sched.c 169.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
struct task_grp {
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

192 193
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
194 195 196 197

/* Default task group.
 * 	Every task in system belong to this group at bootup.
 */
198 199 200 201 202
struct task_grp init_task_grp =  {
				.se     = init_sched_entity_p,
				.cfs_rq = init_cfs_rq_p,
				 };

203 204 205
#ifdef CONFIG_FAIR_USER_SCHED
#define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
#else
206
#define INIT_TASK_GRP_LOAD	NICE_0_LOAD
207 208
#endif

209
static int init_task_grp_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
210 211 212 213

/* return group to which a task belongs */
static inline struct task_grp *task_grp(struct task_struct *p)
{
214 215
	struct task_grp *tg;

216 217 218
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
219
	tg  = &init_task_grp;
220
#endif
221 222

	return tg;
S
Srivatsa Vaddagiri 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_grp(p)->se[task_cpu(p)];
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
238 239 240 241 242 243
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
244
	u64 min_vruntime;
I
Ingo Molnar 已提交
245 246 247 248 249 250 251 252

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
253 254 255

	unsigned long nr_spread_over;

256
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
257 258 259 260 261 262 263 264 265 266
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
S
Srivatsa Vaddagiri 已提交
267
	struct task_grp *tg;    /* group that "owns" this runqueue */
268
	struct rcu_head rcu;
I
Ingo Molnar 已提交
269 270
#endif
};
L
Linus Torvalds 已提交
271

I
Ingo Molnar 已提交
272 273 274 275 276 277 278
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
279 280 281 282 283 284 285
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
286
struct rq {
I
Ingo Molnar 已提交
287
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
288 289 290 291 292 293

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
294 295
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296
	unsigned char idle_at_tick;
297 298 299
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
300
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
301 302 303 304 305 306
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
307
#endif
I
Ingo Molnar 已提交
308
	struct rt_rq  rt;
L
Linus Torvalds 已提交
309 310 311 312 313 314 315 316 317

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

318
	struct task_struct *curr, *idle;
319
	unsigned long next_balance;
L
Linus Torvalds 已提交
320
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
321 322 323 324 325

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
326 327
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
328
	u64 tick_timestamp;
I
Ingo Molnar 已提交
329

L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
338
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
339

340
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
362 363 364

	/* BKL stats */
	unsigned long bkl_cnt;
L
Linus Torvalds 已提交
365
#endif
366
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
367 368
};

369
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
371

I
Ingo Molnar 已提交
372 373 374 375 376
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

377 378 379 380 381 382 383 384 385
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
386
/*
I
Ingo Molnar 已提交
387 388
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
389
 */
I
Ingo Molnar 已提交
390
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
391 392 393 394 395 396
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
397 398 399
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
400 401 402 403 404 405 406 407 408 409
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
410 411 412 413 414
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
415 416 417 418 419 420 421 422 423 424
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
425
}
I
Ingo Molnar 已提交
426

I
Ingo Molnar 已提交
427 428 429 430
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
431 432
}

N
Nick Piggin 已提交
433 434
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
436 437 438 439
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
440 441
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
442 443 444 445 446 447

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
461 462 463 464
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
	SCHED_FEAT_USE_TREE_AVG         = 4,
	SCHED_FEAT_APPROX_AVG           = 8,
I
Ingo Molnar 已提交
465 466 467 468
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
469 470 471
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_USE_TREE_AVG		*0 |
		SCHED_FEAT_APPROX_AVG		*0;
I
Ingo Molnar 已提交
472 473 474

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

475 476 477 478 479 480 481 482
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
483
	struct rq *rq;
484

485
	local_irq_save(flags);
I
Ingo Molnar 已提交
486 487 488
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
489
	local_irq_restore(flags);
490 491 492 493

	return now;
}

L
Linus Torvalds 已提交
494
#ifndef prepare_arch_switch
495 496 497 498 499 500 501
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
502
static inline int task_running(struct rq *rq, struct task_struct *p)
503 504 505 506
{
	return rq->curr == p;
}

507
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
508 509 510
{
}

511
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
512
{
513 514 515 516
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
517 518 519 520 521 522 523
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

524 525 526 527
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
528
static inline int task_running(struct rq *rq, struct task_struct *p)
529 530 531 532 533 534 535 536
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

537
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

554
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
555 556 557 558 559 560 561 562 563 564 565 566
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
567
#endif
568 569
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
570

571 572 573 574
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
575
static inline struct rq *__task_rq_lock(struct task_struct *p)
576 577
	__acquires(rq->lock)
{
578
	struct rq *rq;
579 580 581 582 583 584 585 586 587 588 589

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
590 591 592 593 594
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
595
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
596 597
	__acquires(rq->lock)
{
598
	struct rq *rq;
L
Linus Torvalds 已提交
599 600 601 602 603 604 605 606 607 608 609 610

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

611
static inline void __task_rq_unlock(struct rq *rq)
612 613 614 615 616
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

617
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
618 619 620 621 622 623
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
624
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
625
 */
626
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
627 628
	__acquires(rq->lock)
{
629
	struct rq *rq;
L
Linus Torvalds 已提交
630 631 632 633 634 635 636 637

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

638
/*
639
 * We are going deep-idle (irqs are disabled):
640
 */
641
void sched_clock_idle_sleep_event(void)
642
{
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
659

660 661 662 663 664 665 666 667 668 669 670
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
671
}
672
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
673

I
Ingo Molnar 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

726 727 728 729 730 731 732 733
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
734 735 736
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
737
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
738

739
static unsigned long
740 741 742 743 744 745
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
746
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
747 748 749 750 751

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
752
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
753
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
754 755
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
756
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
757

758
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
759 760 761 762 763 764 765 766
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

767
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
768 769 770 771
{
	lw->weight += inc;
}

772
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
773 774 775 776
{
	lw->weight -= dec;
}

777 778 779 780 781 782 783 784 785
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
786 787 788 789 790 791 792 793 794 795 796
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 798 799
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
800 801
 */
static const int prio_to_weight[40] = {
802 803 804 805 806 807 808 809
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
810 811
};

812 813 814 815 816 817 818
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
819
static const u32 prio_to_wmult[40] = {
820 821 822 823 824 825 826 827
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
828
};
829

I
Ingo Molnar 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
847
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
848 849 850 851 852 853 854 855 856 857 858

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

859 860 861 862
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
863
 * total load (rq->load.weight) on the runqueue, while
864 865 866 867 868 869 870
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
871
 * This function is called /before/ updating rq->load
872 873
 * and when switching tasks.
 */
874
static inline void inc_load(struct rq *rq, const struct task_struct *p)
875
{
876
	update_load_add(&rq->load, p->se.load.weight);
877 878
}

879
static inline void dec_load(struct rq *rq, const struct task_struct *p)
880
{
881
	update_load_sub(&rq->load, p->se.load.weight);
882 883
}

884
static void inc_nr_running(struct task_struct *p, struct rq *rq)
885 886
{
	rq->nr_running++;
887
	inc_load(rq, p);
888 889
}

890
static void dec_nr_running(struct task_struct *p, struct rq *rq)
891 892
{
	rq->nr_running--;
893
	dec_load(rq, p);
894 895
}

896 897 898
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
899 900 901 902
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
903

I
Ingo Molnar 已提交
904 905 906 907 908 909 910 911
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
912

I
Ingo Molnar 已提交
913 914
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
915 916
}

917
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
918
{
I
Ingo Molnar 已提交
919
	sched_info_queued(p);
920
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
921
	p->se.on_rq = 1;
922 923
}

924
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
925
{
926
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
927
	p->se.on_rq = 0;
928 929
}

930
/*
I
Ingo Molnar 已提交
931
 * __normal_prio - return the priority that is based on the static prio
932 933 934
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
935
	return p->static_prio;
936 937
}

938 939 940 941 942 943 944
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
945
static inline int normal_prio(struct task_struct *p)
946 947 948
{
	int prio;

949
	if (task_has_rt_policy(p))
950 951 952 953 954 955 956 957 958 959 960 961 962
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
963
static int effective_prio(struct task_struct *p)
964 965 966 967 968 969 970 971 972 973 974 975
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
976
/*
I
Ingo Molnar 已提交
977
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
978
 */
I
Ingo Molnar 已提交
979
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
980
{
I
Ingo Molnar 已提交
981 982
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
983

984
	enqueue_task(rq, p, wakeup);
985
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
986 987 988
}

/*
I
Ingo Molnar 已提交
989
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
990
 */
I
Ingo Molnar 已提交
991
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
992
{
I
Ingo Molnar 已提交
993
	update_rq_clock(rq);
L
Linus Torvalds 已提交
994

I
Ingo Molnar 已提交
995 996
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
997

998
	enqueue_task(rq, p, 0);
999
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1005
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1006
{
I
Ingo Molnar 已提交
1007 1008 1009
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1010
	dequeue_task(rq, p, sleep);
1011
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1018
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1019 1020 1021 1022
{
	return cpu_curr(task_cpu(p)) == p;
}

1023 1024 1025
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1026
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1027 1028 1029 1030 1031 1032 1033
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1034
	set_task_cfs_rq(p);
1035 1036
}

L
Linus Torvalds 已提交
1037
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1038

I
Ingo Molnar 已提交
1039
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1040
{
I
Ingo Molnar 已提交
1041 1042
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1043
	u64 clock_offset;
I
Ingo Molnar 已提交
1044 1045

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1046 1047 1048 1049

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1050 1051 1052 1053
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1054
#endif
1055
	p->se.vruntime -= old_rq->cfs.min_vruntime - new_rq->cfs.min_vruntime;
I
Ingo Molnar 已提交
1056 1057

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1058 1059
}

1060
struct migration_req {
L
Linus Torvalds 已提交
1061 1062
	struct list_head list;

1063
	struct task_struct *task;
L
Linus Torvalds 已提交
1064 1065 1066
	int dest_cpu;

	struct completion done;
1067
};
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1073
static int
1074
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1075
{
1076
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1077 1078 1079 1080 1081

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1082
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1091

L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1104
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1105 1106
{
	unsigned long flags;
I
Ingo Molnar 已提交
1107
	int running, on_rq;
1108
	struct rq *rq;
L
Linus Torvalds 已提交
1109 1110

repeat:
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1138
	rq = task_rq_lock(p, &flags);
1139
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1140
	on_rq = p->se.on_rq;
1141 1142 1143 1144 1145 1146 1147 1148 1149
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1150 1151 1152
		cpu_relax();
		goto repeat;
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1163
	if (unlikely(on_rq)) {
1164 1165 1166 1167 1168 1169 1170 1171 1172
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1188
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1200 1201
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1202 1203 1204 1205
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1206
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1207
{
1208
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1209
	unsigned long total = weighted_cpuload(cpu);
1210

1211
	if (type == 0)
I
Ingo Molnar 已提交
1212
		return total;
1213

I
Ingo Molnar 已提交
1214
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1215 1216 1217
}

/*
1218 1219
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1220
 */
N
Nick Piggin 已提交
1221
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1222
{
1223
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1224
	unsigned long total = weighted_cpuload(cpu);
1225

N
Nick Piggin 已提交
1226
	if (type == 0)
I
Ingo Molnar 已提交
1227
		return total;
1228

I
Ingo Molnar 已提交
1229
	return max(rq->cpu_load[type-1], total);
1230 1231 1232 1233 1234 1235 1236
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1237
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1238
	unsigned long total = weighted_cpuload(cpu);
1239 1240
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1241
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1242 1243
}

N
Nick Piggin 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1261 1262 1263 1264
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1281 1282
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1283 1284 1285 1286 1287 1288 1289 1290

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1291
nextgroup:
N
Nick Piggin 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1301
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1302
 */
I
Ingo Molnar 已提交
1303 1304
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1305
{
1306
	cpumask_t tmp;
N
Nick Piggin 已提交
1307 1308 1309 1310
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1311 1312 1313 1314
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1315
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1341

1342
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1343 1344 1345
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1346 1347
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1348 1349
		if (tmp->flags & flag)
			sd = tmp;
1350
	}
N
Nick Piggin 已提交
1351 1352 1353 1354

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1355 1356 1357 1358 1359 1360
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1361 1362 1363

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1364 1365 1366 1367
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1368

1369
		new_cpu = find_idlest_cpu(group, t, cpu);
1370 1371 1372 1373 1374
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1375

1376
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1419 1420 1421 1422
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1423
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1424 1425 1426 1427
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1428
		} else {
N
Nick Piggin 已提交
1429
			break;
I
Ingo Molnar 已提交
1430
		}
L
Linus Torvalds 已提交
1431 1432 1433 1434
	}
	return cpu;
}
#else
1435
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1455
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1456 1457 1458 1459
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1460
	struct rq *rq;
L
Linus Torvalds 已提交
1461
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1462
	struct sched_domain *sd, *this_sd = NULL;
1463
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1472
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1482 1483
	new_cpu = cpu;

L
Linus Torvalds 已提交
1484 1485 1486
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1487 1488 1489 1490 1491 1492 1493 1494
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1495 1496 1497
		}
	}

N
Nick Piggin 已提交
1498
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1499 1500 1501
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1502
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1503
	 */
N
Nick Piggin 已提交
1504 1505 1506
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1507

1508 1509
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1510 1511
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1512

N
Nick Piggin 已提交
1513 1514
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1515 1516
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1517 1518 1519
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1520

L
Linus Torvalds 已提交
1521
			/*
1522 1523 1524
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1525
			 */
1526
			if (sync)
I
Ingo Molnar 已提交
1527
				tl -= current->se.load.weight;
1528 1529

			if ((tl <= load &&
1530
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1531
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1565
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1566 1567 1568 1569 1570 1571 1572 1573
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1574
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1575
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1584 1585
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1596
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601 1602
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1603
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1611 1612 1613 1614 1615 1616 1617
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1618
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1619 1620 1621

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1628
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1629
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1630
#endif
N
Nick Piggin 已提交
1631

I
Ingo Molnar 已提交
1632 1633
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1634

1635 1636 1637 1638
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1639 1640 1641 1642 1643 1644 1645
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1661 1662 1663 1664 1665 1666

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1667
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1668
	if (likely(sched_info_on()))
1669
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1670
#endif
1671
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1672 1673
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1674
#ifdef CONFIG_PREEMPT
1675
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1676
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1677
#endif
N
Nick Piggin 已提交
1678
	put_cpu();
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1688
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1689 1690
{
	unsigned long flags;
I
Ingo Molnar 已提交
1691 1692
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1693 1694

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1695
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1696
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1697
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1698 1699 1700

	p->prio = effective_prio(p);

1701 1702 1703 1704 1705
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1706 1707
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1708
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1709 1710
	} else {
		/*
I
Ingo Molnar 已提交
1711 1712
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1713
		 */
1714
		p->sched_class->task_new(rq, p);
1715
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1716
	}
I
Ingo Molnar 已提交
1717 1718
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1719 1720
}

1721 1722 1723
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1724 1725
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1726 1727 1728 1729 1730 1731 1732 1733 1734
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1735
 * @notifier: notifier struct to unregister
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1779 1780 1781
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1782
 * @prev: the current task that is being switched out
1783 1784 1785 1786 1787 1788 1789 1790 1791
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1792 1793 1794
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1795
{
1796
	fire_sched_out_preempt_notifiers(prev, next);
1797 1798 1799 1800
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1801 1802
/**
 * finish_task_switch - clean up after a task-switch
1803
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1804 1805
 * @prev: the thread we just switched away from.
 *
1806 1807 1808 1809
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1816
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1817 1818 1819
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1820
	long prev_state;
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1826
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1827 1828
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1829
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1835
	prev_state = prev->state;
1836 1837
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1838
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1839 1840
	if (mm)
		mmdrop(mm);
1841
	if (unlikely(prev_state == TASK_DEAD)) {
1842 1843 1844
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1845
		 */
1846
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1847
		put_task_struct(prev);
1848
	}
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1855
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1856 1857
	__releases(rq->lock)
{
1858 1859
	struct rq *rq = this_rq();

1860 1861 1862 1863 1864
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870 1871 1872
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1873
static inline void
1874
context_switch(struct rq *rq, struct task_struct *prev,
1875
	       struct task_struct *next)
L
Linus Torvalds 已提交
1876
{
I
Ingo Molnar 已提交
1877
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1878

1879
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1880 1881
	mm = next->mm;
	oldmm = prev->active_mm;
1882 1883 1884 1885 1886 1887 1888
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1889
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1896
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1897 1898 1899
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1900 1901 1902 1903 1904 1905 1906
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1907
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1908
#endif
L
Linus Torvalds 已提交
1909 1910 1911 1912

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1913 1914 1915 1916 1917 1918 1919
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1943
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1958 1959
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1960

1961
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1971
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1992
/*
I
Ingo Molnar 已提交
1993 1994
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1995
 */
I
Ingo Molnar 已提交
1996
static void update_cpu_load(struct rq *this_rq)
1997
{
1998
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2011 2012 2013 2014 2015 2016 2017
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2018 2019
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2020 2021
}

I
Ingo Molnar 已提交
2022 2023
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2030
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2031 2032 2033
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2034
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2035 2036 2037 2038
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2039
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044 2045 2046
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2047 2048
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054 2055 2056
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2057
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2071
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2072 2073 2074 2075
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2076 2077 2078 2079 2080
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2081
	if (unlikely(!spin_trylock(&busiest->lock))) {
2082
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2097
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2098
{
2099
	struct migration_req req;
L
Linus Torvalds 已提交
2100
	unsigned long flags;
2101
	struct rq *rq;
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2112

L
Linus Torvalds 已提交
2113 2114 2115 2116 2117
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2118

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2126 2127
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2128 2129 2130 2131
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2132
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2133
	put_cpu();
N
Nick Piggin 已提交
2134 2135
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2142 2143
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2144
{
2145
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2146
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2147
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2148 2149 2150 2151
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2152
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2158
static
2159
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2160
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2161
		     int *all_pinned)
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2171 2172 2173 2174
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2175 2176 2177 2178

	return 1;
}

I
Ingo Molnar 已提交
2179
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2181
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2182
		      int *all_pinned, unsigned long *load_moved,
2183
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2184
{
I
Ingo Molnar 已提交
2185 2186 2187
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2188

2189
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2190 2191
		goto out;

2192 2193
	pinned = 1;

L
Linus Torvalds 已提交
2194
	/*
I
Ingo Molnar 已提交
2195
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2196
	 */
I
Ingo Molnar 已提交
2197 2198 2199
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2200
		goto out;
2201 2202 2203 2204 2205
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2206 2207
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2208
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2209 2210 2211
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2212 2213
	}

I
Ingo Molnar 已提交
2214
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2215
	pulled++;
I
Ingo Molnar 已提交
2216
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2217

2218 2219 2220 2221 2222
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2223 2224
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2225 2226
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2235 2236 2237

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2238
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2239 2240 2241
	return pulled;
}

I
Ingo Molnar 已提交
2242
/*
P
Peter Williams 已提交
2243 2244 2245
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2246 2247 2248 2249
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2250
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2251 2252 2253 2254
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2255
	unsigned long total_load_moved = 0;
2256
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2257 2258

	do {
P
Peter Williams 已提交
2259 2260 2261
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2262
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2263
		class = class->next;
P
Peter Williams 已提交
2264
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2265

P
Peter Williams 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2280
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2281 2282 2283

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2284 2285
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2286 2287 2288
			return 1;

	return 0;
I
Ingo Molnar 已提交
2289 2290
}

L
Linus Torvalds 已提交
2291 2292
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2293 2294
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2295 2296 2297
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2298 2299
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2300 2301 2302
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2303
	unsigned long max_pull;
2304 2305
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2306
	int load_idx;
2307 2308 2309 2310 2311 2312
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2313 2314

	max_load = this_load = total_load = total_pwr = 0;
2315 2316
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2317
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2318
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2319
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2320 2321 2322
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2323 2324

	do {
2325
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2326 2327
		int local_group;
		int i;
2328
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2329
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2330 2331 2332

		local_group = cpu_isset(this_cpu, group->cpumask);

2333 2334 2335
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2336
		/* Tally up the load of all CPUs in the group */
2337
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2338 2339

		for_each_cpu_mask(i, group->cpumask) {
2340 2341 2342 2343 2344 2345
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2346

2347
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2348 2349
				*sd_idle = 0;

L
Linus Torvalds 已提交
2350
			/* Bias balancing toward cpus of our domain */
2351 2352 2353 2354 2355 2356
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2357
				load = target_load(i, load_idx);
2358
			} else
N
Nick Piggin 已提交
2359
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2360 2361

			avg_load += load;
2362
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2363
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2364 2365
		}

2366 2367 2368
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2369 2370
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2371
		 */
2372 2373
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2374 2375 2376 2377
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2378
		total_load += avg_load;
2379
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2380 2381

		/* Adjust by relative CPU power of the group */
2382 2383
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2384

2385
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2386

L
Linus Torvalds 已提交
2387 2388 2389
		if (local_group) {
			this_load = avg_load;
			this = group;
2390 2391 2392
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2393
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2394 2395
			max_load = avg_load;
			busiest = group;
2396 2397
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2398
		}
2399 2400 2401 2402 2403 2404

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2405 2406 2407
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2408 2409 2410 2411 2412 2413 2414 2415 2416

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2417
		/*
2418 2419
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2420 2421
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2422
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2423
			goto group_next;
2424

I
Ingo Molnar 已提交
2425
		/*
2426
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2427 2428 2429 2430 2431
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2432 2433
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2434 2435
			group_min = group;
			min_nr_running = sum_nr_running;
2436 2437
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2438
		}
2439

I
Ingo Molnar 已提交
2440
		/*
2441
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2453
		}
2454 2455
group_next:
#endif
L
Linus Torvalds 已提交
2456 2457 2458
		group = group->next;
	} while (group != sd->groups);

2459
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465 2466 2467
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2468
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2492 2493

	/* Don't want to pull so many tasks that a group would go idle */
2494
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2495

L
Linus Torvalds 已提交
2496
	/* How much load to actually move to equalise the imbalance */
2497 2498
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2499 2500
			/ SCHED_LOAD_SCALE;

2501 2502 2503 2504 2505 2506
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2507
	if (*imbalance < busiest_load_per_task) {
2508
		unsigned long tmp, pwr_now, pwr_move;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2520

I
Ingo Molnar 已提交
2521 2522
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2523
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2533 2534 2535 2536
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2537 2538 2539
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2540 2541
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2542
		if (max_load > tmp)
2543
			pwr_move += busiest->__cpu_power *
2544
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2545 2546

		/* Amount of load we'd add */
2547
		if (max_load * busiest->__cpu_power <
2548
				busiest_load_per_task * SCHED_LOAD_SCALE)
2549 2550
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2551
		else
2552 2553 2554 2555
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2556 2557 2558
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2559 2560
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565
	}

	return busiest;

out_balanced:
2566
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2567
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2568
		goto ret;
L
Linus Torvalds 已提交
2569

2570 2571 2572 2573 2574
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2575
ret:
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2583
static struct rq *
I
Ingo Molnar 已提交
2584
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2585
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2586
{
2587
	struct rq *busiest = NULL, *rq;
2588
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2589 2590 2591
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2592
		unsigned long wl;
2593 2594 2595 2596

		if (!cpu_isset(i, *cpus))
			continue;

2597
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2598
		wl = weighted_cpuload(i);
2599

I
Ingo Molnar 已提交
2600
		if (rq->nr_running == 1 && wl > imbalance)
2601
			continue;
L
Linus Torvalds 已提交
2602

I
Ingo Molnar 已提交
2603 2604
		if (wl > max_load) {
			max_load = wl;
2605
			busiest = rq;
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
		}
	}

	return busiest;
}

2612 2613 2614 2615 2616 2617
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2618 2619 2620 2621
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2622
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2623
			struct sched_domain *sd, enum cpu_idle_type idle,
2624
			int *balance)
L
Linus Torvalds 已提交
2625
{
P
Peter Williams 已提交
2626
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2627 2628
	struct sched_group *group;
	unsigned long imbalance;
2629
	struct rq *busiest;
2630
	cpumask_t cpus = CPU_MASK_ALL;
2631
	unsigned long flags;
N
Nick Piggin 已提交
2632

2633 2634 2635
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2636
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2637
	 * portraying it as CPU_NOT_IDLE.
2638
	 */
I
Ingo Molnar 已提交
2639
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2640
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2641
		sd_idle = 1;
L
Linus Torvalds 已提交
2642 2643 2644

	schedstat_inc(sd, lb_cnt[idle]);

2645 2646
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2647 2648
				   &cpus, balance);

2649
	if (*balance == 0)
2650 2651
		goto out_balanced;

L
Linus Torvalds 已提交
2652 2653 2654 2655 2656
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2657
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2663
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2664 2665 2666

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2667
	ld_moved = 0;
L
Linus Torvalds 已提交
2668 2669 2670 2671
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2672
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2673 2674
		 * correctly treated as an imbalance.
		 */
2675
		local_irq_save(flags);
N
Nick Piggin 已提交
2676
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2677
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2678
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2679
		double_rq_unlock(this_rq, busiest);
2680
		local_irq_restore(flags);
2681

2682 2683 2684
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2685
		if (ld_moved && this_cpu != smp_processor_id())
2686 2687
			resched_cpu(this_cpu);

2688
		/* All tasks on this runqueue were pinned by CPU affinity */
2689 2690 2691 2692
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2693
			goto out_balanced;
2694
		}
L
Linus Torvalds 已提交
2695
	}
2696

P
Peter Williams 已提交
2697
	if (!ld_moved) {
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2703
			spin_lock_irqsave(&busiest->lock, flags);
2704 2705 2706 2707 2708

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2709
				spin_unlock_irqrestore(&busiest->lock, flags);
2710 2711 2712 2713
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2714 2715 2716
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2717
				active_balance = 1;
L
Linus Torvalds 已提交
2718
			}
2719
			spin_unlock_irqrestore(&busiest->lock, flags);
2720
			if (active_balance)
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2727
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2728
		}
2729
	} else
L
Linus Torvalds 已提交
2730 2731
		sd->nr_balance_failed = 0;

2732
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2733 2734
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2735 2736 2737 2738 2739 2740 2741 2742 2743
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2744 2745
	}

P
Peter Williams 已提交
2746
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2747
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2748
		return -1;
P
Peter Williams 已提交
2749
	return ld_moved;
L
Linus Torvalds 已提交
2750 2751 2752 2753

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2754
	sd->nr_balance_failed = 0;
2755 2756

out_one_pinned:
L
Linus Torvalds 已提交
2757
	/* tune up the balancing interval */
2758 2759
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2760 2761
		sd->balance_interval *= 2;

2762
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2763
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2764
		return -1;
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2772
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2773 2774
 * this_rq is locked.
 */
2775
static int
2776
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2777 2778
{
	struct sched_group *group;
2779
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2780
	unsigned long imbalance;
P
Peter Williams 已提交
2781
	int ld_moved = 0;
N
Nick Piggin 已提交
2782
	int sd_idle = 0;
2783
	int all_pinned = 0;
2784
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2785

2786 2787 2788 2789
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2790
	 * portraying it as CPU_NOT_IDLE.
2791 2792 2793
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2794
		sd_idle = 1;
L
Linus Torvalds 已提交
2795

I
Ingo Molnar 已提交
2796
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2797
redo:
I
Ingo Molnar 已提交
2798
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2799
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2800
	if (!group) {
I
Ingo Molnar 已提交
2801
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2802
		goto out_balanced;
L
Linus Torvalds 已提交
2803 2804
	}

I
Ingo Molnar 已提交
2805
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2806
				&cpus);
N
Nick Piggin 已提交
2807
	if (!busiest) {
I
Ingo Molnar 已提交
2808
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2809
		goto out_balanced;
L
Linus Torvalds 已提交
2810 2811
	}

N
Nick Piggin 已提交
2812 2813
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2814
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2815

P
Peter Williams 已提交
2816
	ld_moved = 0;
2817 2818 2819
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2820 2821
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2822
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2823 2824
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2825
		spin_unlock(&busiest->lock);
2826

2827
		if (unlikely(all_pinned)) {
2828 2829 2830 2831
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2832 2833
	}

P
Peter Williams 已提交
2834
	if (!ld_moved) {
I
Ingo Molnar 已提交
2835
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2836 2837
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2838 2839
			return -1;
	} else
2840
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2841

P
Peter Williams 已提交
2842
	return ld_moved;
2843 2844

out_balanced:
I
Ingo Molnar 已提交
2845
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2846
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2847
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2848
		return -1;
2849
	sd->nr_balance_failed = 0;
2850

2851
	return 0;
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2858
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2859 2860
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2861 2862
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2863 2864

	for_each_domain(this_cpu, sd) {
2865 2866 2867 2868 2869 2870
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2871
			/* If we've pulled tasks over stop searching: */
2872
			pulled_task = load_balance_newidle(this_cpu,
2873 2874 2875 2876 2877 2878 2879
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2880
	}
I
Ingo Molnar 已提交
2881
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2882 2883 2884 2885 2886
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2887
	}
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2898
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2899
{
2900
	int target_cpu = busiest_rq->push_cpu;
2901 2902
	struct sched_domain *sd;
	struct rq *target_rq;
2903

2904
	/* Is there any task to move? */
2905 2906 2907 2908
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2909 2910

	/*
2911 2912 2913
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2914
	 */
2915
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2916

2917 2918
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2919 2920
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2921 2922

	/* Search for an sd spanning us and the target CPU. */
2923
	for_each_domain(target_cpu, sd) {
2924
		if ((sd->flags & SD_LOAD_BALANCE) &&
2925
		    cpu_isset(busiest_cpu, sd->span))
2926
				break;
2927
	}
2928

2929 2930
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2931

P
Peter Williams 已提交
2932 2933
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2934 2935 2936 2937
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2938
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2939 2940
}

2941 2942 2943 2944 2945 2946 2947 2948 2949
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2950
/*
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2961
 *
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3018 3019 3020 3021 3022
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3023
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3024
{
3025 3026
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3027 3028
	unsigned long interval;
	struct sched_domain *sd;
3029
	/* Earliest time when we have to do rebalance again */
3030
	unsigned long next_balance = jiffies + 60*HZ;
3031
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3032

3033
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3034 3035 3036 3037
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3038
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3045 3046 3047
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3048

3049 3050 3051 3052 3053
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3054
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3055
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3056 3057
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3058 3059 3060
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3061
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3062
			}
3063
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3064
		}
3065 3066 3067
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3068
		if (time_after(next_balance, sd->last_balance + interval)) {
3069
			next_balance = sd->last_balance + interval;
3070 3071
			update_next_balance = 1;
		}
3072 3073 3074 3075 3076 3077 3078 3079

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3080
	}
3081 3082 3083 3084 3085 3086 3087 3088

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3089 3090 3091 3092 3093 3094 3095 3096 3097
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3098 3099 3100 3101
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3102

I
Ingo Molnar 已提交
3103
	rebalance_domains(this_cpu, idle);
3104 3105 3106 3107 3108 3109 3110

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3111 3112
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3113 3114 3115 3116
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3117
		cpu_clear(this_cpu, cpus);
3118 3119 3120 3121 3122 3123 3124 3125 3126
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3127
			rebalance_domains(balance_cpu, CPU_IDLE);
3128 3129

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3130 3131
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3144
static inline void trigger_load_balance(struct rq *rq, int cpu)
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3196
}
I
Ingo Molnar 已提交
3197 3198 3199

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3200 3201 3202
/*
 * on UP we do not need to balance between CPUs:
 */
3203
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3204 3205
{
}
I
Ingo Molnar 已提交
3206 3207 3208 3209 3210 3211

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3212
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3213 3214 3215 3216 3217 3218
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224 3225
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3226 3227
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3228
 */
3229
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3230 3231
{
	unsigned long flags;
3232 3233
	u64 ns, delta_exec;
	struct rq *rq;
3234

3235 3236 3237
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3238 3239
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3240 3241 3242 3243
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3244

L
Linus Torvalds 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3279
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3309
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3332
	struct task_struct *curr = rq->curr;
3333
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3334 3335

	spin_lock(&rq->lock);
3336
	__update_rq_clock(rq);
3337 3338 3339 3340 3341 3342
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3343
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3344 3345 3346
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3347

3348
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3349 3350
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3351
#endif
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3361 3362
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3363 3364 3365 3366
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3367 3368
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375 3376
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3377 3378
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3379 3380 3381
	/*
	 * Is the spinlock portion underflowing?
	 */
3382 3383 3384 3385
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3386 3387 3388 3389 3390 3391 3392
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3393
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3394
 */
I
Ingo Molnar 已提交
3395
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3396
{
I
Ingo Molnar 已提交
3397 3398 3399 3400 3401 3402 3403
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3404

I
Ingo Molnar 已提交
3405 3406 3407 3408 3409
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3415 3416 3417
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3418 3419
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3420
	schedstat_inc(this_rq(), sched_cnt);
I
Ingo Molnar 已提交
3421 3422 3423 3424 3425 3426
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
		schedstat_inc(this_rq(), bkl_cnt);
		schedstat_inc(prev, sched_info.bkl_cnt);
	}
#endif
I
Ingo Molnar 已提交
3427 3428 3429 3430 3431 3432
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3433
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3434 3435 3436
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3437 3438

	/*
I
Ingo Molnar 已提交
3439 3440
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3441
	 */
I
Ingo Molnar 已提交
3442
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3443
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3444 3445
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3446 3447
	}

I
Ingo Molnar 已提交
3448 3449
	class = sched_class_highest;
	for ( ; ; ) {
3450
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3460

I
Ingo Molnar 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3483 3484

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3485
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3486
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3487 3488 3489

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3490
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3491
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3492
		} else {
3493
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3494
		}
I
Ingo Molnar 已提交
3495
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3496 3497
	}

I
Ingo Molnar 已提交
3498
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3499 3500
		idle_balance(cpu, rq);

3501
	prev->sched_class->put_prev_task(rq, prev);
3502
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3503 3504

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3505

L
Linus Torvalds 已提交
3506 3507 3508 3509 3510
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3511
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3512 3513 3514
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3515 3516 3517
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3518
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3519
	}
L
Linus Torvalds 已提交
3520 3521 3522 3523 3524 3525 3526 3527
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3528
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3543
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3571
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3583
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3613 3614
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3615
{
3616
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3632
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3633

3634
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3635 3636
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3637
		if (curr->func(curr, mode, sync, key) &&
3638
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3648
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3649 3650
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3651
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3670
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3682 3683
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3727

L
Linus Torvalds 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3846 3847 3848 3849 3850
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3851
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3852
}
L
Linus Torvalds 已提交
3853

I
Ingo Molnar 已提交
3854 3855 3856 3857 3858 3859 3860
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3861

I
Ingo Molnar 已提交
3862
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3863
{
I
Ingo Molnar 已提交
3864 3865 3866 3867
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3868 3869 3870

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3871
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3872
	schedule();
I
Ingo Molnar 已提交
3873
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3874 3875 3876
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3877
long __sched
I
Ingo Molnar 已提交
3878
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3879
{
I
Ingo Molnar 已提交
3880 3881 3882 3883
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3884 3885 3886

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3887
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3888
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3889
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3895
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3896
{
I
Ingo Molnar 已提交
3897 3898 3899 3900
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3901 3902 3903

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3904
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3905
	schedule();
I
Ingo Molnar 已提交
3906
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3907 3908 3909
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3910
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3911
{
I
Ingo Molnar 已提交
3912 3913 3914 3915
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3916 3917 3918

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3919
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3920
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3921
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3939
void rt_mutex_setprio(struct task_struct *p, int prio)
3940 3941
{
	unsigned long flags;
3942
	int oldprio, on_rq, running;
3943
	struct rq *rq;
3944 3945 3946 3947

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3948
	update_rq_clock(rq);
3949

3950
	oldprio = p->prio;
I
Ingo Molnar 已提交
3951
	on_rq = p->se.on_rq;
3952 3953
	running = task_running(rq, p);
	if (on_rq) {
3954
		dequeue_task(rq, p, 0);
3955 3956 3957
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3958 3959 3960 3961 3962 3963

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3964 3965
	p->prio = prio;

I
Ingo Molnar 已提交
3966
	if (on_rq) {
3967 3968
		if (running)
			p->sched_class->set_curr_task(rq);
3969
		enqueue_task(rq, p, 0);
3970 3971
		/*
		 * Reschedule if we are currently running on this runqueue and
3972 3973
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3974
		 */
3975
		if (running) {
3976 3977
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3978 3979 3980
		} else {
			check_preempt_curr(rq, p);
		}
3981 3982 3983 3984 3985 3986
	}
	task_rq_unlock(rq, &flags);
}

#endif

3987
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3988
{
I
Ingo Molnar 已提交
3989
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3990
	unsigned long flags;
3991
	struct rq *rq;
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4000
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4001 4002 4003 4004
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4005
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4006
	 */
4007
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4008 4009 4010
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4011 4012
	on_rq = p->se.on_rq;
	if (on_rq) {
4013
		dequeue_task(rq, p, 0);
4014
		dec_load(rq, p);
4015
	}
L
Linus Torvalds 已提交
4016 4017

	p->static_prio = NICE_TO_PRIO(nice);
4018
	set_load_weight(p);
4019 4020 4021
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4022

I
Ingo Molnar 已提交
4023
	if (on_rq) {
4024
		enqueue_task(rq, p, 0);
4025
		inc_load(rq, p);
L
Linus Torvalds 已提交
4026
		/*
4027 4028
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4029
		 */
4030
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4038 4039 4040 4041 4042
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4043
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4044
{
4045 4046
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4047

M
Matt Mackall 已提交
4048 4049 4050 4051
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4063
	long nice, retval;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068 4069

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4070 4071
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4081 4082 4083
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4102
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109 4110
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4111
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4130
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4139
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4145 4146
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4147
{
I
Ingo Molnar 已提交
4148
	BUG_ON(p->se.on_rq);
4149

L
Linus Torvalds 已提交
4150
	p->policy = policy;
I
Ingo Molnar 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4163
	p->rt_priority = prio;
4164 4165 4166
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4167
	set_load_weight(p);
L
Linus Torvalds 已提交
4168 4169 4170
}

/**
4171
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4172 4173 4174
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4175
 *
4176
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4177
 */
I
Ingo Molnar 已提交
4178 4179
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4180
{
4181
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4182
	unsigned long flags;
4183
	struct rq *rq;
L
Linus Torvalds 已提交
4184

4185 4186
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4192 4193
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4194
		return -EINVAL;
L
Linus Torvalds 已提交
4195 4196
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4197 4198
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4199 4200
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4201
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4202
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4203
		return -EINVAL;
4204
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4205 4206
		return -EINVAL;

4207 4208 4209 4210
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4211
		if (rt_policy(policy)) {
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4228 4229 4230 4231 4232 4233
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4234

4235 4236 4237 4238 4239
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4240 4241 4242 4243

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4244 4245 4246 4247 4248
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4249 4250 4251 4252
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4253
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4254 4255 4256
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4257 4258
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4259 4260
		goto recheck;
	}
I
Ingo Molnar 已提交
4261
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4262
	on_rq = p->se.on_rq;
4263 4264
	running = task_running(rq, p);
	if (on_rq) {
4265
		deactivate_task(rq, p, 0);
4266 4267 4268
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4269

L
Linus Torvalds 已提交
4270
	oldprio = p->prio;
I
Ingo Molnar 已提交
4271
	__setscheduler(rq, p, policy, param->sched_priority);
4272

I
Ingo Molnar 已提交
4273
	if (on_rq) {
4274 4275
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4276
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4277 4278
		/*
		 * Reschedule if we are currently running on this runqueue and
4279 4280
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4281
		 */
4282
		if (running) {
4283 4284
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4285 4286 4287
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4288
	}
4289 4290 4291
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4292 4293
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4294 4295 4296 4297
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4298 4299
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4300 4301 4302
{
	struct sched_param lparam;
	struct task_struct *p;
4303
	int retval;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4309 4310 4311

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4312
	p = find_process_by_pid(pid);
4313 4314 4315
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4316

L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4329 4330 4331 4332
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4352
	struct task_struct *p;
L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4380
	struct task_struct *p;
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4415 4416
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4417

4418
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4424
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4441 4442 4443 4444
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4451
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4492
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4493 4494 4495
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4496
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4497 4498
EXPORT_SYMBOL(cpu_online_map);

4499
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4500
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4501 4502 4503 4504
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4505
	struct task_struct *p;
L
Linus Torvalds 已提交
4506 4507
	int retval;

4508
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514 4515
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4516 4517 4518 4519
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4520
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4521 4522 4523

out_unlock:
	read_unlock(&tasklist_lock);
4524
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4525

4526
	return retval;
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4557 4558
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4559 4560 4561
 */
asmlinkage long sys_sched_yield(void)
{
4562
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4563 4564

	schedstat_inc(rq, yld_cnt);
4565
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4572
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4573 4574 4575 4576 4577 4578 4579 4580
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4581
static void __cond_resched(void)
L
Linus Torvalds 已提交
4582
{
4583 4584 4585
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4586 4587 4588 4589 4590
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4600 4601
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4617
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4618
{
J
Jan Kara 已提交
4619 4620
	int ret = 0;

L
Linus Torvalds 已提交
4621 4622 4623
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4624
		ret = 1;
L
Linus Torvalds 已提交
4625 4626
		spin_lock(lock);
	}
4627
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4628
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4629 4630 4631
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4632
		ret = 1;
L
Linus Torvalds 已提交
4633 4634
		spin_lock(lock);
	}
J
Jan Kara 已提交
4635
	return ret;
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640 4641 4642
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4643
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4644
		local_bh_enable();
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4656
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4675
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4676

4677
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4678 4679 4680
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4681
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4687
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4688 4689
	long ret;

4690
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4691 4692 4693
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4694
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4715
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4716
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4740
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4741
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4758
	struct task_struct *p;
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4775
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4776
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4786
static const char stat_nam[] = "RSDTtZX";
4787 4788

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4789 4790
{
	unsigned long free = 0;
4791
	unsigned state;
L
Linus Torvalds 已提交
4792 4793

	state = p->state ? __ffs(p->state) + 1 : 0;
4794 4795
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4796
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4797
	if (state == TASK_RUNNING)
4798
		printk(" running  ");
L
Linus Torvalds 已提交
4799
	else
4800
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4801 4802
#else
	if (state == TASK_RUNNING)
4803
		printk("  running task    ");
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4809
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4810 4811
		while (!*n)
			n++;
4812
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4813 4814
	}
#endif
4815
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4821
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4822
{
4823
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4824

4825 4826 4827
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4828
#else
4829 4830
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4831 4832 4833 4834 4835 4836 4837 4838
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4839
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4840
			show_task(p);
L
Linus Torvalds 已提交
4841 4842
	} while_each_thread(g, p);

4843 4844
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4845 4846 4847
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4848
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4849 4850 4851 4852 4853
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4854 4855
}

I
Ingo Molnar 已提交
4856 4857
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4858
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4859 4860
}

4861 4862 4863 4864 4865 4866 4867 4868
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4869
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4870
{
4871
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4872 4873
	unsigned long flags;

I
Ingo Molnar 已提交
4874 4875 4876
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4877
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4878
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4879
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4880 4881 4882

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4883 4884 4885
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4886 4887 4888 4889
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4890
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4891
#else
A
Al Viro 已提交
4892
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4893
#endif
I
Ingo Molnar 已提交
4894 4895 4896 4897
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4913
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4935
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4936
{
4937
	struct migration_req req;
L
Linus Torvalds 已提交
4938
	unsigned long flags;
4939
	struct rq *rq;
4940
	int ret = 0;
L
Linus Torvalds 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4963

L
Linus Torvalds 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4976 4977
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4978
 */
4979
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4980
{
4981
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4982
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4983 4984

	if (unlikely(cpu_is_offline(dest_cpu)))
4985
		return ret;
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4998
	on_rq = p->se.on_rq;
4999
	if (on_rq)
5000
		deactivate_task(rq_src, p, 0);
5001

L
Linus Torvalds 已提交
5002
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5003 5004 5005
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5006
	}
5007
	ret = 1;
L
Linus Torvalds 已提交
5008 5009
out:
	double_rq_unlock(rq_src, rq_dest);
5010
	return ret;
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5018
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5019 5020
{
	int cpu = (long)data;
5021
	struct rq *rq;
L
Linus Torvalds 已提交
5022 5023 5024 5025 5026 5027

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5028
		struct migration_req *req;
L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5051
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5052 5053
		list_del_init(head->next);

N
Nick Piggin 已提交
5054 5055 5056
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5075 5076 5077 5078
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5079
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5080
{
5081
	unsigned long flags;
L
Linus Torvalds 已提交
5082
	cpumask_t mask;
5083 5084
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5085

5086
restart:
L
Linus Torvalds 已提交
5087 5088
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5089
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5090 5091 5092 5093
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5094
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5095 5096 5097

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5098 5099 5100
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5101
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5108
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5109 5110
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5111
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5112
	}
5113
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5114
		goto restart;
L
Linus Torvalds 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5124
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5125
{
5126
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5140
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5141 5142 5143

	write_lock_irq(&tasklist_lock);

5144 5145
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5146 5147
			continue;

5148 5149 5150
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5151 5152 5153 5154

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5155 5156
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5157
 * It does so by boosting its priority to highest possible and adding it to
5158
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5159 5160 5161
 */
void sched_idle_next(void)
{
5162
	int this_cpu = smp_processor_id();
5163
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5164 5165 5166 5167
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5168
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5169

5170 5171 5172
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5173 5174 5175
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5176
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5177 5178

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5179
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5180 5181 5182 5183

	spin_unlock_irqrestore(&rq->lock, flags);
}

5184 5185
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5199
/* called under rq->lock with disabled interrupts */
5200
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5201
{
5202
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5203 5204

	/* Must be exiting, otherwise would be on tasklist. */
5205
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5206 5207

	/* Cannot have done final schedule yet: would have vanished. */
5208
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5209

5210
	get_task_struct(p);
L
Linus Torvalds 已提交
5211 5212 5213 5214 5215

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5216
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5217
	 */
5218
	spin_unlock(&rq->lock);
5219
	move_task_off_dead_cpu(dead_cpu, p);
5220
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5221

5222
	put_task_struct(p);
L
Linus Torvalds 已提交
5223 5224 5225 5226 5227
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5228
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5229
	struct task_struct *next;
5230

I
Ingo Molnar 已提交
5231 5232 5233
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5234
		update_rq_clock(rq);
5235
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5236 5237 5238
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5239

L
Linus Torvalds 已提交
5240 5241 5242 5243
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5244 5245 5246
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5247 5248
	{
		.procname	= "sched_domain",
5249
		.mode		= 0555,
5250
	},
5251 5252 5253 5254
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5255
	{
5256
		.ctl_name	= CTL_KERN,
5257
		.procname	= "kernel",
5258
		.mode		= 0555,
5259 5260
		.child		= sd_ctl_dir,
	},
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5276
set_table_entry(struct ctl_table *entry,
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5292
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5293
		sizeof(long), 0644, proc_doulongvec_minmax);
5294
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5295
		sizeof(long), 0644, proc_doulongvec_minmax);
5296
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5297
		sizeof(int), 0644, proc_dointvec_minmax);
5298
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5299
		sizeof(int), 0644, proc_dointvec_minmax);
5300
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5301
		sizeof(int), 0644, proc_dointvec_minmax);
5302
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5303
		sizeof(int), 0644, proc_dointvec_minmax);
5304
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5305
		sizeof(int), 0644, proc_dointvec_minmax);
5306
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5307
		sizeof(int), 0644, proc_dointvec_minmax);
5308
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5309
		sizeof(int), 0644, proc_dointvec_minmax);
5310
	set_table_entry(&table[10], "cache_nice_tries",
5311 5312
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5313
	set_table_entry(&table[12], "flags", &sd->flags,
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5334
		entry->mode = 0555;
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5354
		entry->mode = 0555;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5365 5366 5367 5368
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5369 5370
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5371 5372
{
	struct task_struct *p;
5373
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5374
	unsigned long flags;
5375
	struct rq *rq;
L
Linus Torvalds 已提交
5376 5377

	switch (action) {
5378 5379 5380 5381
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5382
	case CPU_UP_PREPARE:
5383
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5384
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5385 5386 5387 5388 5389
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5390
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5391 5392 5393
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5394

L
Linus Torvalds 已提交
5395
	case CPU_ONLINE:
5396
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5397 5398 5399
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5400

L
Linus Torvalds 已提交
5401 5402
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5403
	case CPU_UP_CANCELED_FROZEN:
5404 5405
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5406
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5407 5408
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5409 5410 5411
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5412

L
Linus Torvalds 已提交
5413
	case CPU_DEAD:
5414
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5421
		update_rq_clock(rq);
5422
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5423
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5424 5425
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5426 5427 5428 5429 5430 5431
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5432
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5433 5434 5435
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5436 5437
			struct migration_req *req;

L
Linus Torvalds 已提交
5438
			req = list_entry(rq->migration_queue.next,
5439
					 struct migration_req, list);
L
Linus Torvalds 已提交
5440 5441 5442 5443 5444 5445
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5446 5447 5448
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5449 5450 5451 5452 5453 5454 5455
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5456
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462 5463
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5464
	int err;
5465 5466

	/* Start one for the boot CPU: */
5467 5468
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5469 5470
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5471

L
Linus Torvalds 已提交
5472 5473 5474 5475 5476
	return 0;
}
#endif

#ifdef CONFIG_SMP
5477 5478 5479 5480 5481

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5482
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5488 5489 5490 5491 5492
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5512 5513
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518 5519
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5520 5521
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5522
		if (!cpu_isset(cpu, group->cpumask))
5523 5524
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5537
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5538
				printk("\n");
5539 5540
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5563 5564
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5565 5566 5567

		level++;
		sd = sd->parent;
5568 5569
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5570

5571 5572 5573
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5574 5575 5576 5577

	} while (sd);
}
#else
5578
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5579 5580
#endif

5581
static int sd_degenerate(struct sched_domain *sd)
5582 5583 5584 5585 5586 5587 5588 5589
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5590 5591 5592
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5606 5607
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5626 5627 5628
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5629 5630 5631 5632 5633 5634 5635
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5636 5637 5638 5639
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5640
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5641
{
5642
	struct rq *rq = cpu_rq(cpu);
5643 5644 5645 5646 5647 5648 5649
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5650
		if (sd_parent_degenerate(tmp, parent)) {
5651
			tmp->parent = parent->parent;
5652 5653 5654
			if (parent->parent)
				parent->parent->child = tmp;
		}
5655 5656
	}

5657
	if (sd && sd_degenerate(sd)) {
5658
		sd = sd->parent;
5659 5660 5661
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5662 5663 5664

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5665
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5666 5667 5668
}

/* cpus with isolated domains */
5669
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5687 5688 5689 5690
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5696
static void
5697 5698 5699
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5706 5707
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5708 5709 5710 5711 5712 5713
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5714
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5715 5716

		for_each_cpu_mask(j, span) {
5717
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5732
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5733

5734
#ifdef CONFIG_NUMA
5735

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5788 5789
	cpumask_t span, nodemask;
	int i;
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5800

5801 5802 5803 5804 5805 5806 5807 5808
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5809
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5810

5811
/*
5812
 * SMT sched-domains:
5813
 */
L
Linus Torvalds 已提交
5814 5815
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5816
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5817

5818 5819
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5820
{
5821 5822
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5823 5824 5825 5826
	return cpu;
}
#endif

5827 5828 5829
/*
 * multi-core sched-domains:
 */
5830 5831
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5832
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5833 5834 5835
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5836 5837
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5838
{
5839
	int group;
5840 5841
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5842 5843 5844 5845
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5846 5847
}
#elif defined(CONFIG_SCHED_MC)
5848 5849
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5850
{
5851 5852
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5853 5854 5855 5856
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5857
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5858
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5859

5860 5861
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5862
{
5863
	int group;
5864
#ifdef CONFIG_SCHED_MC
5865
	cpumask_t mask = cpu_coregroup_map(cpu);
5866
	cpus_and(mask, mask, *cpu_map);
5867
	group = first_cpu(mask);
5868
#elif defined(CONFIG_SCHED_SMT)
5869 5870
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5871
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5872
#else
5873
	group = cpu;
L
Linus Torvalds 已提交
5874
#endif
5875 5876 5877
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5878 5879 5880 5881
}

#ifdef CONFIG_NUMA
/*
5882 5883 5884
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5885
 */
5886
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5887
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5888

5889
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5890
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5891

5892 5893
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5894
{
5895 5896 5897 5898 5899 5900 5901 5902 5903
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5904
}
5905

5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5926
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5927 5928 5929 5930 5931
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5932 5933
#endif

5934
#ifdef CONFIG_NUMA
5935 5936 5937
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5938
	int cpu, i;
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5969 5970 5971 5972 5973
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5974

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6001 6002
	sd->groups->__cpu_power = 0;

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6013
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6014 6015 6016 6017 6018 6019 6020 6021
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6022
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6023 6024 6025 6026
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6027
/*
6028 6029
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6030
 */
6031
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6032 6033
{
	int i;
6034 6035
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6036
	int sd_allnodes = 0;
6037 6038 6039 6040

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6041
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6042
					   GFP_KERNEL);
6043 6044
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6045
		return -ENOMEM;
6046 6047 6048
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6049 6050

	/*
6051
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6052
	 */
6053
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6054 6055 6056
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6057
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6058 6059

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6060 6061
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6062 6063 6064
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6065
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6066
			p = sd;
6067
			sd_allnodes = 1;
6068 6069 6070
		} else
			p = NULL;

L
Linus Torvalds 已提交
6071 6072
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6073 6074
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6075 6076
		if (p)
			p->child = sd;
6077
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6078 6079 6080 6081 6082 6083 6084
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6085 6086
		if (p)
			p->child = sd;
6087
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6088

6089 6090 6091 6092 6093 6094 6095
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6096
		p->child = sd;
6097
		cpu_to_core_group(i, cpu_map, &sd->groups);
6098 6099
#endif

L
Linus Torvalds 已提交
6100 6101 6102 6103 6104
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6105
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6106
		sd->parent = p;
6107
		p->child = sd;
6108
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6114
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6115
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6116
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6117 6118 6119
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6120 6121
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6122 6123 6124
	}
#endif

6125 6126 6127 6128 6129 6130 6131
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6132 6133
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6134 6135 6136
	}
#endif

L
Linus Torvalds 已提交
6137 6138 6139 6140
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6141
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6142 6143 6144
		if (cpus_empty(nodemask))
			continue;

6145
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6146 6147 6148 6149
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6150
	if (sd_allnodes)
I
Ingo Molnar 已提交
6151 6152
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6163 6164
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6165
			continue;
6166
		}
6167 6168 6169 6170

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6171
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6172 6173 6174 6175 6176
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6177 6178 6179
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6180

6181 6182 6183
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6184
		sg->__cpu_power = 0;
6185
		sg->cpumask = nodemask;
6186
		sg->next = sg;
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6205 6206
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6207 6208 6209
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6210
				goto error;
6211
			}
6212
			sg->__cpu_power = 0;
6213
			sg->cpumask = tmp;
6214
			sg->next = prev->next;
6215 6216 6217 6218 6219
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6220 6221 6222
#endif

	/* Calculate CPU power for physical packages and nodes */
6223
#ifdef CONFIG_SCHED_SMT
6224
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6225 6226
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6227
		init_sched_groups_power(i, sd);
6228
	}
L
Linus Torvalds 已提交
6229
#endif
6230
#ifdef CONFIG_SCHED_MC
6231
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6232 6233
		struct sched_domain *sd = &per_cpu(core_domains, i);

6234
		init_sched_groups_power(i, sd);
6235 6236
	}
#endif
6237

6238
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6239 6240
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6241
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6242 6243
	}

6244
#ifdef CONFIG_NUMA
6245 6246
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6247

6248 6249
	if (sd_allnodes) {
		struct sched_group *sg;
6250

6251
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6252 6253
		init_numa_sched_groups_power(sg);
	}
6254 6255
#endif

L
Linus Torvalds 已提交
6256
	/* Attach the domains */
6257
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6258 6259 6260
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6261 6262
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6268 6269 6270

	return 0;

6271
#ifdef CONFIG_NUMA
6272 6273 6274
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6275
#endif
L
Linus Torvalds 已提交
6276
}
6277 6278 6279
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6280
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6281 6282
{
	cpumask_t cpu_default_map;
6283
	int err;
L
Linus Torvalds 已提交
6284

6285 6286 6287 6288 6289 6290 6291
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6292 6293 6294
	err = build_sched_domains(&cpu_default_map);

	return err;
6295 6296 6297
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6298
{
6299
	free_sched_groups(cpu_map);
6300
}
L
Linus Torvalds 已提交
6301

6302 6303 6304 6305
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6306
static void detach_destroy_domains(const cpumask_t *cpu_map)
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6324
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6325 6326
{
	cpumask_t change_map;
6327
	int err = 0;
6328 6329 6330 6331 6332 6333 6334 6335

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6336 6337 6338 6339 6340
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6341 6342
}

6343
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6344
static int arch_reinit_sched_domains(void)
6345 6346 6347
{
	int err;

6348
	mutex_lock(&sched_hotcpu_mutex);
6349 6350
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6351
	mutex_unlock(&sched_hotcpu_mutex);
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6378 6379
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6380 6381 6382
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6383 6384
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6385 6386 6387 6388 6389 6390 6391
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6392 6393
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6394 6395 6396
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6417 6418
#endif

L
Linus Torvalds 已提交
6419 6420 6421
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6422
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6423 6424 6425 6426 6427 6428 6429
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6430
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6431
	case CPU_DOWN_PREPARE:
6432
	case CPU_DOWN_PREPARE_FROZEN:
6433
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6434 6435 6436
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6437
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6438
	case CPU_DOWN_FAILED:
6439
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6440
	case CPU_ONLINE:
6441
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6442
	case CPU_DEAD:
6443
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6444 6445 6446 6447 6448 6449 6450 6451 6452
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6453
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6460 6461
	cpumask_t non_isolated_cpus;

6462
	mutex_lock(&sched_hotcpu_mutex);
6463
	arch_init_sched_domains(&cpu_online_map);
6464
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6465 6466
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6467
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6468 6469
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6470

6471 6472
	init_sched_domain_sysctl();

6473 6474 6475
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6487

L
Linus Torvalds 已提交
6488 6489 6490 6491 6492
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6493 6494 6495 6496 6497 6498
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6499
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6500 6501
}

L
Linus Torvalds 已提交
6502 6503
void __init sched_init(void)
{
6504
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6505 6506 6507 6508 6509 6510 6511 6512
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6513

6514
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6515
		struct rt_prio_array *array;
6516
		struct rq *rq;
L
Linus Torvalds 已提交
6517 6518 6519

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6520
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6521
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6522 6523 6524 6525
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
S
Srivatsa Vaddagiri 已提交
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
	 	{
 			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
 			struct sched_entity *se =
 					 &per_cpu(init_sched_entity, i);

 			init_cfs_rq_p[i] = cfs_rq;
 			init_cfs_rq(cfs_rq, rq);
 			cfs_rq->tg = &init_task_grp;
 			list_add(&cfs_rq->leaf_cfs_rq_list,
							 &rq->leaf_cfs_rq_list);

 			init_sched_entity_p[i] = se;
 			se->cfs_rq = &rq->cfs;
 			se->my_q = cfs_rq;
6540 6541 6542
 			se->load.weight = init_task_grp_load;
			se->load.inv_weight =
				 div64_64(1ULL<<32, init_task_grp_load);
S
Srivatsa Vaddagiri 已提交
6543 6544
 			se->parent = NULL;
 		}
6545
		init_task_grp.shares = init_task_grp_load;
I
Ingo Molnar 已提交
6546
#endif
L
Linus Torvalds 已提交
6547

I
Ingo Molnar 已提交
6548 6549
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6550
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6551
		rq->sd = NULL;
L
Linus Torvalds 已提交
6552
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6553
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6554
		rq->push_cpu = 0;
6555
		rq->cpu = i;
L
Linus Torvalds 已提交
6556 6557 6558 6559 6560
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6561 6562 6563 6564
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6565
		}
6566
		highest_cpu = i;
I
Ingo Molnar 已提交
6567 6568
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6569 6570
	}

6571
	set_load_weight(&init_task);
6572

6573 6574 6575 6576
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6577
#ifdef CONFIG_SMP
6578
	nr_cpu_ids = highest_cpu + 1;
6579 6580 6581
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6582 6583 6584 6585
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6599 6600 6601 6602
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6608
#ifdef in_atomic
L
Linus Torvalds 已提交
6609 6610 6611 6612 6613 6614 6615
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6616
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6617 6618 6619
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6620
		debug_show_held_locks(current);
6621 6622
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6633
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6634
	unsigned long flags;
6635
	struct rq *rq;
I
Ingo Molnar 已提交
6636
	int on_rq;
L
Linus Torvalds 已提交
6637 6638

	read_lock_irq(&tasklist_lock);
6639
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6640 6641
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6642 6643 6644
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6645
#endif
I
Ingo Molnar 已提交
6646 6647 6648 6649 6650 6651 6652 6653 6654
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6655
			continue;
I
Ingo Molnar 已提交
6656
		}
L
Linus Torvalds 已提交
6657

6658 6659
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6660 6661 6662 6663 6664 6665 6666
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6667

I
Ingo Molnar 已提交
6668
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6669
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6670 6671
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6672 6673
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6674
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6675 6676
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6677 6678 6679
#ifdef CONFIG_SMP
 out_unlock:
#endif
6680 6681
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6682 6683
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6684 6685 6686 6687
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6706
struct task_struct *curr_task(int cpu)
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6726
void set_curr_task(int cpu, struct task_struct *p)
6727 6728 6729 6730 6731
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6732 6733 6734 6735

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6736
struct task_grp *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6737 6738 6739 6740
{
	struct task_grp *tg;
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6741
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6742 6743 6744 6745 6746 6747
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6748
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6749 6750
	if (!tg->cfs_rq)
		goto err;
6751
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6752 6753 6754 6755
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6756
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6783 6784 6785 6786 6787
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6788

6789
	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
6790

6791
	return tg;
S
Srivatsa Vaddagiri 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809

err:
	for_each_possible_cpu(i) {
		if (tg->cfs_rq && tg->cfs_rq[i])
			kfree(tg->cfs_rq[i]);
		if (tg->se && tg->se[i])
			kfree(tg->se[i]);
	}
	if (tg->cfs_rq)
		kfree(tg->cfs_rq);
	if (tg->se)
		kfree(tg->se);
	if (tg)
		kfree(tg);

	return ERR_PTR(-ENOMEM);
}

6810 6811
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6812
{
6813 6814
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
	struct task_grp *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6832 6833
/* Destroy runqueue etc associated with a task group */
void sched_destroy_group(struct task_grp *tg)
S
Srivatsa Vaddagiri 已提交
6834
{
6835 6836
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6837

6838 6839 6840 6841 6842 6843 6844 6845 6846
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6847 6848
}

6849 6850 6851 6852 6853 6854
/* change task's runqueue when it moves between groups.
 * 	The caller of this function should have put the task in its new group
 * 	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 * 	reflect its new group.
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6870
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6871
		dequeue_task(rq, tsk, 0);
6872 6873 6874
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6875 6876 6877

	set_task_cfs_rq(tsk);

6878 6879 6880
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6881
		enqueue_task(rq, tsk, 0);
6882
	}
S
Srivatsa Vaddagiri 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6909
int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6910 6911 6912
{
	int i;

6913 6914
	if (tg->shares == shares)
		return 0;
S
Srivatsa Vaddagiri 已提交
6915

6916
	/* return -EINVAL if the new value is not sane */
S
Srivatsa Vaddagiri 已提交
6917

6918
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6919
	for_each_possible_cpu(i)
6920
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6921

6922
	return 0;
S
Srivatsa Vaddagiri 已提交
6923 6924
}

6925
#endif 	/* CONFIG_FAIR_GROUP_SCHED */