8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8642 8643 8644 8645
	return 0;
}

static void
8646
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8647 8648
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8649 8650
{
	sched_move_task(tsk);
8651 8652 8653 8654 8655 8656 8657 8658
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8659 8660
}

8661
#ifdef CONFIG_FAIR_GROUP_SCHED
8662
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8663
				u64 shareval)
8664
{
8665
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8666 8667
}

8668
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8669
{
8670
	struct task_group *tg = cgroup_tg(cgrp);
8671 8672 8673

	return (u64) tg->shares;
}
8674
#endif /* CONFIG_FAIR_GROUP_SCHED */
8675

8676
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8677
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8678
				s64 val)
P
Peter Zijlstra 已提交
8679
{
8680
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8681 8682
}

8683
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8684
{
8685
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8686
}
8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8698
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8699

8700
static struct cftype cpu_files[] = {
8701
#ifdef CONFIG_FAIR_GROUP_SCHED
8702 8703
	{
		.name = "shares",
8704 8705
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8706
	},
8707 8708
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8709
	{
P
Peter Zijlstra 已提交
8710
		.name = "rt_runtime_us",
8711 8712
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8713
	},
8714 8715
	{
		.name = "rt_period_us",
8716 8717
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8718
	},
8719
#endif
8720 8721 8722 8723
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8724
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8725 8726 8727
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8728 8729 8730 8731 8732 8733 8734
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8735 8736 8737
	.early_init	= 1,
};

8738
#endif	/* CONFIG_CGROUP_SCHED */
8739 8740 8741 8742 8743 8744 8745 8746 8747 8748

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8749
/* track cpu usage of a group of tasks and its child groups */
8750 8751 8752
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8753
	u64 __percpu *cpuusage;
8754
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8755
	struct cpuacct *parent;
8756 8757 8758 8759 8760
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8761
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8762
{
8763
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8776
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8777 8778
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8779
	int i;
8780 8781

	if (!ca)
8782
		goto out;
8783 8784

	ca->cpuusage = alloc_percpu(u64);
8785 8786 8787 8788 8789 8790
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8791

8792 8793 8794
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8795
	return &ca->css;
8796 8797 8798 8799 8800 8801 8802 8803 8804

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8805 8806 8807
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8808
static void
8809
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8810
{
8811
	struct cpuacct *ca = cgroup_ca(cgrp);
8812
	int i;
8813

8814 8815
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8816 8817 8818 8819
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8820 8821
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8822
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8823 8824 8825 8826 8827 8828
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8829
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8830
	data = *cpuusage;
8831
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8832 8833 8834 8835 8836 8837 8838 8839 8840
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8841
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8842 8843 8844 8845 8846

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8847
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8848
	*cpuusage = val;
8849
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8850 8851 8852 8853 8854
#else
	*cpuusage = val;
#endif
}

8855
/* return total cpu usage (in nanoseconds) of a group */
8856
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8857
{
8858
	struct cpuacct *ca = cgroup_ca(cgrp);
8859 8860 8861
	u64 totalcpuusage = 0;
	int i;

8862 8863
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8864 8865 8866 8867

	return totalcpuusage;
}

8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8880 8881
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8882 8883 8884 8885 8886

out:
	return err;
}

8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8921 8922 8923
static struct cftype files[] = {
	{
		.name = "usage",
8924 8925
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8926
	},
8927 8928 8929 8930
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8931 8932 8933 8934
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8935 8936
};

8937
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8938
{
8939
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8950
	int cpu;
8951

L
Li Zefan 已提交
8952
	if (unlikely(!cpuacct_subsys.active))
8953 8954
		return;

8955
	cpu = task_cpu(tsk);
8956 8957 8958

	rcu_read_lock();

8959 8960
	ca = task_ca(tsk);

8961
	for (; ca; ca = ca->parent) {
8962
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8963 8964
		*cpuusage += cputime;
	}
8965 8966

	rcu_read_unlock();
8967 8968
}

8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8986 8987 8988 8989 8990 8991 8992
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8993
	int batch = CPUACCT_BATCH;
8994 8995 8996 8997 8998 8999 9000 9001

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9002
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9003 9004 9005 9006 9007
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9008 9009 9010 9011 9012 9013 9014 9015
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9101
		raw_spin_lock_irqsave(&rq->lock, flags);
9102
		list_add(&req->list, &rq->migration_queue);
9103
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9104 9105 9106 9107 9108 9109 9110
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9111
		raw_spin_lock_irqsave(&rq->lock, flags);
9112 9113 9114
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9115
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9116 9117
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9118
	synchronize_sched_expedited_count++;
9119 9120 9121 9122 9123 9124 9125 9126
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */