sched.c 216.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916
/*
P
Peter Zijlstra 已提交
917 918
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
919 920 921
 */
static inline int task_is_waking(struct task_struct *p)
{
922
	return unlikely(p->state == TASK_WAKING);
923 924
}

925 926 927 928
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
929
static inline struct rq *__task_rq_lock(struct task_struct *p)
930 931
	__acquires(rq->lock)
{
932 933
	struct rq *rq;

934
	for (;;) {
935
		rq = task_rq(p);
936
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
937
		if (likely(rq == task_rq(p)))
938
			return rq;
939
		raw_spin_unlock(&rq->lock);
940 941 942
	}
}

L
Linus Torvalds 已提交
943 944
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
945
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
946 947
 * explicitly disabling preemption.
 */
948
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
949 950
	__acquires(rq->lock)
{
951
	struct rq *rq;
L
Linus Torvalds 已提交
952

953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
956
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
957
		if (likely(rq == task_rq(p)))
958
			return rq;
959
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
960 961 962
	}
}

963 964 965 966 967
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
968
	raw_spin_unlock_wait(&rq->lock);
969 970
}

A
Alexey Dobriyan 已提交
971
static void __task_rq_unlock(struct rq *rq)
972 973
	__releases(rq->lock)
{
974
	raw_spin_unlock(&rq->lock);
975 976
}

977
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
978 979
	__releases(rq->lock)
{
980
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
981 982 983
}

/*
984
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
985
 */
A
Alexey Dobriyan 已提交
986
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
987 988
	__acquires(rq->lock)
{
989
	struct rq *rq;
L
Linus Torvalds 已提交
990 991 992

	local_irq_disable();
	rq = this_rq();
993
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
994 995 996 997

	return rq;
}

P
Peter Zijlstra 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1019
	if (!cpu_active(cpu_of(rq)))
1020
		return 0;
P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1040
	raw_spin_lock(&rq->lock);
1041
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1042
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1044 1045 1046 1047

	return HRTIMER_NORESTART;
}

1048
#ifdef CONFIG_SMP
1049 1050 1051 1052
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1053
{
1054
	struct rq *rq = arg;
1055

1056
	raw_spin_lock(&rq->lock);
1057 1058
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1059
	raw_spin_unlock(&rq->lock);
1060 1061
}

1062 1063 1064 1065 1066 1067
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1068
{
1069 1070
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071

1072
	hrtimer_set_expires(timer, time);
1073 1074 1075 1076

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1077
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 1079
		rq->hrtick_csd_pending = 1;
	}
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1094
		hrtick_clear(cpu_rq(cpu));
1095 1096 1097 1098 1099 1100
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1101
static __init void init_hrtick(void)
1102 1103 1104
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1105 1106 1107 1108 1109 1110 1111 1112
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1113
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114
			HRTIMER_MODE_REL_PINNED, 0);
1115
}
1116

A
Andrew Morton 已提交
1117
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1118 1119
{
}
1120
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1121

1122
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1123
{
1124 1125
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1131

1132 1133
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1134
}
A
Andrew Morton 已提交
1135
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1136 1137 1138 1139 1140 1141 1142 1143
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1144 1145 1146
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1147
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1148

I
Ingo Molnar 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1162
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1163 1164 1165
{
	int cpu;

1166
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1167

1168
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1169 1170
		return;

1171
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1188
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1189 1190
		return;
	resched_task(cpu_curr(cpu));
1191
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1192
}
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1227
	set_tsk_need_resched(rq->idle);
1228 1229 1230 1231 1232 1233

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1245
#endif /* CONFIG_NO_HZ */
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1268
#else /* !CONFIG_SMP */
1269
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1270
{
1271
	assert_raw_spin_locked(&task_rq(p)->lock);
1272
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1273
}
1274 1275 1276 1277

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1278
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1279

1280 1281 1282 1283 1284 1285 1286 1287
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1288 1289 1290
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1291
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1292

1293 1294 1295
/*
 * delta *= weight / lw
 */
1296
static unsigned long
1297 1298 1299 1300 1301
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1302 1303 1304 1305 1306 1307 1308
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1309 1310 1311 1312 1313

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1314
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1315
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1316 1317
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1318
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319

1320
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1321 1322
}

1323
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 1325
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1326
	lw->inv_weight = 0;
1327 1328
}

1329
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 1331
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1332
	lw->inv_weight = 0;
1333 1334
}

1335 1336 1337 1338
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1339
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1340 1341 1342 1343
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1344 1345
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1355 1356 1357
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1358 1359
 */
static const int prio_to_weight[40] = {
1360 1361 1362 1363 1364 1365 1366 1367
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1368 1369
};

1370 1371 1372 1373 1374 1375 1376
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1377
static const u32 prio_to_wmult[40] = {
1378 1379 1380 1381 1382 1383 1384 1385
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1386
};
1387

1388 1389 1390 1391 1392 1393 1394 1395
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1396 1397
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 1399
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1400 1401
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1402 1403
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1404 1405
#endif

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1416
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1417
typedef int (*tg_visitor)(struct task_group *, void *);
1418 1419 1420 1421 1422

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1423
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1424 1425
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1426
	int ret;
1427 1428 1429 1430

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1431 1432 1433
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1434 1435 1436 1437 1438 1439 1440
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1441 1442 1443
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1444 1445 1446 1447 1448

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1449
out_unlock:
1450
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1451 1452

	return ret;
1453 1454
}

P
Peter Zijlstra 已提交
1455 1456 1457
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1458
}
P
Peter Zijlstra 已提交
1459 1460 1461
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1501 1502
static struct sched_group *group_of(int cpu)
{
1503
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1521 1522 1523 1524 1525
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1526
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1527

1528 1529
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1530 1531
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1537

1538
static __read_mostly unsigned long __percpu *update_shares_data;
1539

1540 1541 1542 1543 1544
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1545 1546 1547
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1548
				    unsigned long *usd_rq_weight)
1549
{
1550
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1551
	int boost = 0;
1552

1553
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1554 1555 1556 1557
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1558

1559
	/*
P
Peter Zijlstra 已提交
1560 1561 1562
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1563
	 */
1564
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1565
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1566

1567 1568 1569 1570
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1571

1572
		raw_spin_lock_irqsave(&rq->lock, flags);
1573
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1574
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1575
		__set_se_shares(tg->se[cpu], shares);
1576
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1577
	}
1578
}
1579 1580

/*
1581 1582 1583
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1584
 */
P
Peter Zijlstra 已提交
1585
static int tg_shares_up(struct task_group *tg, void *data)
1586
{
1587
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1588
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1589
	struct sched_domain *sd = data;
1590
	unsigned long flags;
1591
	int i;
1592

1593 1594 1595 1596
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1597
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1598

1599
	for_each_cpu(i, sched_domain_span(sd)) {
1600
		weight = tg->cfs_rq[i]->load.weight;
1601
		usd_rq_weight[i] = weight;
1602

1603
		rq_weight += weight;
1604 1605 1606 1607 1608 1609 1610 1611
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1612
		sum_weight += weight;
1613
		shares += tg->cfs_rq[i]->shares;
1614 1615
	}

1616 1617 1618
	if (!rq_weight)
		rq_weight = sum_weight;

1619 1620 1621 1622 1623
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1624

1625
	for_each_cpu(i, sched_domain_span(sd))
1626
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1627 1628

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1629 1630

	return 0;
1631 1632 1633
}

/*
1634 1635 1636
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1637
 */
P
Peter Zijlstra 已提交
1638
static int tg_load_down(struct task_group *tg, void *data)
1639
{
1640
	unsigned long load;
P
Peter Zijlstra 已提交
1641
	long cpu = (long)data;
1642

1643 1644 1645 1646 1647 1648 1649
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1650

1651
	tg->cfs_rq[cpu]->h_load = load;
1652

P
Peter Zijlstra 已提交
1653
	return 0;
1654 1655
}

1656
static void update_shares(struct sched_domain *sd)
1657
{
1658 1659 1660 1661 1662 1663 1664 1665
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1666 1667 1668

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1669
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1670
	}
1671 1672
}

P
Peter Zijlstra 已提交
1673
static void update_h_load(long cpu)
1674
{
1675 1676 1677
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1678
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1679 1680 1681 1682
}

#else

1683
static inline void update_shares(struct sched_domain *sd)
1684 1685 1686
{
}

1687 1688
#endif

1689 1690
#ifdef CONFIG_PREEMPT

1691 1692
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1693
/*
1694 1695 1696 1697 1698 1699
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1700
 */
1701 1702 1703 1704 1705
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1706
	raw_spin_unlock(&this_rq->lock);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 1722 1723 1724 1725 1726
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1727
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1728
		if (busiest < this_rq) {
1729 1730 1731 1732
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1733 1734
			ret = 1;
		} else
1735 1736
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1737 1738 1739 1740
	}
	return ret;
}

1741 1742 1743 1744 1745 1746 1747 1748 1749
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1750
		raw_spin_unlock(&this_rq->lock);
1751 1752 1753 1754 1755 1756
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1757 1758 1759
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1760
	raw_spin_unlock(&busiest->lock);
1761 1762
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1806 1807
#endif

V
Vegard Nossum 已提交
1808
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1809 1810
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1811
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1812 1813 1814
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1815
#endif
1816

1817
static void calc_load_account_active(struct rq *this_rq);
1818
static void update_sysctl(void);
1819
static int get_update_sysctl_factor(void);
1820

P
Peter Zijlstra 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1834

1835
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1836 1837

#define sched_class_highest (&rt_sched_class)
1838 1839
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1840

1841 1842
#include "sched_stats.h"

1843
static void inc_nr_running(struct rq *rq)
1844 1845 1846 1847
{
	rq->nr_running++;
}

1848
static void dec_nr_running(struct rq *rq)
1849 1850 1851 1852
{
	rq->nr_running--;
}

1853 1854 1855
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1856 1857 1858 1859
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1860

I
Ingo Molnar 已提交
1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1869

I
Ingo Molnar 已提交
1870 1871
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 1873
}

1874 1875 1876 1877 1878 1879
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1880 1881
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882
{
1883
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1884
	sched_info_queued(p);
1885
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1886
	p->se.on_rq = 1;
1887 1888
}

1889
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1890
{
1891
	update_rq_clock(rq);
1892
	sched_info_dequeued(p);
1893
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 0;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1905
	enqueue_task(rq, p, wakeup, false);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1928
/*
I
Ingo Molnar 已提交
1929
 * __normal_prio - return the priority that is based on the static prio
1930 1931 1932
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1933
	return p->static_prio;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1943
static inline int normal_prio(struct task_struct *p)
1944 1945 1946
{
	int prio;

1947
	if (task_has_rt_policy(p))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1961
static int effective_prio(struct task_struct *p)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1974 1975 1976 1977
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1978
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1979 1980 1981 1982
{
	return cpu_curr(task_cpu(p)) == p;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1995
#ifdef CONFIG_SMP
1996 1997 1998
/*
 * Is this task likely cache-hot:
 */
1999
static int
2000 2001 2002 2003
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2004 2005 2006
	if (p->sched_class != &fair_sched_class)
		return 0;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
2010
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2011 2012
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017 2018 2019
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2020 2021 2022 2023 2024
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2025
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2026
{
2027 2028 2029 2030 2031
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2032 2033
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 2035
#endif

2036
	trace_sched_migrate_task(p, new_cpu);
2037

2038 2039 2040 2041
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2042 2043

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2044 2045
}

2046
struct migration_req {
L
Linus Torvalds 已提交
2047 2048
	struct list_head list;

2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050 2051 2052
	int dest_cpu;

	struct completion done;
2053
};
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static int
2060
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2061
{
2062
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2063 2064 2065

	/*
	 * If the task is not on a runqueue (and not running), then
2066
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2067
	 */
2068
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2075

L
Linus Torvalds 已提交
2076 2077 2078
	return 1;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2122 2123 2124
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2125 2126 2127 2128 2129 2130 2131
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2138
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2139 2140
{
	unsigned long flags;
I
Ingo Molnar 已提交
2141
	int running, on_rq;
R
Roland McGrath 已提交
2142
	unsigned long ncsw;
2143
	struct rq *rq;
L
Linus Torvalds 已提交
2144

2145 2146 2147 2148 2149 2150 2151 2152
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2165 2166 2167
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2168
			cpu_relax();
R
Roland McGrath 已提交
2169
		}
2170

2171 2172 2173 2174 2175 2176
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2177
		trace_sched_wait_task(rq, p);
2178 2179
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2180
		ncsw = 0;
2181
		if (!match_state || p->state == match_state)
2182
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183
		task_rq_unlock(rq, &flags);
2184

R
Roland McGrath 已提交
2185 2186 2187 2188 2189 2190
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2201

2202 2203 2204 2205 2206
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2207
		 * So if it was still runnable (but just not actively
2208 2209 2210 2211 2212 2213 2214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2215

2216 2217 2218 2219 2220 2221 2222
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2223 2224

	return ncsw;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2240
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2250
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2251
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2252

T
Thomas Gleixner 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2274
#ifdef CONFIG_SMP
2275 2276 2277
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2294
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2295
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2311
/*
2312
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2313
 */
2314
static inline
2315
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2316
{
2317
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2330
		     !cpu_online(cpu)))
2331
		cpu = select_fallback_rq(task_cpu(p), p);
2332 2333

	return cpu;
2334 2335 2336
}
#endif

L
Linus Torvalds 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2351 2352
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2353
{
2354
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2355
	unsigned long flags;
2356
	struct rq *rq;
L
Linus Torvalds 已提交
2357

P
Peter Zijlstra 已提交
2358
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2359

2360
	smp_wmb();
2361
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2362
	if (!(p->state & state))
L
Linus Torvalds 已提交
2363 2364
		goto out;

I
Ingo Molnar 已提交
2365
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2366 2367 2368
		goto out_running;

	cpu = task_cpu(p);
2369
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2375 2376 2377
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2378 2379
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2380
	 */
2381 2382 2383 2384 2385 2386
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2387
	p->state = TASK_WAKING;
2388 2389 2390 2391

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

2392 2393
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2394
		set_task_cpu(p, cpu);
2395
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2396

2397 2398
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2399

2400 2401 2402 2403 2404 2405 2406
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2407
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2408

2409 2410 2411 2412 2413 2414 2415
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2416
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2417 2418 2419 2420 2421
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2422
#endif /* CONFIG_SCHEDSTATS */
2423

L
Linus Torvalds 已提交
2424 2425
out_activate:
#endif /* CONFIG_SMP */
2426
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2427
	if (wake_flags & WF_SYNC)
2428
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2429
	if (orig_cpu != cpu)
2430
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2431
	if (cpu == this_cpu)
2432
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2433
	else
2434
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2435
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2436 2437 2438
	success = 1;

out_running:
2439
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2440
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2441

L
Linus Torvalds 已提交
2442
	p->state = TASK_RUNNING;
2443
#ifdef CONFIG_SMP
2444 2445
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2457
#endif
L
Linus Torvalds 已提交
2458 2459
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2460
	put_cpu();
L
Linus Torvalds 已提交
2461 2462 2463 2464

	return success;
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2476
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2477
{
2478
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2479 2480 2481
}
EXPORT_SYMBOL(wake_up_process);

2482
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2490 2491 2492 2493 2494 2495 2496
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2497
	p->se.prev_sum_exec_runtime	= 0;
2498
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2499 2500

#ifdef CONFIG_SCHEDSTATS
2501
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2502
#endif
N
Nick Piggin 已提交
2503

P
Peter Zijlstra 已提交
2504
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2505
	p->se.on_rq = 0;
2506
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2507

2508 2509 2510
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2521
	/*
2522
	 * We mark the process as running here. This guarantees that
2523 2524 2525
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2526
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2527

2528 2529 2530 2531
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2532
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2533
			p->policy = SCHED_NORMAL;
2534 2535
			p->normal_prio = p->static_prio;
		}
2536

2537 2538
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2539
			p->normal_prio = p->static_prio;
2540 2541 2542
			set_load_weight(p);
		}

2543 2544 2545 2546 2547 2548
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2549

2550 2551 2552 2553 2554
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2555 2556
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2557

P
Peter Zijlstra 已提交
2558 2559 2560
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2561 2562
	set_task_cpu(p, cpu);

2563
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2564
	if (likely(sched_info_on()))
2565
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2566
#endif
2567
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2568 2569
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2570
#ifdef CONFIG_PREEMPT
2571
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2572
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2573
#endif
2574 2575
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2576
	put_cpu();
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2586
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2587 2588
{
	unsigned long flags;
I
Ingo Molnar 已提交
2589
	struct rq *rq;
2590
	int cpu __maybe_unused = get_cpu();
2591 2592

#ifdef CONFIG_SMP
2593 2594 2595
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2596 2597 2598 2599 2600
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2601 2602
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2603
	 */
2604
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2605
	set_task_cpu(p, cpu);
2606

2607
	p->state = TASK_RUNNING;
2608 2609 2610 2611
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2612
	activate_task(rq, p, 0);
2613
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2614
	check_preempt_curr(rq, p, WF_FORK);
2615
#ifdef CONFIG_SMP
2616 2617
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2618
#endif
I
Ingo Molnar 已提交
2619
	task_rq_unlock(rq, &flags);
2620
	put_cpu();
L
Linus Torvalds 已提交
2621 2622
}

2623 2624 2625
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2626
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2627
 * @notifier: notifier struct to register
2628 2629 2630 2631 2632 2633 2634 2635 2636
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2637
 * @notifier: notifier struct to unregister
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2667
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2679
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2680

2681 2682 2683
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2684
 * @prev: the current task that is being switched out
2685 2686 2687 2688 2689 2690 2691 2692 2693
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2694 2695 2696
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2697
{
2698
	fire_sched_out_preempt_notifiers(prev, next);
2699 2700 2701 2702
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2703 2704
/**
 * finish_task_switch - clean up after a task-switch
2705
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2706 2707
 * @prev: the thread we just switched away from.
 *
2708 2709 2710 2711
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2712 2713
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2714
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2715 2716 2717
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2718
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2719 2720 2721
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2722
	long prev_state;
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2728
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2729 2730
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2731
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2737
	prev_state = prev->state;
2738
	finish_arch_switch(prev);
2739 2740 2741
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742
	perf_event_task_sched_in(current);
2743 2744 2745
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2746
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2747

2748
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2749 2750
	if (mm)
		mmdrop(mm);
2751
	if (unlikely(prev_state == TASK_DEAD)) {
2752 2753 2754
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2755
		 */
2756
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2757
		put_task_struct(prev);
2758
	}
L
Linus Torvalds 已提交
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2776
		raw_spin_lock_irqsave(&rq->lock, flags);
2777 2778
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2779
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2780 2781 2782 2783 2784 2785

		rq->post_schedule = 0;
	}
}

#else
2786

2787 2788 2789 2790 2791 2792
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2793 2794
}

2795 2796
#endif

L
Linus Torvalds 已提交
2797 2798 2799 2800
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2801
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2802 2803
	__releases(rq->lock)
{
2804 2805
	struct rq *rq = this_rq();

2806
	finish_task_switch(rq, prev);
2807

2808 2809 2810 2811 2812
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2813

2814 2815 2816 2817
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2818
	if (current->set_child_tid)
2819
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2826
static inline void
2827
context_switch(struct rq *rq, struct task_struct *prev,
2828
	       struct task_struct *next)
L
Linus Torvalds 已提交
2829
{
I
Ingo Molnar 已提交
2830
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2831

2832
	prepare_task_switch(rq, prev, next);
2833
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2834 2835
	mm = next->mm;
	oldmm = prev->active_mm;
2836 2837 2838 2839 2840
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2841
	arch_start_context_switch(prev);
2842

2843
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2850
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2851 2852 2853
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2854 2855 2856 2857 2858 2859 2860
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2861
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2862
#endif
L
Linus Torvalds 已提交
2863 2864 2865 2866

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2867 2868 2869 2870 2871 2872 2873
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2891
}
L
Linus Torvalds 已提交
2892 2893

unsigned long nr_uninterruptible(void)
2894
{
L
Linus Torvalds 已提交
2895
	unsigned long i, sum = 0;
2896

2897
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2898
		sum += cpu_rq(i)->nr_uninterruptible;
2899 2900

	/*
L
Linus Torvalds 已提交
2901 2902
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2903
	 */
L
Linus Torvalds 已提交
2904 2905
	if (unlikely((long)sum < 0))
		sum = 0;
2906

L
Linus Torvalds 已提交
2907
	return sum;
2908 2909
}

L
Linus Torvalds 已提交
2910
unsigned long long nr_context_switches(void)
2911
{
2912 2913
	int i;
	unsigned long long sum = 0;
2914

2915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2916
		sum += cpu_rq(i)->nr_switches;
2917

L
Linus Torvalds 已提交
2918 2919
	return sum;
}
2920

L
Linus Torvalds 已提交
2921 2922 2923
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2924

2925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2926
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2927

L
Linus Torvalds 已提交
2928 2929
	return sum;
}
2930

2931 2932 2933 2934 2935
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2936

2937 2938 2939 2940 2941
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2942

2943

2944 2945 2946 2947 2948
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2963 2964
}

2965 2966
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967
{
2968 2969 2970 2971
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2972 2973

/*
2974 2975
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2976
 */
2977
void calc_global_load(void)
2978
{
2979 2980
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2981

2982 2983
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2984

2985 2986
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2987

2988 2989 2990
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2991

2992 2993
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2994

2995 2996 2997 2998 2999 3000
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3001

3002 3003
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3004

3005 3006 3007 3008
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3009
	}
3010 3011 3012
}

/*
I
Ingo Molnar 已提交
3013 3014
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3015
 */
I
Ingo Molnar 已提交
3016
static void update_cpu_load(struct rq *this_rq)
3017
{
3018
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3019
	int i, scale;
3020

I
Ingo Molnar 已提交
3021
	this_rq->nr_load_updates++;
3022

I
Ingo Molnar 已提交
3023 3024 3025
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3026

I
Ingo Molnar 已提交
3027
		/* scale is effectively 1 << i now, and >> i divides by scale */
3028

I
Ingo Molnar 已提交
3029 3030
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3031 3032 3033 3034 3035 3036 3037
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3038 3039
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3040

3041 3042 3043
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3044 3045 3046
	}
}

I
Ingo Molnar 已提交
3047
#ifdef CONFIG_SMP
3048

3049
/*
P
Peter Zijlstra 已提交
3050 3051
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3052
 */
P
Peter Zijlstra 已提交
3053
void sched_exec(void)
3054
{
P
Peter Zijlstra 已提交
3055
	struct task_struct *p = current;
3056
	struct migration_req req;
L
Linus Torvalds 已提交
3057
	unsigned long flags;
3058
	struct rq *rq;
3059
	int dest_cpu;
3060

L
Linus Torvalds 已提交
3061
	rq = task_rq_lock(p, &flags);
3062 3063 3064 3065
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;

3066
	/*
P
Peter Zijlstra 已提交
3067
	 * select_task_rq() can race against ->cpus_allowed
3068
	 */
3069 3070 3071
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3072 3073
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3074

L
Linus Torvalds 已提交
3075 3076 3077 3078 3079
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3080

L
Linus Torvalds 已提交
3081 3082
		return;
	}
3083
unlock:
L
Linus Torvalds 已提交
3084 3085
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3086

L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3094
 * Return any ns on the sched_clock that have not yet been accounted in
3095
 * @p in case that task is currently running.
3096 3097
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3098
 */
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3113
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3114 3115
{
	unsigned long flags;
3116
	struct rq *rq;
3117
	u64 ns = 0;
3118

3119
	rq = task_rq_lock(p, &flags);
3120 3121
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3122

3123 3124
	return ns;
}
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3163
	task_rq_unlock(rq, &flags);
3164

L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170 3171
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3172
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3173
 */
3174 3175
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3176 3177 3178 3179
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3180
	/* Add user time to process. */
L
Linus Torvalds 已提交
3181
	p->utime = cputime_add(p->utime, cputime);
3182
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3183
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3184 3185 3186 3187 3188 3189 3190

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3191 3192

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3193 3194
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3195 3196
}

3197 3198 3199 3200
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3201
 * @cputime_scaled: cputime scaled by cpu frequency
3202
 */
3203 3204
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3205 3206 3207 3208 3209 3210
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3211
	/* Add guest time to process. */
3212
	p->utime = cputime_add(p->utime, cputime);
3213
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3214
	account_group_user_time(p, cputime);
3215 3216
	p->gtime = cputime_add(p->gtime, cputime);

3217
	/* Add guest time to cpustat. */
3218 3219 3220 3221 3222 3223 3224
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3225 3226
}

L
Linus Torvalds 已提交
3227 3228 3229 3230 3231
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3232
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3233 3234
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3235
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3236 3237 3238 3239
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3240
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3241
		account_guest_time(p, cputime, cputime_scaled);
3242 3243
		return;
	}
3244

3245
	/* Add system time to process. */
L
Linus Torvalds 已提交
3246
	p->stime = cputime_add(p->stime, cputime);
3247
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3248
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254 3255 3256

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3257 3258
		cpustat->system = cputime64_add(cpustat->system, tmp);

3259 3260
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3261 3262 3263 3264
	/* Account for system time used */
	acct_update_integrals(p);
}

3265
/*
L
Linus Torvalds 已提交
3266 3267
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3268
 */
3269
void account_steal_time(cputime_t cputime)
3270
{
3271 3272 3273 3274
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3275 3276
}

L
Linus Torvalds 已提交
3277
/*
3278 3279
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3280
 */
3281
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3282 3283
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3284
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3285
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3286

3287 3288 3289 3290
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3291 3292
}

3293 3294 3295 3296 3297 3298 3299 3300 3301
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3302
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3303 3304 3305
	struct rq *rq = this_rq();

	if (user_tick)
3306
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3307
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3308
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3309 3310
				    one_jiffy_scaled);
	else
3311
		account_idle_time(cputime_one_jiffy);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3331 3332
}

3333 3334
#endif

3335 3336 3337 3338
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3339
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3340
{
3341 3342
	*ut = p->utime;
	*st = p->stime;
3343 3344
}

3345
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3346
{
3347 3348 3349 3350 3351 3352
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3353 3354
}
#else
3355 3356

#ifndef nsecs_to_cputime
3357
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3358 3359
#endif

3360
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3361
{
3362
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3363 3364 3365 3366

	/*
	 * Use CFS's precise accounting:
	 */
3367
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3368 3369

	if (total) {
3370 3371 3372
		u64 temp;

		temp = (u64)(rtime * utime);
3373
		do_div(temp, total);
3374 3375 3376
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3377

3378 3379 3380
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3381
	p->prev_utime = max(p->prev_utime, utime);
3382
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3383

3384 3385
	*ut = p->prev_utime;
	*st = p->prev_stime;
3386 3387
}

3388 3389 3390 3391
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3392
{
3393 3394 3395
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3396

3397
	thread_group_cputime(p, &cputime);
3398

3399 3400
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3401

3402 3403
	if (total) {
		u64 temp;
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3417 3418 3419
}
#endif

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3431
	struct task_struct *curr = rq->curr;
3432 3433

	sched_clock_tick();
I
Ingo Molnar 已提交
3434

3435
	raw_spin_lock(&rq->lock);
3436
	update_rq_clock(rq);
3437
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3438
	curr->sched_class->task_tick(rq, curr, 0);
3439
	raw_spin_unlock(&rq->lock);
3440

3441
	perf_event_task_tick(curr);
3442

3443
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3444 3445
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3446
#endif
L
Linus Torvalds 已提交
3447 3448
}

3449
notrace unsigned long get_parent_ip(unsigned long addr)
3450 3451 3452 3453 3454 3455 3456 3457
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3458

3459 3460 3461
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3462
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3463
{
3464
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3465 3466 3467
	/*
	 * Underflow?
	 */
3468 3469
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3470
#endif
L
Linus Torvalds 已提交
3471
	preempt_count() += val;
3472
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3473 3474 3475
	/*
	 * Spinlock count overflowing soon?
	 */
3476 3477
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3478 3479 3480
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3481 3482 3483
}
EXPORT_SYMBOL(add_preempt_count);

3484
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3485
{
3486
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3487 3488 3489
	/*
	 * Underflow?
	 */
3490
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3491
		return;
L
Linus Torvalds 已提交
3492 3493 3494
	/*
	 * Is the spinlock portion underflowing?
	 */
3495 3496 3497
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3498
#endif
3499

3500 3501
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506 3507 3508
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3509
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3510
 */
I
Ingo Molnar 已提交
3511
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3512
{
3513 3514
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3515 3516
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3517

I
Ingo Molnar 已提交
3518
	debug_show_held_locks(prev);
3519
	print_modules();
I
Ingo Molnar 已提交
3520 3521
	if (irqs_disabled())
		print_irqtrace_events(prev);
3522 3523 3524 3525 3526

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3527
}
L
Linus Torvalds 已提交
3528

I
Ingo Molnar 已提交
3529 3530 3531 3532 3533
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3534
	/*
I
Ingo Molnar 已提交
3535
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3536 3537 3538
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3539
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3540 3541
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3542 3543
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3544
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3545 3546
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3547 3548
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3549 3550
	}
#endif
I
Ingo Molnar 已提交
3551 3552
}

P
Peter Zijlstra 已提交
3553
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3554
{
3555 3556 3557
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3558
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3559 3560
}

I
Ingo Molnar 已提交
3561 3562 3563 3564
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3565
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3566
{
3567
	const struct sched_class *class;
I
Ingo Molnar 已提交
3568
	struct task_struct *p;
L
Linus Torvalds 已提交
3569 3570

	/*
I
Ingo Molnar 已提交
3571 3572
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3573
	 */
I
Ingo Molnar 已提交
3574
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3575
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3576 3577
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3578 3579
	}

I
Ingo Molnar 已提交
3580 3581
	class = sched_class_highest;
	for ( ; ; ) {
3582
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3592

I
Ingo Molnar 已提交
3593 3594 3595
/*
 * schedule() is the main scheduler function.
 */
3596
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3597 3598
{
	struct task_struct *prev, *next;
3599
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3600
	struct rq *rq;
3601
	int cpu;
I
Ingo Molnar 已提交
3602

3603 3604
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3605 3606
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3607
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3608 3609 3610 3611 3612 3613 3614
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3615

3616
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3617
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3618

3619
	raw_spin_lock_irq(&rq->lock);
3620
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3621 3622

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3623
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3624
			prev->state = TASK_RUNNING;
3625
		else
3626
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3627
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3628 3629
	}

3630
	pre_schedule(rq, prev);
3631

I
Ingo Molnar 已提交
3632
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3633 3634
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3635
	put_prev_task(rq, prev);
3636
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3637 3638

	if (likely(prev != next)) {
3639
		sched_info_switch(prev, next);
3640
		perf_event_task_sched_out(prev, next);
3641

L
Linus Torvalds 已提交
3642 3643 3644 3645
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3646
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3647 3648 3649 3650 3651 3652
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3653
	} else
3654
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3655

3656
	post_schedule(rq);
L
Linus Torvalds 已提交
3657

3658 3659 3660
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3661
		goto need_resched_nonpreemptible;
3662
	}
P
Peter Zijlstra 已提交
3663

L
Linus Torvalds 已提交
3664
	preempt_enable_no_resched();
3665
	if (need_resched())
L
Linus Torvalds 已提交
3666 3667 3668 3669
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3670
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3731 3732
#ifdef CONFIG_PREEMPT
/*
3733
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3734
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3735 3736 3737 3738 3739
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3740

L
Linus Torvalds 已提交
3741 3742
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3743
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3744
	 */
N
Nick Piggin 已提交
3745
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3746 3747
		return;

3748 3749 3750 3751
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3752

3753 3754 3755 3756 3757
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3758
	} while (need_resched());
L
Linus Torvalds 已提交
3759 3760 3761 3762
}
EXPORT_SYMBOL(preempt_schedule);

/*
3763
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3771

3772
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3773 3774
	BUG_ON(ti->preempt_count || !irqs_disabled());

3775 3776 3777 3778 3779 3780
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3781

3782 3783 3784 3785 3786
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3787
	} while (need_resched());
L
Linus Torvalds 已提交
3788 3789 3790 3791
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3792
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3793
			  void *key)
L
Linus Torvalds 已提交
3794
{
P
Peter Zijlstra 已提交
3795
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3796 3797 3798 3799
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3800 3801
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3802 3803 3804
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3805
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3806 3807
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3808
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3809
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3810
{
3811
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3812

3813
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3814 3815
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3816
		if (curr->func(curr, mode, wake_flags, key) &&
3817
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3827
 * @key: is directly passed to the wakeup function
3828 3829 3830
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3831
 */
3832
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3833
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3846
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3847 3848 3849 3850
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3851 3852 3853 3854 3855
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3856
/**
3857
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3858 3859 3860
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3861
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3869 3870 3871
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3872
 */
3873 3874
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3875 3876
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3877
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3883
		wake_flags = 0;
L
Linus Torvalds 已提交
3884 3885

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3886
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3887 3888
	spin_unlock_irqrestore(&q->lock, flags);
}
3889 3890 3891 3892 3893 3894 3895 3896 3897
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3898 3899
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3900 3901 3902 3903 3904 3905 3906 3907
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3908 3909 3910
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3911
 */
3912
void complete(struct completion *x)
L
Linus Torvalds 已提交
3913 3914 3915 3916 3917
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3918
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3919 3920 3921 3922
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3923 3924 3925 3926 3927
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3928 3929 3930
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3931
 */
3932
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3933 3934 3935 3936 3937
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3938
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3939 3940 3941 3942
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3943 3944
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950 3951
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3952
			if (signal_pending_state(state, current)) {
3953 3954
				timeout = -ERESTARTSYS;
				break;
3955 3956
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3957 3958 3959
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3960
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3961
		__remove_wait_queue(&x->wait, &wait);
3962 3963
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3964 3965
	}
	x->done--;
3966
	return timeout ?: 1;
L
Linus Torvalds 已提交
3967 3968
}

3969 3970
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3971 3972 3973 3974
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3975
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3976
	spin_unlock_irq(&x->wait.lock);
3977 3978
	return timeout;
}
L
Linus Torvalds 已提交
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3990
void __sched wait_for_completion(struct completion *x)
3991 3992
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3993
}
3994
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4005
unsigned long __sched
4006
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4007
{
4008
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4009
}
4010
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4011

4012 4013 4014 4015 4016 4017 4018
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4019
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4020
{
4021 4022 4023 4024
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4025
}
4026
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4027

4028 4029 4030 4031 4032 4033 4034 4035
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4036
unsigned long __sched
4037 4038
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4039
{
4040
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4041
}
4042
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4043

4044 4045 4046 4047 4048 4049 4050
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4074
	unsigned long flags;
4075 4076
	int ret = 1;

4077
	spin_lock_irqsave(&x->wait.lock, flags);
4078 4079 4080 4081
	if (!x->done)
		ret = 0;
	else
		x->done--;
4082
	spin_unlock_irqrestore(&x->wait.lock, flags);
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4097
	unsigned long flags;
4098 4099
	int ret = 1;

4100
	spin_lock_irqsave(&x->wait.lock, flags);
4101 4102
	if (!x->done)
		ret = 0;
4103
	spin_unlock_irqrestore(&x->wait.lock, flags);
4104 4105 4106 4107
	return ret;
}
EXPORT_SYMBOL(completion_done);

4108 4109
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4110
{
I
Ingo Molnar 已提交
4111 4112 4113 4114
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4115

4116
	__set_current_state(state);
L
Linus Torvalds 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4132 4133 4134
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4135
long __sched
I
Ingo Molnar 已提交
4136
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4137
{
4138
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4139 4140 4141
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4142
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4143
{
4144
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4145 4146 4147
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4148
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4149
{
4150
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4151 4152 4153
}
EXPORT_SYMBOL(sleep_on_timeout);

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4166
void rt_mutex_setprio(struct task_struct *p, int prio)
4167 4168
{
	unsigned long flags;
4169
	int oldprio, on_rq, running;
4170
	struct rq *rq;
4171
	const struct sched_class *prev_class;
4172 4173 4174 4175 4176

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4177
	oldprio = p->prio;
4178
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4179
	on_rq = p->se.on_rq;
4180
	running = task_current(rq, p);
4181
	if (on_rq)
4182
		dequeue_task(rq, p, 0);
4183 4184
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4185 4186 4187 4188 4189 4190

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4191 4192
	p->prio = prio;

4193 4194
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4195
	if (on_rq) {
4196
		enqueue_task(rq, p, 0, oldprio < prio);
4197 4198

		check_class_changed(rq, p, prev_class, oldprio, running);
4199 4200 4201 4202 4203 4204
	}
	task_rq_unlock(rq, &flags);
}

#endif

4205
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4206
{
I
Ingo Molnar 已提交
4207
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4208
	unsigned long flags;
4209
	struct rq *rq;
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4222
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4223
	 */
4224
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4225 4226 4227
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4228
	on_rq = p->se.on_rq;
4229
	if (on_rq)
4230
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4231 4232

	p->static_prio = NICE_TO_PRIO(nice);
4233
	set_load_weight(p);
4234 4235 4236
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4237

I
Ingo Molnar 已提交
4238
	if (on_rq) {
4239
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4240
		/*
4241 4242
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4243
		 */
4244
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4252 4253 4254 4255 4256
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4257
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4258
{
4259 4260
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4261

4262
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4263 4264 4265
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4275
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4276
{
4277
	long nice, retval;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4284 4285
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4286 4287 4288
	if (increment > 40)
		increment = 40;

4289
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4295 4296 4297
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4316
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4325
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4326 4327 4328
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4329
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4344
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4353
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4354
{
4355
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4356 4357 4358
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4359 4360
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4361
{
I
Ingo Molnar 已提交
4362
	BUG_ON(p->se.on_rq);
4363

L
Linus Torvalds 已提交
4364 4365
	p->policy = policy;
	p->rt_priority = prio;
4366 4367 4368
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4369 4370 4371 4372
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4373
	set_load_weight(p);
L
Linus Torvalds 已提交
4374 4375
}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4392 4393
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4394
{
4395
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4396
	unsigned long flags;
4397
	const struct sched_class *prev_class;
4398
	struct rq *rq;
4399
	int reset_on_fork;
L
Linus Torvalds 已提交
4400

4401 4402
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4403 4404
recheck:
	/* double check policy once rq lock held */
4405 4406
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4407
		policy = oldpolicy = p->policy;
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4418 4419
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4420 4421
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4422 4423
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4424
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4426
		return -EINVAL;
4427
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4428 4429
		return -EINVAL;

4430 4431 4432
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4433
	if (user && !capable(CAP_SYS_NICE)) {
4434
		if (rt_policy(policy)) {
4435 4436 4437 4438
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4439
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4451 4452 4453 4454 4455 4456
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4457

4458
		/* can't change other user's priorities */
4459
		if (!check_same_owner(p))
4460
			return -EPERM;
4461 4462 4463 4464

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4465
	}
L
Linus Torvalds 已提交
4466

4467
	if (user) {
4468
#ifdef CONFIG_RT_GROUP_SCHED
4469 4470 4471 4472
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4473 4474
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4475
			return -EPERM;
4476 4477
#endif

4478 4479 4480 4481 4482
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4483 4484 4485 4486
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4487
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4488 4489 4490 4491
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4492
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4493 4494 4495
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4496
		__task_rq_unlock(rq);
4497
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4498 4499
		goto recheck;
	}
I
Ingo Molnar 已提交
4500
	on_rq = p->se.on_rq;
4501
	running = task_current(rq, p);
4502
	if (on_rq)
4503
		deactivate_task(rq, p, 0);
4504 4505
	if (running)
		p->sched_class->put_prev_task(rq, p);
4506

4507 4508
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4509
	oldprio = p->prio;
4510
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4511
	__setscheduler(rq, p, policy, param->sched_priority);
4512

4513 4514
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4515 4516
	if (on_rq) {
		activate_task(rq, p, 0);
4517 4518

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4519
	}
4520
	__task_rq_unlock(rq);
4521
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4522

4523 4524
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4525 4526
	return 0;
}
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4541 4542
EXPORT_SYMBOL_GPL(sched_setscheduler);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4560 4561
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4562 4563 4564
{
	struct sched_param lparam;
	struct task_struct *p;
4565
	int retval;
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4571 4572 4573

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4574
	p = find_process_by_pid(pid);
4575 4576 4577
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4578

L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4588 4589
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4590
{
4591 4592 4593 4594
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4603
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4612
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4613
{
4614
	struct task_struct *p;
4615
	int retval;
L
Linus Torvalds 已提交
4616 4617

	if (pid < 0)
4618
		return -EINVAL;
L
Linus Torvalds 已提交
4619 4620

	retval = -ESRCH;
4621
	rcu_read_lock();
L
Linus Torvalds 已提交
4622 4623 4624 4625
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4626 4627
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4628
	}
4629
	rcu_read_unlock();
L
Linus Torvalds 已提交
4630 4631 4632 4633
	return retval;
}

/**
4634
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4635 4636 4637
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4638
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4639 4640
{
	struct sched_param lp;
4641
	struct task_struct *p;
4642
	int retval;
L
Linus Torvalds 已提交
4643 4644

	if (!param || pid < 0)
4645
		return -EINVAL;
L
Linus Torvalds 已提交
4646

4647
	rcu_read_lock();
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4658
	rcu_read_unlock();
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4668
	rcu_read_unlock();
L
Linus Torvalds 已提交
4669 4670 4671
	return retval;
}

4672
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4673
{
4674
	cpumask_var_t cpus_allowed, new_mask;
4675 4676
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4677

4678
	get_online_cpus();
4679
	rcu_read_lock();
L
Linus Torvalds 已提交
4680 4681 4682

	p = find_process_by_pid(pid);
	if (!p) {
4683
		rcu_read_unlock();
4684
		put_online_cpus();
L
Linus Torvalds 已提交
4685 4686 4687
		return -ESRCH;
	}

4688
	/* Prevent p going away */
L
Linus Torvalds 已提交
4689
	get_task_struct(p);
4690
	rcu_read_unlock();
L
Linus Torvalds 已提交
4691

4692 4693 4694 4695 4696 4697 4698 4699
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4700
	retval = -EPERM;
4701
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4702 4703
		goto out_unlock;

4704 4705 4706 4707
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4708 4709
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4710
 again:
4711
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4712

P
Paul Menage 已提交
4713
	if (!retval) {
4714 4715
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4716 4717 4718 4719 4720
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4721
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4722 4723 4724
			goto again;
		}
	}
L
Linus Torvalds 已提交
4725
out_unlock:
4726 4727 4728 4729
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4730
	put_task_struct(p);
4731
	put_online_cpus();
L
Linus Torvalds 已提交
4732 4733 4734 4735
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4736
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4737
{
4738 4739 4740 4741 4742
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4752 4753
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4754
{
4755
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4756 4757
	int retval;

4758 4759
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4760

4761 4762 4763 4764 4765
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4766 4767
}

4768
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4769
{
4770
	struct task_struct *p;
4771 4772
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4773 4774
	int retval;

4775
	get_online_cpus();
4776
	rcu_read_lock();
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4783 4784 4785 4786
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4787
	rq = task_rq_lock(p, &flags);
4788
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4789
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4790 4791

out_unlock:
4792
	rcu_read_unlock();
4793
	put_online_cpus();
L
Linus Torvalds 已提交
4794

4795
	return retval;
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4804 4805
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4806 4807
{
	int ret;
4808
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4809

4810 4811 4812
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4813 4814
		return -EINVAL;

4815 4816
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4817

4818 4819
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4820
		size_t retlen = min_t(size_t, len, cpumask_size());
4821 4822

		if (copy_to_user(user_mask_ptr, mask, retlen))
4823 4824
			ret = -EFAULT;
		else
4825
			ret = retlen;
4826 4827
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4828

4829
	return ret;
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4835 4836
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4837
 */
4838
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4839
{
4840
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4841

4842
	schedstat_inc(rq, yld_count);
4843
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4850
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4851
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4859 4860 4861 4862 4863
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4864
static void __cond_resched(void)
L
Linus Torvalds 已提交
4865
{
4866 4867 4868
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4869 4870
}

4871
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4872
{
P
Peter Zijlstra 已提交
4873
	if (should_resched()) {
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878
		__cond_resched();
		return 1;
	}
	return 0;
}
4879
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4880 4881

/*
4882
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4883 4884
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4885
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4886 4887 4888
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4889
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4890
{
P
Peter Zijlstra 已提交
4891
	int resched = should_resched();
J
Jan Kara 已提交
4892 4893
	int ret = 0;

4894 4895
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4896
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4897
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4898
		if (resched)
N
Nick Piggin 已提交
4899 4900 4901
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4902
		ret = 1;
L
Linus Torvalds 已提交
4903 4904
		spin_lock(lock);
	}
J
Jan Kara 已提交
4905
	return ret;
L
Linus Torvalds 已提交
4906
}
4907
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4908

4909
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4910 4911 4912
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4913
	if (should_resched()) {
4914
		local_bh_enable();
L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4921
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4922 4923 4924 4925

/**
 * yield - yield the current processor to other threads.
 *
4926
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4937
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4938 4939 4940 4941
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4942
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4943

4944
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4945
	atomic_inc(&rq->nr_iowait);
4946
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4947
	schedule();
4948
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4949
	atomic_dec(&rq->nr_iowait);
4950
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4956
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4957 4958
	long ret;

4959
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4960
	atomic_inc(&rq->nr_iowait);
4961
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4962
	ret = schedule_timeout(timeout);
4963
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4964
	atomic_dec(&rq->nr_iowait);
4965
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4976
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4986
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4987
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5001
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5011
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5012
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5026
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5027
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5028
{
5029
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5030
	unsigned int time_slice;
5031 5032
	unsigned long flags;
	struct rq *rq;
5033
	int retval;
L
Linus Torvalds 已提交
5034 5035 5036
	struct timespec t;

	if (pid < 0)
5037
		return -EINVAL;
L
Linus Torvalds 已提交
5038 5039

	retval = -ESRCH;
5040
	rcu_read_lock();
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5049 5050 5051
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5052

5053
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5054
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5055 5056
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5057

L
Linus Torvalds 已提交
5058
out_unlock:
5059
	rcu_read_unlock();
L
Linus Torvalds 已提交
5060 5061 5062
	return retval;
}

5063
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5064

5065
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5066 5067
{
	unsigned long free = 0;
5068
	unsigned state;
L
Linus Torvalds 已提交
5069 5070

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5071
	printk(KERN_INFO "%-13.13s %c", p->comm,
5072
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5073
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5074
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5075
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5076
	else
P
Peter Zijlstra 已提交
5077
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5078 5079
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5080
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5081
	else
P
Peter Zijlstra 已提交
5082
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5083 5084
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5085
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5086
#endif
P
Peter Zijlstra 已提交
5087
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5088 5089
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5090

5091
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5092 5093
}

I
Ingo Molnar 已提交
5094
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5095
{
5096
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5097

5098
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5099 5100
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5101
#else
P
Peter Zijlstra 已提交
5102 5103
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5112
		if (!state_filter || (p->state & state_filter))
5113
			sched_show_task(p);
L
Linus Torvalds 已提交
5114 5115
	} while_each_thread(g, p);

5116 5117
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5118 5119 5120
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5121
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5122 5123 5124
	/*
	 * Only show locks if all tasks are dumped:
	 */
5125
	if (!state_filter)
I
Ingo Molnar 已提交
5126
		debug_show_all_locks();
L
Linus Torvalds 已提交
5127 5128
}

I
Ingo Molnar 已提交
5129 5130
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5131
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5132 5133
}

5134 5135 5136 5137 5138 5139 5140 5141
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5142
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5143
{
5144
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5145 5146
	unsigned long flags;

5147
	raw_spin_lock_irqsave(&rq->lock, flags);
5148

I
Ingo Molnar 已提交
5149
	__sched_fork(idle);
5150
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5151 5152
	idle->se.exec_start = sched_clock();

5153
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5154
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5155 5156

	rq->curr = rq->idle = idle;
5157 5158 5159
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5160
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5161 5162

	/* Set the preempt count _outside_ the spinlocks! */
5163 5164 5165
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5166
	task_thread_info(idle)->preempt_count = 0;
5167
#endif
I
Ingo Molnar 已提交
5168 5169 5170 5171
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5172
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5180
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5181
 */
5182
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5183

I
Ingo Molnar 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5193
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5194
{
5195
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5210

5211 5212
	return factor;
}
I
Ingo Molnar 已提交
5213

5214 5215 5216
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5217

5218 5219 5220 5221 5222 5223 5224 5225
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5226

5227 5228 5229
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5230 5231
}

L
Linus Torvalds 已提交
5232 5233 5234 5235
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5236
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5255
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5256 5257
 * call is not atomic; no spinlocks may be held.
 */
5258
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5259
{
5260
	struct migration_req req;
L
Linus Torvalds 已提交
5261
	unsigned long flags;
5262
	struct rq *rq;
5263
	int ret = 0;
L
Linus Torvalds 已提交
5264

P
Peter Zijlstra 已提交
5265 5266 5267 5268 5269 5270 5271
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5272
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5273 5274 5275 5276
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5277

5278
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5279 5280 5281 5282
		ret = -EINVAL;
		goto out;
	}

5283
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5284
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5285 5286 5287 5288
		ret = -EINVAL;
		goto out;
	}

5289
	if (p->sched_class->set_cpus_allowed)
5290
		p->sched_class->set_cpus_allowed(p, new_mask);
5291
	else {
5292 5293
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5294 5295
	}

L
Linus Torvalds 已提交
5296
	/* Can the task run on the task's current CPU? If so, we're done */
5297
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5298 5299
		goto out;

5300
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5301
		/* Need help from migration thread: drop lock and wait. */
5302 5303 5304
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5305 5306
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5307
		put_task_struct(mt);
L
Linus Torvalds 已提交
5308 5309 5310 5311 5312 5313
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5314

L
Linus Torvalds 已提交
5315 5316
	return ret;
}
5317
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5318 5319

/*
I
Ingo Molnar 已提交
5320
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5327 5328
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5329
 */
5330
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5331
{
5332
	struct rq *rq_dest, *rq_src;
5333
	int ret = 0;
L
Linus Torvalds 已提交
5334

5335
	if (unlikely(!cpu_active(dest_cpu)))
5336
		return ret;
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341 5342 5343

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5344
		goto done;
L
Linus Torvalds 已提交
5345
	/* Affinity changed (again). */
5346
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5347
		goto fail;
L
Linus Torvalds 已提交
5348

5349 5350 5351 5352 5353
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5354
		deactivate_task(rq_src, p, 0);
5355
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5356
		activate_task(rq_dest, p, 0);
5357
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5358
	}
L
Linus Torvalds 已提交
5359
done:
5360
	ret = 1;
L
Linus Torvalds 已提交
5361
fail:
L
Linus Torvalds 已提交
5362
	double_rq_unlock(rq_src, rq_dest);
5363
	return ret;
L
Linus Torvalds 已提交
5364 5365
}

5366 5367 5368 5369 5370
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5371 5372 5373 5374 5375
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5376
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5377
{
5378
	int badcpu;
L
Linus Torvalds 已提交
5379
	int cpu = (long)data;
5380
	struct rq *rq;
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5387
		struct migration_req *req;
L
Linus Torvalds 已提交
5388 5389
		struct list_head *head;

5390
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5391 5392

		if (cpu_is_offline(cpu)) {
5393
			raw_spin_unlock_irq(&rq->lock);
5394
			break;
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5405
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5406 5407 5408 5409
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5410
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5411 5412
		list_del_init(head->next);

5413
		if (req->task != NULL) {
5414
			raw_spin_unlock(&rq->lock);
5415 5416 5417
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5418
			raw_spin_unlock(&rq->lock);
5419 5420
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5421
			raw_spin_unlock(&rq->lock);
5422 5423
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5424
		local_irq_enable();
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5434
/*
5435
 * Figure out where task on dead CPU should go, use force if necessary.
5436
 */
5437
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5438
{
5439 5440 5441
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5442

5443 5444 5445 5446 5447 5448 5449
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5450 5451 5452 5453
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5454
	if (needs_cpu)
5455
		__migrate_task(p, dead_cpu, dest_cpu);
5456
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5466
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5467
{
5468
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5482
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5483

5484
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5485

5486 5487
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5488 5489
			continue;

5490 5491 5492
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5493

5494
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5495 5496
}

I
Ingo Molnar 已提交
5497 5498
/*
 * Schedules idle task to be the next runnable task on current CPU.
5499 5500
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5501 5502 5503
 */
void sched_idle_next(void)
{
5504
	int this_cpu = smp_processor_id();
5505
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5506 5507 5508 5509
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5510
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5511

5512 5513 5514
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5515
	 */
5516
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5517

I
Ingo Molnar 已提交
5518
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5519

5520
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5521

5522
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5523 5524
}

5525 5526
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5540
/* called under rq->lock with disabled interrupts */
5541
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5542
{
5543
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5544 5545

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5546
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5547 5548

	/* Cannot have done final schedule yet: would have vanished. */
5549
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5550

5551
	get_task_struct(p);
L
Linus Torvalds 已提交
5552 5553 5554

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5555
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5556 5557
	 * fine.
	 */
5558
	raw_spin_unlock_irq(&rq->lock);
5559
	move_task_off_dead_cpu(dead_cpu, p);
5560
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5561

5562
	put_task_struct(p);
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5568
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5569
	struct task_struct *next;
5570

I
Ingo Molnar 已提交
5571 5572 5573
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5574
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5575 5576
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5577
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5578
		migrate_dead(dead_cpu, next);
5579

L
Linus Torvalds 已提交
5580 5581
	}
}
5582 5583 5584 5585 5586 5587 5588

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5589
	rq->calc_load_active = 0;
5590
}
L
Linus Torvalds 已提交
5591 5592
#endif /* CONFIG_HOTPLUG_CPU */

5593 5594 5595
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5596 5597
	{
		.procname	= "sched_domain",
5598
		.mode		= 0555,
5599
	},
5600
	{}
5601 5602 5603
};

static struct ctl_table sd_ctl_root[] = {
5604 5605
	{
		.procname	= "kernel",
5606
		.mode		= 0555,
5607 5608
		.child		= sd_ctl_dir,
	},
5609
	{}
5610 5611 5612 5613 5614
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5615
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5616 5617 5618 5619

	return entry;
}

5620 5621
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5622
	struct ctl_table *entry;
5623

5624 5625 5626
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5627
	 * will always be set. In the lowest directory the names are
5628 5629 5630
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5631 5632
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5633 5634 5635
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5636 5637 5638 5639 5640

	kfree(*tablep);
	*tablep = NULL;
}

5641
static void
5642
set_table_entry(struct ctl_table *entry,
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5656
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5657

5658 5659 5660
	if (table == NULL)
		return NULL;

5661
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5662
		sizeof(long), 0644, proc_doulongvec_minmax);
5663
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5664
		sizeof(long), 0644, proc_doulongvec_minmax);
5665
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5666
		sizeof(int), 0644, proc_dointvec_minmax);
5667
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5668
		sizeof(int), 0644, proc_dointvec_minmax);
5669
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5670
		sizeof(int), 0644, proc_dointvec_minmax);
5671
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5672
		sizeof(int), 0644, proc_dointvec_minmax);
5673
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5674
		sizeof(int), 0644, proc_dointvec_minmax);
5675
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5676
		sizeof(int), 0644, proc_dointvec_minmax);
5677
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5678
		sizeof(int), 0644, proc_dointvec_minmax);
5679
	set_table_entry(&table[9], "cache_nice_tries",
5680 5681
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5682
	set_table_entry(&table[10], "flags", &sd->flags,
5683
		sizeof(int), 0644, proc_dointvec_minmax);
5684 5685 5686
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5687 5688 5689 5690

	return table;
}

5691
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5692 5693 5694 5695 5696 5697 5698 5699 5700
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5701 5702
	if (table == NULL)
		return NULL;
5703 5704 5705 5706 5707

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5708
		entry->mode = 0555;
5709 5710 5711 5712 5713 5714 5715 5716
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5717
static void register_sched_domain_sysctl(void)
5718
{
5719
	int i, cpu_num = num_possible_cpus();
5720 5721 5722
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5723 5724 5725
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5726 5727 5728
	if (entry == NULL)
		return;

5729
	for_each_possible_cpu(i) {
5730 5731
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5732
		entry->mode = 0555;
5733
		entry->child = sd_alloc_ctl_cpu_table(i);
5734
		entry++;
5735
	}
5736 5737

	WARN_ON(sd_sysctl_header);
5738 5739
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5740

5741
/* may be called multiple times per register */
5742 5743
static void unregister_sched_domain_sysctl(void)
{
5744 5745
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5746
	sd_sysctl_header = NULL;
5747 5748
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5749
}
5750
#else
5751 5752 5753 5754
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5755 5756 5757 5758
{
}
#endif

5759 5760 5761 5762 5763
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5764
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5784
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5785 5786 5787 5788
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5789 5790 5791 5792
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5793 5794
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5795 5796
{
	struct task_struct *p;
5797
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5798
	unsigned long flags;
5799
	struct rq *rq;
L
Linus Torvalds 已提交
5800 5801

	switch (action) {
5802

L
Linus Torvalds 已提交
5803
	case CPU_UP_PREPARE:
5804
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5805
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5811
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5812
		task_rq_unlock(rq, &flags);
5813
		get_task_struct(p);
L
Linus Torvalds 已提交
5814
		cpu_rq(cpu)->migration_thread = p;
5815
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5816
		break;
5817

L
Linus Torvalds 已提交
5818
	case CPU_ONLINE:
5819
	case CPU_ONLINE_FROZEN:
5820
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5821
		wake_up_process(cpu_rq(cpu)->migration_thread);
5822 5823 5824

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5825
		raw_spin_lock_irqsave(&rq->lock, flags);
5826
		if (rq->rd) {
5827
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5828 5829

			set_rq_online(rq);
5830
		}
5831
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5832
		break;
5833

L
Linus Torvalds 已提交
5834 5835
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5836
	case CPU_UP_CANCELED_FROZEN:
5837 5838
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5839
		/* Unbind it from offline cpu so it can run. Fall thru. */
5840
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5841
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5842
		kthread_stop(cpu_rq(cpu)->migration_thread);
5843
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5844 5845
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5846

L
Linus Torvalds 已提交
5847
	case CPU_DEAD:
5848
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5849 5850 5851
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5852
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5853 5854
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5855
		raw_spin_lock_irq(&rq->lock);
5856
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5857 5858
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5859
		migrate_dead_tasks(cpu);
5860
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5861 5862
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5863
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5864 5865 5866 5867 5868
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5869
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5870
		while (!list_empty(&rq->migration_queue)) {
5871 5872
			struct migration_req *req;

L
Linus Torvalds 已提交
5873
			req = list_entry(rq->migration_queue.next,
5874
					 struct migration_req, list);
L
Linus Torvalds 已提交
5875
			list_del_init(&req->list);
5876
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5877
			complete(&req->done);
5878
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5879
		}
5880
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5881
		break;
G
Gregory Haskins 已提交
5882

5883 5884
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5885 5886
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5887
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5888
		if (rq->rd) {
5889
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5890
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5891
		}
5892
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5893
		break;
L
Linus Torvalds 已提交
5894 5895 5896 5897 5898
#endif
	}
	return NOTIFY_OK;
}

5899 5900 5901
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5902
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5903
 */
5904
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5905 5906 5907 5908
	.notifier_call = migration_call,
	.priority = 10
};

5909
static int __init migration_init(void)
L
Linus Torvalds 已提交
5910 5911
{
	void *cpu = (void *)(long)smp_processor_id();
5912
	int err;
5913 5914

	/* Start one for the boot CPU: */
5915 5916
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5917 5918
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5919

5920
	return 0;
L
Linus Torvalds 已提交
5921
}
5922
early_initcall(migration_init);
L
Linus Torvalds 已提交
5923 5924 5925
#endif

#ifdef CONFIG_SMP
5926

5927
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5928

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5939
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5940
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5941
{
I
Ingo Molnar 已提交
5942
	struct sched_group *group = sd->groups;
5943
	char str[256];
L
Linus Torvalds 已提交
5944

R
Rusty Russell 已提交
5945
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5946
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5947 5948 5949 5950

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5951
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5952
		if (sd->parent)
P
Peter Zijlstra 已提交
5953 5954
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5955
		return -1;
N
Nick Piggin 已提交
5956 5957
	}

P
Peter Zijlstra 已提交
5958
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5959

5960
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5961 5962
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5963
	}
5964
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5965 5966
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5967
	}
L
Linus Torvalds 已提交
5968

I
Ingo Molnar 已提交
5969
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5970
	do {
I
Ingo Molnar 已提交
5971
		if (!group) {
P
Peter Zijlstra 已提交
5972 5973
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5974 5975 5976
			break;
		}

5977
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5978 5979 5980
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5981 5982
			break;
		}
L
Linus Torvalds 已提交
5983

5984
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5985 5986
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5987 5988
			break;
		}
L
Linus Torvalds 已提交
5989

5990
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5991 5992
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5993 5994
			break;
		}
L
Linus Torvalds 已提交
5995

5996
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5997

R
Rusty Russell 已提交
5998
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5999

P
Peter Zijlstra 已提交
6000
		printk(KERN_CONT " %s", str);
6001
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6002 6003
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6004
		}
L
Linus Torvalds 已提交
6005

I
Ingo Molnar 已提交
6006 6007
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6008
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6009

6010
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6011
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6012

6013 6014
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6015 6016
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6017 6018
	return 0;
}
L
Linus Torvalds 已提交
6019

I
Ingo Molnar 已提交
6020 6021
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6022
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6023
	int level = 0;
L
Linus Torvalds 已提交
6024

6025 6026 6027
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6028 6029 6030 6031
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6032

I
Ingo Molnar 已提交
6033 6034
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6035
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6036 6037 6038 6039
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6040
	for (;;) {
6041
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6042
			break;
L
Linus Torvalds 已提交
6043 6044
		level++;
		sd = sd->parent;
6045
		if (!sd)
I
Ingo Molnar 已提交
6046 6047
			break;
	}
6048
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6049
}
6050
#else /* !CONFIG_SCHED_DEBUG */
6051
# define sched_domain_debug(sd, cpu) do { } while (0)
6052
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6053

6054
static int sd_degenerate(struct sched_domain *sd)
6055
{
6056
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6057 6058 6059 6060 6061 6062
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6063 6064 6065
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6066 6067 6068 6069 6070
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6071
	if (sd->flags & (SD_WAKE_AFFINE))
6072 6073 6074 6075 6076
		return 0;

	return 1;
}

6077 6078
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6079 6080 6081 6082 6083 6084
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6085
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6086 6087 6088 6089 6090 6091 6092
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6093 6094 6095
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6096 6097
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6098 6099 6100 6101 6102 6103 6104
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6105 6106
static void free_rootdomain(struct root_domain *rd)
{
6107 6108
	synchronize_sched();

6109 6110
	cpupri_cleanup(&rd->cpupri);

6111 6112 6113 6114 6115 6116
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6117 6118
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6119
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6120 6121
	unsigned long flags;

6122
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6123 6124

	if (rq->rd) {
I
Ingo Molnar 已提交
6125
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6126

6127
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6128
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6129

6130
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6131

I
Ingo Molnar 已提交
6132 6133 6134 6135 6136 6137 6138
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6139 6140 6141 6142 6143
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6144
	cpumask_set_cpu(rq->cpu, rd->span);
6145
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6146
		set_rq_online(rq);
G
Gregory Haskins 已提交
6147

6148
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6149 6150 6151

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6152 6153
}

L
Li Zefan 已提交
6154
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6155
{
6156 6157
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6158 6159
	memset(rd, 0, sizeof(*rd));

6160 6161
	if (bootmem)
		gfp = GFP_NOWAIT;
6162

6163
	if (!alloc_cpumask_var(&rd->span, gfp))
6164
		goto out;
6165
	if (!alloc_cpumask_var(&rd->online, gfp))
6166
		goto free_span;
6167
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6168
		goto free_online;
6169

P
Pekka Enberg 已提交
6170
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6171
		goto free_rto_mask;
6172
	return 0;
6173

6174 6175
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6176 6177 6178 6179
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6180
out:
6181
	return -ENOMEM;
G
Gregory Haskins 已提交
6182 6183 6184 6185
}

static void init_defrootdomain(void)
{
6186 6187
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6188 6189 6190
	atomic_set(&def_root_domain.refcount, 1);
}

6191
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6192 6193 6194 6195 6196 6197 6198
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6199 6200 6201 6202
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6203 6204 6205 6206

	return rd;
}

L
Linus Torvalds 已提交
6207
/*
I
Ingo Molnar 已提交
6208
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6209 6210
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6211 6212
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6213
{
6214
	struct rq *rq = cpu_rq(cpu);
6215 6216 6217
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6218
	for (tmp = sd; tmp; ) {
6219 6220 6221
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6222

6223
		if (sd_parent_degenerate(tmp, parent)) {
6224
			tmp->parent = parent->parent;
6225 6226
			if (parent->parent)
				parent->parent->child = tmp;
6227 6228
		} else
			tmp = tmp->parent;
6229 6230
	}

6231
	if (sd && sd_degenerate(sd)) {
6232
		sd = sd->parent;
6233 6234 6235
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6236 6237 6238

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6239
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6240
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6241 6242 6243
}

/* cpus with isolated domains */
6244
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6245 6246 6247 6248

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6249
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6250
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6251 6252 6253
	return 1;
}

I
Ingo Molnar 已提交
6254
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6255 6256

/*
6257 6258
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6259 6260
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6266
static void
6267 6268 6269
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6270
					struct sched_group **sg,
6271 6272
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6273 6274 6275 6276
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6277
	cpumask_clear(covered);
6278

6279
	for_each_cpu(i, span) {
6280
		struct sched_group *sg;
6281
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6282 6283
		int j;

6284
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6285 6286
			continue;

6287
		cpumask_clear(sched_group_cpus(sg));
6288
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6289

6290
		for_each_cpu(j, span) {
6291
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6292 6293
				continue;

6294
			cpumask_set_cpu(j, covered);
6295
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6306
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6307

6308
#ifdef CONFIG_NUMA
6309

6310 6311 6312 6313 6314
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6315
 * Find the next node to include in a given scheduling domain. Simply
6316 6317 6318 6319
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6320
static int find_next_best_node(int node, nodemask_t *used_nodes)
6321 6322 6323 6324 6325
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6326
	for (i = 0; i < nr_node_ids; i++) {
6327
		/* Start at @node */
6328
		n = (node + i) % nr_node_ids;
6329 6330 6331 6332 6333

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6334
		if (node_isset(n, *used_nodes))
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6346
	node_set(best_node, *used_nodes);
6347 6348 6349 6350 6351 6352
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6353
 * @span: resulting cpumask
6354
 *
I
Ingo Molnar 已提交
6355
 * Given a node, construct a good cpumask for its sched_domain to span. It
6356 6357 6358
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6359
static void sched_domain_node_span(int node, struct cpumask *span)
6360
{
6361
	nodemask_t used_nodes;
6362
	int i;
6363

6364
	cpumask_clear(span);
6365
	nodes_clear(used_nodes);
6366

6367
	cpumask_or(span, span, cpumask_of_node(node));
6368
	node_set(node, used_nodes);
6369 6370

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6371
		int next_node = find_next_best_node(node, &used_nodes);
6372

6373
		cpumask_or(span, span, cpumask_of_node(next_node));
6374 6375
	}
}
6376
#endif /* CONFIG_NUMA */
6377

6378
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6379

6380 6381
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6382 6383 6384
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6429
/*
6430
 * SMT sched-domains:
6431
 */
L
Linus Torvalds 已提交
6432
#ifdef CONFIG_SCHED_SMT
6433
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6434
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6435

I
Ingo Molnar 已提交
6436
static int
6437 6438
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6439
{
6440
	if (sg)
6441
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6442 6443
	return cpu;
}
6444
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6445

6446 6447 6448
/*
 * multi-core sched-domains:
 */
6449
#ifdef CONFIG_SCHED_MC
6450 6451
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6452
#endif /* CONFIG_SCHED_MC */
6453 6454

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6455
static int
6456 6457
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6458
{
6459
	int group;
6460

6461
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6462
	group = cpumask_first(mask);
6463
	if (sg)
6464
		*sg = &per_cpu(sched_group_core, group).sg;
6465
	return group;
6466 6467
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6468
static int
6469 6470
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6471
{
6472
	if (sg)
6473
		*sg = &per_cpu(sched_group_core, cpu).sg;
6474 6475 6476 6477
	return cpu;
}
#endif

6478 6479
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6480

I
Ingo Molnar 已提交
6481
static int
6482 6483
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6484
{
6485
	int group;
6486
#ifdef CONFIG_SCHED_MC
6487
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6488
	group = cpumask_first(mask);
6489
#elif defined(CONFIG_SCHED_SMT)
6490
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6491
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6492
#else
6493
	group = cpu;
L
Linus Torvalds 已提交
6494
#endif
6495
	if (sg)
6496
		*sg = &per_cpu(sched_group_phys, group).sg;
6497
	return group;
L
Linus Torvalds 已提交
6498 6499 6500 6501
}

#ifdef CONFIG_NUMA
/*
6502 6503 6504
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6505
 */
6506
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6507
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6508

6509
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6510
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6511

6512 6513 6514
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6515
{
6516 6517
	int group;

6518
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6519
	group = cpumask_first(nodemask);
6520 6521

	if (sg)
6522
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6523
	return group;
L
Linus Torvalds 已提交
6524
}
6525

6526 6527 6528 6529 6530 6531 6532
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6533
	do {
6534
		for_each_cpu(j, sched_group_cpus(sg)) {
6535
			struct sched_domain *sd;
6536

6537
			sd = &per_cpu(phys_domains, j).sd;
6538
			if (j != group_first_cpu(sd->groups)) {
6539 6540 6541 6542 6543 6544
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6545

6546
			sg->cpu_power += sd->groups->cpu_power;
6547 6548 6549
		}
		sg = sg->next;
	} while (sg != group_head);
6550
}
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6572 6573
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6574 6575 6576 6577 6578 6579 6580 6581 6582
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6583
	sg->cpu_power = 0;
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6602 6603
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6604 6605
			return -ENOMEM;
		}
6606
		sg->cpu_power = 0;
6607 6608 6609 6610 6611 6612 6613 6614 6615
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6616
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6617

6618
#ifdef CONFIG_NUMA
6619
/* Free memory allocated for various sched_group structures */
6620 6621
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6622
{
6623
	int cpu, i;
6624

6625
	for_each_cpu(cpu, cpu_map) {
6626 6627 6628 6629 6630 6631
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6632
		for (i = 0; i < nr_node_ids; i++) {
6633 6634
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6635
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6636
			if (cpumask_empty(nodemask))
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6653
#else /* !CONFIG_NUMA */
6654 6655
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6656 6657
{
}
6658
#endif /* CONFIG_NUMA */
6659

6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6674 6675
	long power;
	int weight;
6676 6677 6678

	WARN_ON(!sd || !sd->groups);

6679
	if (cpu != group_first_cpu(sd->groups))
6680 6681 6682 6683
		return;

	child = sd->child;

6684
	sd->groups->cpu_power = 0;
6685

6686 6687 6688 6689 6690
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6691 6692 6693
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6694
		 */
P
Peter Zijlstra 已提交
6695 6696
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6697
			power /= weight;
P
Peter Zijlstra 已提交
6698 6699
			power >>= SCHED_LOAD_SHIFT;
		}
6700
		sd->groups->cpu_power += power;
6701 6702 6703 6704
		return;
	}

	/*
6705
	 * Add cpu_power of each child group to this groups cpu_power.
6706 6707 6708
	 */
	group = child->groups;
	do {
6709
		sd->groups->cpu_power += group->cpu_power;
6710 6711 6712 6713
		group = group->next;
	} while (group != child->groups);
}

6714 6715 6716 6717 6718
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6719 6720 6721 6722 6723 6724
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6725
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6726

6727 6728 6729 6730 6731
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6732
	sd->level = SD_LV_##type;				\
6733
	SD_INIT_NAME(sd, type);					\
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6748 6749 6750 6751
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6752 6753 6754 6755 6756 6757
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6776
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6777 6778
	} else {
		/* turn on idle balance on this domain */
6779
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6780 6781 6782
	}
}

6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6803
#ifdef CONFIG_NUMA
6804 6805 6806 6807 6808 6809 6810
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6811
#endif
6812 6813 6814 6815
	case sa_none:
		break;
	}
}
6816

6817 6818 6819
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6820
#ifdef CONFIG_NUMA
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6831
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6832
		return sa_notcovered;
6833
	}
6834
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6835
#endif
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6848
		printk(KERN_WARNING "Cannot alloc root domain\n");
6849
		return sa_tmpmask;
G
Gregory Haskins 已提交
6850
	}
6851 6852
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6853

6854 6855 6856 6857
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6858
#ifdef CONFIG_NUMA
6859
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6860

6861 6862 6863 6864 6865
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6866
		set_domain_attribute(sd, attr);
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6881
#endif
6882 6883
	return sd;
}
L
Linus Torvalds 已提交
6884

6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6900

6901 6902 6903 6904 6905
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6906
#ifdef CONFIG_SCHED_MC
6907 6908 6909 6910 6911 6912 6913
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6914
#endif
6915 6916
	return sd;
}
6917

6918 6919 6920 6921 6922
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6923
#ifdef CONFIG_SCHED_SMT
6924 6925 6926 6927 6928 6929 6930
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6931
#endif
6932 6933
	return sd;
}
L
Linus Torvalds 已提交
6934

6935 6936 6937 6938
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6939
#ifdef CONFIG_SCHED_SMT
6940 6941 6942 6943 6944 6945 6946 6947
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6948
#endif
6949
#ifdef CONFIG_SCHED_MC
6950 6951 6952 6953 6954 6955 6956
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6957
#endif
6958 6959 6960 6961 6962 6963 6964
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6965
#ifdef CONFIG_NUMA
6966 6967 6968 6969 6970
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6971 6972
	default:
		break;
6973
	}
6974
}
6975

6976 6977 6978 6979 6980 6981 6982 6983 6984
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6985
	struct sched_domain *sd;
6986
	int i;
6987
#ifdef CONFIG_NUMA
6988
	d.sd_allnodes = 0;
6989
#endif
6990

6991 6992 6993 6994
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6995

L
Linus Torvalds 已提交
6996
	/*
6997
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6998
	 */
6999
	for_each_cpu(i, cpu_map) {
7000 7001
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7002

7003
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7004
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7005
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7006
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7007
	}
7008

7009
	for_each_cpu(i, cpu_map) {
7010
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7011
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7012
	}
7013

L
Linus Torvalds 已提交
7014
	/* Set up physical groups */
7015 7016
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7017

L
Linus Torvalds 已提交
7018 7019
#ifdef CONFIG_NUMA
	/* Set up node groups */
7020 7021
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7022

7023 7024
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7025
			goto error;
L
Linus Torvalds 已提交
7026 7027 7028
#endif

	/* Calculate CPU power for physical packages and nodes */
7029
#ifdef CONFIG_SCHED_SMT
7030
	for_each_cpu(i, cpu_map) {
7031
		sd = &per_cpu(cpu_domains, i).sd;
7032
		init_sched_groups_power(i, sd);
7033
	}
L
Linus Torvalds 已提交
7034
#endif
7035
#ifdef CONFIG_SCHED_MC
7036
	for_each_cpu(i, cpu_map) {
7037
		sd = &per_cpu(core_domains, i).sd;
7038
		init_sched_groups_power(i, sd);
7039 7040
	}
#endif
7041

7042
	for_each_cpu(i, cpu_map) {
7043
		sd = &per_cpu(phys_domains, i).sd;
7044
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7045 7046
	}

7047
#ifdef CONFIG_NUMA
7048
	for (i = 0; i < nr_node_ids; i++)
7049
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7050

7051
	if (d.sd_allnodes) {
7052
		struct sched_group *sg;
7053

7054
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7055
								d.tmpmask);
7056 7057
		init_numa_sched_groups_power(sg);
	}
7058 7059
#endif

L
Linus Torvalds 已提交
7060
	/* Attach the domains */
7061
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7062
#ifdef CONFIG_SCHED_SMT
7063
		sd = &per_cpu(cpu_domains, i).sd;
7064
#elif defined(CONFIG_SCHED_MC)
7065
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7066
#else
7067
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7068
#endif
7069
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7070
	}
7071

7072 7073 7074
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7075 7076

error:
7077 7078
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7079
}
P
Paul Jackson 已提交
7080

7081
static int build_sched_domains(const struct cpumask *cpu_map)
7082 7083 7084 7085
{
	return __build_sched_domains(cpu_map, NULL);
}

7086
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7087
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7088 7089
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7090 7091 7092

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7093 7094
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7095
 */
7096
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7097

7098 7099 7100 7101 7102 7103
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7104
{
7105
	return 0;
7106 7107
}

7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7133
/*
I
Ingo Molnar 已提交
7134
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7135 7136
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7137
 */
7138
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7139
{
7140 7141
	int err;

7142
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7143
	ndoms_cur = 1;
7144
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7145
	if (!doms_cur)
7146 7147
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7148
	dattr_cur = NULL;
7149
	err = build_sched_domains(doms_cur[0]);
7150
	register_sched_domain_sysctl();
7151 7152

	return err;
7153 7154
}

7155 7156
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7157
{
7158
	free_sched_groups(cpu_map, tmpmask);
7159
}
L
Linus Torvalds 已提交
7160

7161 7162 7163 7164
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7165
static void detach_destroy_domains(const struct cpumask *cpu_map)
7166
{
7167 7168
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7169 7170
	int i;

7171
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7172
		cpu_attach_domain(NULL, &def_root_domain, i);
7173
	synchronize_sched();
7174
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7175 7176
}

7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7193 7194
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7195
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7196 7197 7198
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7199
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7200 7201 7202
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7203 7204 7205
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7206 7207 7208 7209 7210 7211
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7212
 *
7213
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7214 7215
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7216
 *
P
Paul Jackson 已提交
7217 7218
 * Call with hotplug lock held
 */
7219
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7220
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7221
{
7222
	int i, j, n;
7223
	int new_topology;
P
Paul Jackson 已提交
7224

7225
	mutex_lock(&sched_domains_mutex);
7226

7227 7228 7229
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7230 7231 7232
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7233
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7234 7235 7236

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7237
		for (j = 0; j < n && !new_topology; j++) {
7238
			if (cpumask_equal(doms_cur[i], doms_new[j])
7239
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7240 7241 7242
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7243
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7244 7245 7246 7247
match1:
		;
	}

7248 7249
	if (doms_new == NULL) {
		ndoms_cur = 0;
7250
		doms_new = &fallback_doms;
7251
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7252
		WARN_ON_ONCE(dattr_new);
7253 7254
	}

P
Paul Jackson 已提交
7255 7256
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7257
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7258
			if (cpumask_equal(doms_new[i], doms_cur[j])
7259
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7260 7261 7262
				goto match2;
		}
		/* no match - add a new doms_new */
7263
		__build_sched_domains(doms_new[i],
7264
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7265 7266 7267 7268 7269
match2:
		;
	}

	/* Remember the new sched domains */
7270 7271
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7272
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7273
	doms_cur = doms_new;
7274
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7275
	ndoms_cur = ndoms_new;
7276 7277

	register_sched_domain_sysctl();
7278

7279
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7280 7281
}

7282
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7283
static void arch_reinit_sched_domains(void)
7284
{
7285
	get_online_cpus();
7286 7287 7288 7289

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7290
	rebuild_sched_domains();
7291
	put_online_cpus();
7292 7293 7294 7295
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7296
	unsigned int level = 0;
7297

7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7309 7310 7311
		return -EINVAL;

	if (smt)
7312
		sched_smt_power_savings = level;
7313
	else
7314
		sched_mc_power_savings = level;
7315

7316
	arch_reinit_sched_domains();
7317

7318
	return count;
7319 7320 7321
}

#ifdef CONFIG_SCHED_MC
7322
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7323
					   struct sysdev_class_attribute *attr,
7324
					   char *page)
7325 7326 7327
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7328
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7329
					    struct sysdev_class_attribute *attr,
7330
					    const char *buf, size_t count)
7331 7332 7333
{
	return sched_power_savings_store(buf, count, 0);
}
7334 7335 7336
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7337 7338 7339
#endif

#ifdef CONFIG_SCHED_SMT
7340
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7341
					    struct sysdev_class_attribute *attr,
7342
					    char *page)
7343 7344 7345
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7346
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7347
					     struct sysdev_class_attribute *attr,
7348
					     const char *buf, size_t count)
7349 7350 7351
{
	return sched_power_savings_store(buf, count, 1);
}
7352 7353
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7354 7355 7356
		   sched_smt_power_savings_store);
#endif

7357
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7373
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7374

7375
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7376
/*
7377 7378
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7379 7380 7381
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7382 7383 7384 7385
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7386 7387 7388 7389
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7390
		partition_sched_domains(1, NULL, NULL);
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7401
{
P
Peter Zijlstra 已提交
7402 7403
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7404 7405
	switch (action) {
	case CPU_DOWN_PREPARE:
7406
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7407
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7408 7409 7410
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7411
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7412
	case CPU_ONLINE:
7413
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7414
		enable_runtime(cpu_rq(cpu));
7415 7416
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7417 7418 7419 7420 7421 7422 7423
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7424 7425 7426
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7427
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7428

7429 7430 7431 7432 7433
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7434
	get_online_cpus();
7435
	mutex_lock(&sched_domains_mutex);
7436
	arch_init_sched_domains(cpu_active_mask);
7437 7438 7439
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7440
	mutex_unlock(&sched_domains_mutex);
7441
	put_online_cpus();
7442 7443

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7444 7445
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7446 7447 7448 7449 7450
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7451
	init_hrtick();
7452 7453

	/* Move init over to a non-isolated CPU */
7454
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7455
		BUG();
I
Ingo Molnar 已提交
7456
	sched_init_granularity();
7457
	free_cpumask_var(non_isolated_cpus);
7458

7459
	init_sched_rt_class();
L
Linus Torvalds 已提交
7460 7461 7462 7463
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7464
	sched_init_granularity();
L
Linus Torvalds 已提交
7465 7466 7467
}
#endif /* CONFIG_SMP */

7468 7469
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7470 7471 7472 7473 7474 7475 7476
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7477
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7478 7479
{
	cfs_rq->tasks_timeline = RB_ROOT;
7480
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7481 7482 7483
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7484
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7485 7486
}

P
Peter Zijlstra 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7500
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7501
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7502
#ifdef CONFIG_SMP
7503
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7504 7505
#endif
#endif
P
Peter Zijlstra 已提交
7506 7507 7508
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7509
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7510 7511 7512 7513
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7514
	rt_rq->rt_runtime = 0;
7515
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7516

7517
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7518
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7519 7520
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7521 7522
}

P
Peter Zijlstra 已提交
7523
#ifdef CONFIG_FAIR_GROUP_SCHED
7524 7525 7526
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7527
{
7528
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7529 7530 7531 7532 7533 7534 7535
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7536 7537 7538 7539
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7540 7541 7542 7543 7544
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7545 7546
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7547
	se->load.inv_weight = 0;
7548
	se->parent = parent;
P
Peter Zijlstra 已提交
7549
}
7550
#endif
P
Peter Zijlstra 已提交
7551

7552
#ifdef CONFIG_RT_GROUP_SCHED
7553 7554 7555
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7556
{
7557 7558
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7559 7560 7561
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7562
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7563 7564 7565 7566
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7567 7568 7569
	if (!rt_se)
		return;

7570 7571 7572 7573 7574
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7575
	rt_se->my_q = rt_rq;
7576
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7577 7578 7579 7580
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7581 7582
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7583
	int i, j;
7584 7585 7586 7587 7588 7589 7590
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7591
#endif
7592
#ifdef CONFIG_CPUMASK_OFFSTACK
7593
	alloc_size += num_possible_cpus() * cpumask_size();
7594 7595
#endif
	if (alloc_size) {
7596
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7597 7598 7599 7600 7601 7602 7603

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7604

7605
#endif /* CONFIG_FAIR_GROUP_SCHED */
7606 7607 7608 7609 7610
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7611 7612
		ptr += nr_cpu_ids * sizeof(void **);

7613
#endif /* CONFIG_RT_GROUP_SCHED */
7614 7615 7616 7617 7618 7619
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7620
	}
I
Ingo Molnar 已提交
7621

G
Gregory Haskins 已提交
7622 7623 7624 7625
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7626 7627 7628 7629 7630 7631
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7632
#endif /* CONFIG_RT_GROUP_SCHED */
7633

D
Dhaval Giani 已提交
7634
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7635
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7636 7637
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7638
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7639

7640 7641 7642 7643
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7644
	for_each_possible_cpu(i) {
7645
		struct rq *rq;
L
Linus Torvalds 已提交
7646 7647

		rq = cpu_rq(i);
7648
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7649
		rq->nr_running = 0;
7650 7651
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7652
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7653
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7654
#ifdef CONFIG_FAIR_GROUP_SCHED
7655
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7656
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7672
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7673 7674 7675 7676
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7677
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7678
#endif
D
Dhaval Giani 已提交
7679 7680 7681
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7682
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7683
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7684
#ifdef CONFIG_CGROUP_SCHED
7685
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7686
#endif
I
Ingo Molnar 已提交
7687
#endif
L
Linus Torvalds 已提交
7688

I
Ingo Molnar 已提交
7689 7690
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7691
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7692
		rq->sd = NULL;
G
Gregory Haskins 已提交
7693
		rq->rd = NULL;
7694
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7695
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7696
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7697
		rq->push_cpu = 0;
7698
		rq->cpu = i;
7699
		rq->online = 0;
L
Linus Torvalds 已提交
7700
		rq->migration_thread = NULL;
7701 7702
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7703
		INIT_LIST_HEAD(&rq->migration_queue);
7704
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7705
#endif
P
Peter Zijlstra 已提交
7706
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7707 7708 7709
		atomic_set(&rq->nr_iowait, 0);
	}

7710
	set_load_weight(&init_task);
7711

7712 7713 7714 7715
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7716
#ifdef CONFIG_SMP
7717
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7718 7719
#endif

7720
#ifdef CONFIG_RT_MUTEXES
7721
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7722 7723
#endif

L
Linus Torvalds 已提交
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7737 7738 7739

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7740 7741 7742 7743
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7744

7745
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7746
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7747
#ifdef CONFIG_SMP
7748
#ifdef CONFIG_NO_HZ
7749
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7750
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7751
#endif
R
Rusty Russell 已提交
7752 7753 7754
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7755
#endif /* SMP */
7756

7757
	perf_event_init();
7758

7759
	scheduler_running = 1;
L
Linus Torvalds 已提交
7760 7761 7762
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7763 7764
static inline int preempt_count_equals(int preempt_offset)
{
7765
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7766 7767 7768 7769

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7770
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7771
{
7772
#ifdef in_atomic
L
Linus Torvalds 已提交
7773 7774
	static unsigned long prev_jiffy;	/* ratelimiting */

7775 7776
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7777 7778 7779 7780 7781
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7782 7783 7784 7785 7786 7787 7788
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7789 7790 7791 7792 7793

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7794 7795 7796 7797 7798 7799
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7800 7801 7802
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7803

7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7814 7815
void normalize_rt_tasks(void)
{
7816
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7817
	unsigned long flags;
7818
	struct rq *rq;
L
Linus Torvalds 已提交
7819

7820
	read_lock_irqsave(&tasklist_lock, flags);
7821
	do_each_thread(g, p) {
7822 7823 7824 7825 7826 7827
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7828 7829
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7830 7831 7832
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7833
#endif
I
Ingo Molnar 已提交
7834 7835 7836 7837 7838 7839 7840 7841

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7842
			continue;
I
Ingo Molnar 已提交
7843
		}
L
Linus Torvalds 已提交
7844

7845
		raw_spin_lock(&p->pi_lock);
7846
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7847

7848
		normalize_task(rq, p);
7849

7850
		__task_rq_unlock(rq);
7851
		raw_spin_unlock(&p->pi_lock);
7852 7853
	} while_each_thread(g, p);

7854
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7855 7856 7857
}

#endif /* CONFIG_MAGIC_SYSRQ */
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7876
struct task_struct *curr_task(int cpu)
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7887 7888
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7889 7890 7891 7892 7893 7894 7895
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7896
void set_curr_task(int cpu, struct task_struct *p)
7897 7898 7899 7900 7901
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7902

7903 7904
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7919 7920
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7921 7922
{
	struct cfs_rq *cfs_rq;
7923
	struct sched_entity *se;
7924
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7925 7926
	int i;

7927
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7928 7929
	if (!tg->cfs_rq)
		goto err;
7930
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7931 7932
	if (!tg->se)
		goto err;
7933 7934

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7935 7936

	for_each_possible_cpu(i) {
7937
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7938

7939 7940
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7941 7942 7943
		if (!cfs_rq)
			goto err;

7944 7945
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7946
		if (!se)
7947
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7948

7949
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7950 7951 7952 7953
	}

	return 1;

7954 7955
 err_free_rq:
	kfree(cfs_rq);
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7970
#else /* !CONFG_FAIR_GROUP_SCHED */
7971 7972 7973 7974
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7975 7976
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7988
#endif /* CONFIG_FAIR_GROUP_SCHED */
7989 7990

#ifdef CONFIG_RT_GROUP_SCHED
7991 7992 7993 7994
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7995 7996
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8008 8009
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8010 8011
{
	struct rt_rq *rt_rq;
8012
	struct sched_rt_entity *rt_se;
8013 8014 8015
	struct rq *rq;
	int i;

8016
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8017 8018
	if (!tg->rt_rq)
		goto err;
8019
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8020 8021 8022
	if (!tg->rt_se)
		goto err;

8023 8024
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8025 8026 8027 8028

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8029 8030
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8031 8032
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8033

8034 8035
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8036
		if (!rt_se)
8037
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8038

8039
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8040 8041
	}

8042 8043
	return 1;

8044 8045
 err_free_rq:
	kfree(rt_rq);
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8060
#else /* !CONFIG_RT_GROUP_SCHED */
8061 8062 8063 8064
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8065 8066
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8078
#endif /* CONFIG_RT_GROUP_SCHED */
8079

D
Dhaval Giani 已提交
8080
#ifdef CONFIG_CGROUP_SCHED
8081 8082 8083 8084 8085 8086 8087 8088
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8089
struct task_group *sched_create_group(struct task_group *parent)
8090 8091 8092 8093 8094 8095 8096 8097 8098
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8099
	if (!alloc_fair_sched_group(tg, parent))
8100 8101
		goto err;

8102
	if (!alloc_rt_sched_group(tg, parent))
8103 8104
		goto err;

8105
	spin_lock_irqsave(&task_group_lock, flags);
8106
	for_each_possible_cpu(i) {
8107 8108
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8109
	}
P
Peter Zijlstra 已提交
8110
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8111 8112 8113 8114 8115

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8116
	list_add_rcu(&tg->siblings, &parent->children);
8117
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8118

8119
	return tg;
S
Srivatsa Vaddagiri 已提交
8120 8121

err:
P
Peter Zijlstra 已提交
8122
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8123 8124 8125
	return ERR_PTR(-ENOMEM);
}

8126
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8127
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8128 8129
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8130
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8131 8132
}

8133
/* Destroy runqueue etc associated with a task group */
8134
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8135
{
8136
	unsigned long flags;
8137
	int i;
S
Srivatsa Vaddagiri 已提交
8138

8139
	spin_lock_irqsave(&task_group_lock, flags);
8140
	for_each_possible_cpu(i) {
8141 8142
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8143
	}
P
Peter Zijlstra 已提交
8144
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8145
	list_del_rcu(&tg->siblings);
8146
	spin_unlock_irqrestore(&task_group_lock, flags);
8147 8148

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8149
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8150 8151
}

8152
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8153 8154 8155
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8156 8157
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8158 8159 8160 8161 8162 8163 8164
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8165
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8166 8167
	on_rq = tsk->se.on_rq;

8168
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8169
		dequeue_task(rq, tsk, 0);
8170 8171
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8172

P
Peter Zijlstra 已提交
8173
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8174

P
Peter Zijlstra 已提交
8175 8176
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8177
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8178 8179
#endif

8180 8181 8182
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8183
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8184 8185 8186

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8187
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8188

8189
#ifdef CONFIG_FAIR_GROUP_SCHED
8190
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8191 8192 8193 8194 8195
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8196
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8197 8198 8199
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8200
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8201

8202
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8203
		enqueue_entity(cfs_rq, se, 0);
8204
}
8205

8206 8207 8208 8209 8210 8211
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8212
	raw_spin_lock_irqsave(&rq->lock, flags);
8213
	__set_se_shares(se, shares);
8214
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8215 8216
}

8217 8218
static DEFINE_MUTEX(shares_mutex);

8219
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8220 8221
{
	int i;
8222
	unsigned long flags;
8223

8224 8225 8226 8227 8228 8229
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8230 8231
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8232 8233
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8234

8235
	mutex_lock(&shares_mutex);
8236
	if (tg->shares == shares)
8237
		goto done;
S
Srivatsa Vaddagiri 已提交
8238

8239
	spin_lock_irqsave(&task_group_lock, flags);
8240 8241
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8242
	list_del_rcu(&tg->siblings);
8243
	spin_unlock_irqrestore(&task_group_lock, flags);
8244 8245 8246 8247 8248 8249 8250 8251

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8252
	tg->shares = shares;
8253 8254 8255 8256 8257
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8258
		set_se_shares(tg->se[i], shares);
8259
	}
S
Srivatsa Vaddagiri 已提交
8260

8261 8262 8263 8264
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8265
	spin_lock_irqsave(&task_group_lock, flags);
8266 8267
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8268
	list_add_rcu(&tg->siblings, &tg->parent->children);
8269
	spin_unlock_irqrestore(&task_group_lock, flags);
8270
done:
8271
	mutex_unlock(&shares_mutex);
8272
	return 0;
S
Srivatsa Vaddagiri 已提交
8273 8274
}

8275 8276 8277 8278
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8279
#endif
8280

8281
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8282
/*
P
Peter Zijlstra 已提交
8283
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8284
 */
P
Peter Zijlstra 已提交
8285 8286 8287 8288 8289
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8290
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8291

P
Peter Zijlstra 已提交
8292
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8293 8294
}

P
Peter Zijlstra 已提交
8295 8296
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8297
{
P
Peter Zijlstra 已提交
8298
	struct task_struct *g, *p;
8299

P
Peter Zijlstra 已提交
8300 8301 8302 8303
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8304

P
Peter Zijlstra 已提交
8305 8306
	return 0;
}
8307

P
Peter Zijlstra 已提交
8308 8309 8310 8311 8312
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8313

P
Peter Zijlstra 已提交
8314 8315 8316 8317 8318 8319
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8320

P
Peter Zijlstra 已提交
8321 8322
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8323

P
Peter Zijlstra 已提交
8324 8325 8326
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8327 8328
	}

8329 8330 8331 8332 8333
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8334

8335 8336 8337
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8338 8339
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8340

P
Peter Zijlstra 已提交
8341
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8342

8343 8344 8345 8346 8347
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8348

8349 8350 8351
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8352 8353 8354
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8355

P
Peter Zijlstra 已提交
8356 8357 8358 8359
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8360

P
Peter Zijlstra 已提交
8361
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8362
	}
P
Peter Zijlstra 已提交
8363

P
Peter Zijlstra 已提交
8364 8365 8366 8367
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8368 8369
}

P
Peter Zijlstra 已提交
8370
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8371
{
P
Peter Zijlstra 已提交
8372 8373 8374 8375 8376 8377 8378
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8379 8380
}

8381 8382
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8383
{
P
Peter Zijlstra 已提交
8384
	int i, err = 0;
P
Peter Zijlstra 已提交
8385 8386

	mutex_lock(&rt_constraints_mutex);
8387
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8388 8389
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8390
		goto unlock;
P
Peter Zijlstra 已提交
8391

8392
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8393 8394
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8395 8396 8397 8398

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8399
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8400
		rt_rq->rt_runtime = rt_runtime;
8401
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8402
	}
8403
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8404
 unlock:
8405
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8406 8407 8408
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8409 8410
}

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8423 8424 8425 8426
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8427
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8428 8429
		return -1;

8430
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8431 8432 8433
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8434 8435 8436 8437 8438 8439 8440 8441

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8442 8443 8444
	if (rt_period == 0)
		return -EINVAL;

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8459
	u64 runtime, period;
8460 8461
	int ret = 0;

8462 8463 8464
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8465 8466 8467 8468 8469 8470 8471 8472
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8473

8474
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8475
	read_lock(&tasklist_lock);
8476
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8477
	read_unlock(&tasklist_lock);
8478 8479 8480 8481
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8492
#else /* !CONFIG_RT_GROUP_SCHED */
8493 8494
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8495 8496 8497
	unsigned long flags;
	int i;

8498 8499 8500
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8501 8502 8503 8504 8505 8506 8507
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8508
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8509 8510 8511
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8512
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8513
		rt_rq->rt_runtime = global_rt_runtime();
8514
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8515
	}
8516
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8517

8518 8519
	return 0;
}
8520
#endif /* CONFIG_RT_GROUP_SCHED */
8521 8522

int sched_rt_handler(struct ctl_table *table, int write,
8523
		void __user *buffer, size_t *lenp,
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8534
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8551

8552
#ifdef CONFIG_CGROUP_SCHED
8553 8554

/* return corresponding task_group object of a cgroup */
8555
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8556
{
8557 8558
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8559 8560 8561
}

static struct cgroup_subsys_state *
8562
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8563
{
8564
	struct task_group *tg, *parent;
8565

8566
	if (!cgrp->parent) {
8567 8568 8569 8570
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8571 8572
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8573 8574 8575 8576 8577 8578
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8579 8580
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8581
{
8582
	struct task_group *tg = cgroup_tg(cgrp);
8583 8584 8585 8586

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8587
static int
8588
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8589
{
8590
#ifdef CONFIG_RT_GROUP_SCHED
8591
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8592 8593
		return -EINVAL;
#else
8594 8595 8596
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8597
#endif
8598 8599
	return 0;
}
8600

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8620 8621 8622 8623
	return 0;
}

static void
8624
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8625 8626
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8627 8628
{
	sched_move_task(tsk);
8629 8630 8631 8632 8633 8634 8635 8636
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8637 8638
}

8639
#ifdef CONFIG_FAIR_GROUP_SCHED
8640
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8641
				u64 shareval)
8642
{
8643
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8644 8645
}

8646
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8647
{
8648
	struct task_group *tg = cgroup_tg(cgrp);
8649 8650 8651

	return (u64) tg->shares;
}
8652
#endif /* CONFIG_FAIR_GROUP_SCHED */
8653

8654
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8655
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8656
				s64 val)
P
Peter Zijlstra 已提交
8657
{
8658
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8659 8660
}

8661
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8662
{
8663
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8664
}
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8676
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8677

8678
static struct cftype cpu_files[] = {
8679
#ifdef CONFIG_FAIR_GROUP_SCHED
8680 8681
	{
		.name = "shares",
8682 8683
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8684
	},
8685 8686
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8687
	{
P
Peter Zijlstra 已提交
8688
		.name = "rt_runtime_us",
8689 8690
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8691
	},
8692 8693
	{
		.name = "rt_period_us",
8694 8695
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8696
	},
8697
#endif
8698 8699 8700 8701
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8702
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8703 8704 8705
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8706 8707 8708 8709 8710 8711 8712
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8713 8714 8715
	.early_init	= 1,
};

8716
#endif	/* CONFIG_CGROUP_SCHED */
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8727
/* track cpu usage of a group of tasks and its child groups */
8728 8729 8730
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8731
	u64 __percpu *cpuusage;
8732
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8733
	struct cpuacct *parent;
8734 8735 8736 8737 8738
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8739
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8740
{
8741
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8754
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8755 8756
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8757
	int i;
8758 8759

	if (!ca)
8760
		goto out;
8761 8762

	ca->cpuusage = alloc_percpu(u64);
8763 8764 8765 8766 8767 8768
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8769

8770 8771 8772
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8773
	return &ca->css;
8774 8775 8776 8777 8778 8779 8780 8781 8782

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8783 8784 8785
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8786
static void
8787
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8788
{
8789
	struct cpuacct *ca = cgroup_ca(cgrp);
8790
	int i;
8791

8792 8793
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8794 8795 8796 8797
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8798 8799
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8800
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8801 8802 8803 8804 8805 8806
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8807
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8808
	data = *cpuusage;
8809
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8810 8811 8812 8813 8814 8815 8816 8817 8818
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8819
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8820 8821 8822 8823 8824

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8825
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8826
	*cpuusage = val;
8827
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8828 8829 8830 8831 8832
#else
	*cpuusage = val;
#endif
}

8833
/* return total cpu usage (in nanoseconds) of a group */
8834
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8835
{
8836
	struct cpuacct *ca = cgroup_ca(cgrp);
8837 8838 8839
	u64 totalcpuusage = 0;
	int i;

8840 8841
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8842 8843 8844 8845

	return totalcpuusage;
}

8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8858 8859
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8860 8861 8862 8863 8864

out:
	return err;
}

8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8899 8900 8901
static struct cftype files[] = {
	{
		.name = "usage",
8902 8903
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8904
	},
8905 8906 8907 8908
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8909 8910 8911 8912
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8913 8914
};

8915
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8916
{
8917
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8918 8919 8920 8921 8922 8923 8924 8925 8926 8927
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8928
	int cpu;
8929

L
Li Zefan 已提交
8930
	if (unlikely(!cpuacct_subsys.active))
8931 8932
		return;

8933
	cpu = task_cpu(tsk);
8934 8935 8936

	rcu_read_lock();

8937 8938
	ca = task_ca(tsk);

8939
	for (; ca; ca = ca->parent) {
8940
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8941 8942
		*cpuusage += cputime;
	}
8943 8944

	rcu_read_unlock();
8945 8946
}

8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8964 8965 8966 8967 8968 8969 8970
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8971
	int batch = CPUACCT_BATCH;
8972 8973 8974 8975 8976 8977 8978 8979

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8980
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8981 8982 8983 8984 8985
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8986 8987 8988 8989 8990 8991 8992 8993
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9079
		raw_spin_lock_irqsave(&rq->lock, flags);
9080
		list_add(&req->list, &rq->migration_queue);
9081
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9082 9083 9084 9085 9086 9087 9088
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9089
		raw_spin_lock_irqsave(&rq->lock, flags);
9090 9091 9092
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9093
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9094 9095
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9096
	synchronize_sched_expedited_count++;
9097 9098 9099 9100 9101 9102 9103 9104
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */