nn.py 406.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
15
All layers just related to the neural network.
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
23
import os
S
sneaxiy 已提交
24
import inspect
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
28
from ..dygraph import base
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..dygraph import layers
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
184
    'grid_sampler',
185 186
    'log_loss',
    'add_position_encoding',
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
202
    'continuous_value_model',
203 204
]

J
jerrywgz 已提交
205 206
kIgnoreIndex = -100

207 208 209 210 211 212 213

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
214
       is_test=False,
215
       name=None):
216
    """
217
    **Fully Connected Layer**
218

219
    This function creates a fully connected layer in the network. It can take
220
    one or multiple tensors as its inputs(input can be a list of Variable, see
221
    Args in detail). It creates a variable called weights for each input tensor,
222 223 224 225
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
226
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
227 228
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
229

230
    When the input is single tensor:
C
caoying03 已提交
231

232 233 234 235 236
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
237 238 239

    .. math::

240
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
241 242 243

    In the above equation:

244 245 246
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
247
    * :math:`b`: The bias parameter created by this layer (if needed).
248
    * :math:`Act`: The activation function.
C
caoying03 已提交
249
    * :math:`Out`: The output tensor.
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

269
    Args:
R
ranqiu 已提交
270 271 272 273 274 275 276 277 278 279
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
280
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
281 282 283 284
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
285 286
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
287
        act (str, default None): Activation to be applied to the output of this layer.
288
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
289
        name (str, default None): The name of this layer.
290

291
    Returns:
F
fengjiayi 已提交
292
        Variable: The transformation result.
293 294

    Raises:
295
        ValueError: If rank of the input tensor is less than 2.
296 297 298 299

    Examples:
        .. code-block:: python

300
          # when input is single tensor
F
fengjiayi 已提交
301
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
302
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
303 304 305 306 307

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
308
    """
C
caoying03 已提交
309
    helper = LayerHelper("fc", **locals())
310 311 312 313

    dtype = helper.input_dtype()

    mul_results = []
314 315
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
316 317 318
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
319

320
        w = helper.create_parameter(
321
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
322
        tmp = helper.create_variable_for_type_inference(dtype)
323
        helper.append_op(
324 325 326
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
327
            outputs={"Out": tmp},
M
mozga-intel 已提交
328 329
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
330 331 332 333
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
334
    else:
335
        pre_bias = helper.create_variable_for_type_inference(dtype)
336
        helper.append_op(
337 338 339
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
340
            attrs={"use_mkldnn": False})
341 342 343 344
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
345 346


347 348 349
def embedding(input,
              size,
              is_sparse=False,
350
              is_distributed=False,
351 352 353
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
354
    """
355 356
    **Embedding Layer**

357
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
358 359
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
360 361 362

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
363 364

    Args:
365 366 367 368 369
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
370
        is_distributed(bool): Whether to run lookup table from remote parameter server.
371 372
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
373
            with zeros whenever lookup encounters it in :attr:`input`. If
374
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
375 376
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
377
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
378

379 380 381
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
382

383 384
    Examples:
        .. code-block:: python
385

C
chengduoZH 已提交
386
          dict_size = len(dataset.ids)
387
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
388
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
389 390 391
    """

    helper = LayerHelper('embedding', **locals())
392
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
393 394
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
395 396
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
397
    tmp = helper.create_variable_for_type_inference(dtype)
398 399
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
400 401 402 403 404
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
405 406 407
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
408
            'remote_prefetch': remote_prefetch,
409 410
            'padding_idx': padding_idx
        })
411 412 413
    return tmp


W
wopeizl 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
430

W
wopeizl 已提交
431 432 433 434 435 436 437 438 439 440 441
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
442

W
wopeizl 已提交
443 444 445 446
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
447

W
wopeizl 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
491
    assert in_dygraph_mode(
492
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
536 537


P
phlrain 已提交
538 539 540 541 542 543
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
544
         dropout_prob=0.0,
P
phlrain 已提交
545 546 547 548 549
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
550
    """
P
phlrain 已提交
551
    If Device is GPU, This op will use cudnn LSTM implementation
552 553

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
554
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
555 556
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

557
    .. math::
M
minqiyang 已提交
558 559 560 561 562 563 564

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

565
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
566 567 568 569

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
570 571

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
572 573 574 575 576 577
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
578 579 580
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
581
      which is computed based on the current input and the previous hidden state.
582

M
minqiyang 已提交
583
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
584 585 586 587 588
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
589
        init_h(Variable): The initial hidden state of the LSTM
590 591 592 593 594
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
595
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
596 597
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
598 599
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
600 601 602 603 604 605
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
606
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
607

608 609

    Returns:
M
minqiyang 已提交
610 611
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

612
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
613

614 615 616 617
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
618
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
619 620
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
621
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
637
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
638 639 640 641 642 643
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
644 645 646
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


706 707 708 709 710 711 712 713 714 715
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
716
                  proj_activation='tanh',
717
                  dtype='float32',
718 719 720 721 722
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
723 724 725
    """
    **Dynamic LSTMP Layer**

726 727 728 729 730 731
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
732 733 734 735 736

    The formula is as follows:

    .. math::

737
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
738

739
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
740

741
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
742

743
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
744

745
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
746

747
        h_t & = o_t \odot act_h(c_t)
748

749
        r_t & = \overline{act_h}(W_{rh}h_t)
750

751 752 753 754 755 756
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
757
          we use vectors to reprenset these diagonal weight matrices.
758
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
759
          bias vector).
760 761 762
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
763
          the same size as the cell output activation vector :math:`h`.
764
    * :math:`h`: The hidden state.
765
    * :math:`r`: The recurrent projection of the hidden state.
766 767
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
768
    * :math:`\odot`: The element-wise product of the vectors.
769
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
770
          activation functions and `tanh` is usually used for them.
771 772
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
773 774 775 776

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
777

778 779 780 781 782 783 784 785 786 787 788 789
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
790
        param_attr(ParamAttr|None): The parameter attribute for the learnable
791 792
                               hidden-hidden weight and projection weight.

793 794
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
795 796
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
797 798
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
799
                               - The shape of projection weight is (D x P).
800 801 802 803 804

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
805
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
806 807 808 809 810 811
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
812
                                - The shape is (1 x 4D).
813 814 815
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
816
                                - The shape is (1 x 7D).
817 818 819 820 821

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
822 823 824 825 826 827 828 829 830
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
831
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
832 833
                              default "tanh".
        proj_activation(str): The activation for projection output.
834
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
835
                              default "tanh".
836
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
837 838
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
839 840 841 842 843 844 845 846 847 848 849
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
850 851

    Returns:
852 853 854 855
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
856 857

    Examples:
858

859 860
        .. code-block:: python

861 862 863 864
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
865
            hidden_dim, proj_dim = 512, 256
866
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
867
                                     act=None, bias_attr=None)
868 869 870
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
871 872 873 874
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
875
    """
876

L
lujun 已提交
877
    assert in_dygraph_mode(
878 879
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

880
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
881
    helper = LayerHelper('lstmp', **locals())
882
    size = size // 4
883 884 885 886 887 888 889 890 891 892
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

893 894 895 896 897 898
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
914

915 916 917 918 919
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

920 921
    helper.append_op(
        type='lstmp',
922
        inputs=inputs,
923 924 925 926 927 928 929 930 931
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
932 933
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
934 935 936 937 938 939 940 941 942
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
943 944 945 946 947 948 949
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
950 951
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
952
    """
953
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
954

955 956 957
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
958

G
guosheng 已提交
959 960 961 962 963 964 965 966 967
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
968

G
guosheng 已提交
969
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
970

971 972 973

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
974 975 976 977 978 979 980 981 982 983 984 985
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
986
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
987 988
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
989 990 991 992
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
993
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
994 995

    Args:
996 997
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
998
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
999
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1000 1001
            is the hidden size.
        size(int): The dimension of the gru cell.
1002
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1003 1004
            hidden-hidden weight matrix. Note:

1005
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1006
              :math:`D` is the hidden size.
1007
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1008
              The first part are weights of the update gate and reset gate with
1009
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1010
              candidate hidden state with shape :math:`(D \\times D)`.
1011 1012 1013 1014 1015

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1016
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1017
            the bias in the update gate, reset gate and candidate calculations.
1018 1019 1020
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1021 1022
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1023
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1024 1025 1026
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1027
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1028
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1029 1030 1031 1032
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1033 1034

    Returns:
1035
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1036
            and sequence length is the same with the input.
1037

G
guosheng 已提交
1038
    Examples:
1039

G
guosheng 已提交
1040 1041
        .. code-block:: python

1042 1043 1044 1045
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1046
            hidden_dim = 512
1047
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
1048
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1049 1050
    """

L
lujun 已提交
1051
    assert in_dygraph_mode(
1052 1053
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1054 1055 1056 1057 1058 1059 1060
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
1061
    batch_size = input.shape[0]
G
guosheng 已提交
1062
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1063
    if h_0:
G
guosheng 已提交
1064
        assert h_0.shape == (
1065 1066 1067
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1068

1069 1070 1071 1072
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1086 1087
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1088 1089 1090 1091
        })
    return hidden


1092 1093 1094
def gru_unit(input,
             hidden,
             size,
1095 1096
             param_attr=None,
             bias_attr=None,
1097
             activation='tanh',
Q
Qiao Longfei 已提交
1098 1099
             gate_activation='sigmoid',
             origin_mode=False):
1100
    """
1101 1102 1103
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
1104
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1105
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
1106

1107 1108
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
1109

1110
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
1111

1112
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1129 1130

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1131 1132 1133
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1134 1135
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1136 1137
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1138 1139 1140
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1141 1142 1143

    Args:
        input (Variable): The fc transformed input value of current step.
1144
        hidden (Variable): The hidden value of gru unit from previous step.
1145
        size (integer): The input dimension value.
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1160
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1161
            the bias in the update gate, reset gate and candidate calculations.
1162 1163 1164
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1165 1166
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1167 1168 1169 1170
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
1171

1172 1173 1174 1175 1176 1177
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
1178

1179
             # assuming we have x_t_data and prev_hidden of size=10
1180
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1181 1182
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
1195
    size = size // 3
1196 1197

    # create weight
1198 1199
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
1200

1201 1202 1203
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1204
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
1205
    # create bias
1206
    if helper.bias_attr:
1207 1208 1209
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1210
        inputs['Bias'] = bias
1211 1212 1213

    helper.append_op(
        type='gru_unit',
1214
        inputs=inputs,
1215 1216 1217 1218 1219 1220
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1221 1222
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
1223 1224 1225 1226 1227
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1228
@templatedoc()
1229
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1230 1231 1232 1233 1234 1235 1236
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1237
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1238 1239 1240 1241
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1242 1243 1244
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1245 1246

    """
1247 1248 1249 1250 1251 1252
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
1253 1254 1255 1256 1257 1258 1259 1260
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1276 1277 1278 1279
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1280

W
wopeizl 已提交
1281 1282
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1283

W
wopeizl 已提交
1284
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1285

W
wopeizl 已提交
1286
        label(${label_type}): ${label_comment}
1287

W
wopeizl 已提交
1288 1289
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1290

W
wopeizl 已提交
1291 1292
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1293

1294 1295 1296 1297 1298 1299 1300
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1301 1302 1303 1304 1305 1306 1307 1308
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
1309
                "Transition": transition,
W
wopeizl 已提交
1310 1311
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
1312

W
wopeizl 已提交
1313
    return viterbi_path
1314 1315


Y
yi.wu 已提交
1316
@templatedoc()
F
fengjiayi 已提交
1317
def cos_sim(X, Y):
1318
    """
Y
yi.wu 已提交
1319 1320 1321
    ${comment}

    Args:
1322 1323
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1324

Y
yi.wu 已提交
1325
    Returns:
1326
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1327 1328 1329 1330 1331 1332 1333

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
1334
    """
F
fengjiayi 已提交
1335
    helper = LayerHelper('cos_sim', **locals())
1336 1337 1338
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


1349 1350 1351 1352 1353
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
1354
            dropout_implementation="downgrade_in_infer"):
1355 1356 1357 1358 1359
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1360
    training. The dropout operator randomly sets (according to the given dropout
1361 1362 1363
    probability) the outputs of some units to zero, while others are remain
    unchanged.

1364 1365
    dropout op can be removed from the program to make the program more efficient.

1366
    Args:
1367 1368
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1369 1370 1371 1372 1373 1374 1375
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
1376 1377
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

1378
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1379 1380

                                           - train: out = input * mask
C
ceci3 已提交
1381
                                           - inference: out = input * (1.0 - dropout_prob)
1382 1383 1384

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1385
                                        2. upscale_in_train, upscale the outcome at training time
1386

1387 1388
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
1389

1390 1391
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1392

M
minqiyang 已提交
1393

1394
    Returns:
1395
        Variable: A tensor variable is the shape with `x`.
1396 1397

    Examples:
1398

1399 1400
        .. code-block:: python

1401 1402
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1403 1404
    """

F
fengjiayi 已提交
1405
    helper = LayerHelper('dropout', **locals())
1406 1407
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1408
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
1409 1410 1411 1412

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1413 1414 1415 1416 1417
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1418 1419 1420 1421
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
1422 1423
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1424
        })
1425 1426 1427
    return out


J
jerrywgz 已提交
1428
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
1429
    """
1430 1431
    **Cross Entropy Layer**

1432 1433 1434
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
1435 1436

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1437
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
1438

1439
        .. math::
1440

1441 1442 1443
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1444 1445
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
1446 1447 1448 1449 1450

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

1451
       Please make sure that in this case the summation of each row of `label`
1452 1453 1454
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1455 1456
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
1457
         to a one-hot cross-entropy with one-hot label representation.
1458

1459
    Args:
1460
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1461 1462 1463 1464
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
1465
        label (Variable|list): the ground truth which is a 2-D tensor. When
1466 1467 1468 1469
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1470
        soft_label (bool): a flag indicating whether to
1471
                                           interpretate the given labels as soft
1472
                                           labels. Default: `False`.
M
minqiyang 已提交
1473 1474
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1475
                            if soft_label is set to False. Default: kIgnoreIndex
1476 1477 1478 1479 1480

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1481 1482 1483
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1484

1485 1486
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1487

1488 1489
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
1490 1491 1492 1493

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1494 1495 1496 1497
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
1498
          cost = fluid.layers.cross_entropy(input=predict, label=label)
1499
    """
S
sneaxiy 已提交
1500 1501
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1502
    helper = LayerHelper('cross_entropy', **locals())
1503
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1504 1505 1506 1507 1508
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1509 1510
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
1511 1512 1513
    return out


S
sneaxiy 已提交
1514 1515 1516 1517
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1518
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1519 1520 1521 1522 1523
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1524
                 'MatchX': [match_x],
S
sneaxiy 已提交
1525 1526 1527 1528 1529
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1530
def bpr_loss(input, label, name=None):
1531 1532 1533
    """
    Bayesian Personalized Ranking Loss Operator.

1534
    This operator belongs to pairwise ranking loss. Label is the desired item.
1535 1536 1537 1538 1539 1540
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1541 1542 1543 1544 1545 1546
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1547 1548
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1549 1550 1551
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

1552 1553 1554
    Examples:
        .. code-block:: python

1555
          cost = fluid.layers.bpr_loss(input=predict, label=label)
1556
    """
1557 1558 1559 1560 1561 1562

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1563
                'Label': [label]},
1564 1565 1566 1567
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1568
def square_error_cost(input, label):
1569
    """
1570 1571
    **Square error cost layer**

1572 1573
    This layer accepts input predictions and target label and returns the
    squared error cost.
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1588 1589
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1590 1591

    Returns:
1592
        Variable: The tensor variable storing the element-wise squared error \
1593
                  difference of input and label.
1594 1595 1596 1597

    Examples:
        .. code-block:: python

1598 1599 1600
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1601

1602
    """
F
fengjiayi 已提交
1603
    helper = LayerHelper('square_error_cost', **locals())
1604
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
1605 1606 1607 1608 1609 1610
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

1611
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
1612
    helper.append_op(
F
fengjiayi 已提交
1613 1614
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
1615 1616 1617
    return square_out


Y
yi.wu 已提交
1618
@templatedoc()
1619 1620 1621 1622
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1623
               excluded_chunk_types=None):
1624
    """
Y
yi.wu 已提交
1625
    **Chunk Evaluator**
Y
yi.wu 已提交
1626

1627
    This function computes and outputs the precision, recall and
1628
    F1-score of chunk detection.
Y
yi.wu 已提交
1629

M
minqiyang 已提交
1630
    For some basics of chunking, please refer to
1631
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1632 1633 1634 1635 1636 1637

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1638

Y
yi.wu 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1664

Y
yi.wu 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1689
    Args:
1690 1691 1692 1693 1694
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1695

Y
yi.wu 已提交
1696
    Returns:
Y
update  
yi.wu 已提交
1697 1698 1699
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1700

Y
yi.wu 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
1713
    """
F
fengjiayi 已提交
1714
    helper = LayerHelper("chunk_eval", **locals())
1715 1716

    # prepare output
1717 1718 1719 1720 1721 1722 1723
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
1724 1725 1726 1727 1728 1729 1730 1731

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1732 1733 1734 1735
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
1736 1737 1738
        },
        attrs={
            "num_chunk_types": num_chunk_types,
1739 1740
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
1741
        })
1742 1743
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
1744 1745


1746
@templatedoc()
1747 1748 1749 1750 1751 1752 1753
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1754 1755
                  act=None,
                  name=None):
1756 1757 1758 1759
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1760 1761 1762 1763 1764 1765 1766

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1780

1781 1782
    Returns:
        Variable: output of sequence_conv
1783 1784
    """

L
lujun 已提交
1785
    assert not in_dygraph_mode(), (
1786
        "sequence layer is not supported in dygraph mode yet.")
1787 1788 1789 1790 1791
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
1792
    pre_bias = helper.create_variable_for_type_inference(dtype)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
1803
            'contextStart': -int(filter_size // 2),
1804 1805 1806 1807 1808 1809
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1810
def sequence_softmax(input, use_cudnn=False, name=None):
1811 1812 1813
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1814
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1831 1832 1833
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1846
    assert not in_dygraph_mode(), (
1847
        "sequence layer is not supported in dygraph mode yet.")
1848 1849
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
1850
    softmax_out = helper.create_variable_for_type_inference(dtype)
1851 1852 1853 1854 1855 1856 1857 1858
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1859
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1860
    """
1861
    The input of the softmax operator is a tensor of any rank. The output tensor
1862
    has the same shape as the input.
Q
qiaolongfei 已提交
1863

D
dengkaipeng 已提交
1864
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
1865
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
1866
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1867 1868 1869
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1870
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
1871
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1872 1873 1874 1875 1876 1877 1878

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

1879
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1880 1881 1882 1883 1884 1885 1886 1887

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1888 1889
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
1890 1891
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1892 1893 1894
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
1904
             # perform softmax in the second dimension
1905
             softmax = fluid.layers.softmax(input=fc, axis=1)
1906 1907
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1908 1909

    """
1910 1911
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
1912
    softmax_out = helper.create_variable_for_type_inference(dtype)
1913 1914 1915 1916
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1917 1918
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1919 1920 1921
    return softmax_out


1922 1923 1924
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1925 1926
           stride=1,
           padding=0,
1927
           dilation=1,
1928 1929 1930
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1931
           use_cudnn=True,
1932 1933
           act=None,
           name=None):
1934
    """
C
chengduoZH 已提交
1935
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1936 1937
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1938
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1939 1940 1941 1942 1943 1944 1945
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1946 1947 1948
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1949

1950
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1951

C
chengduoZH 已提交
1952 1953
    .. math::

C
refine  
chengduoZH 已提交
1954
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1955

T
tensor-tang 已提交
1956
    Where:
C
chengduoZH 已提交
1957

1958 1959 1960 1961 1962
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1963
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1964 1965 1966

    Example:

1967 1968
        - Input:

W
weixing02 已提交
1969
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1970

W
weixing02 已提交
1971
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1972

1973
        - Output:
T
tensor-tang 已提交
1974

W
weixing02 已提交
1975
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1976

C
chengduoZH 已提交
1977
        Where
1978 1979

        .. math::
C
chengduoZH 已提交
1980

W
weixing02 已提交
1981 1982
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1983 1984

    Args:
1985
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1986
        num_filters(int): The number of filter. It is as same as the output
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
2004 2005 2006 2007 2008
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
2009
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
2010 2011 2012 2013 2014
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2015 2016
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
2017 2018
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2019
        name (str|None): A name for this layer(optional). If set None, the layer
2020
            will be named automatically. Default: None
C
chengduoZH 已提交
2021 2022

    Returns:
2023
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2024 2025
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2026
    Raises:
2027 2028
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2029

C
chengduoZH 已提交
2030 2031 2032
    Examples:
        .. code-block:: python

2033 2034
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
2035 2036 2037
    """

    num_channels = input.shape[1]
2038
    assert param_attr is not False, "param_attr should not be False here."
2039
    l_type = 'conv2d'
2040 2041
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2042
        l_type = 'depthwise_conv2d'
2043 2044 2045 2046

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

2047 2048 2049 2050 2051
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
2052
        num_filter_channels = num_channels // groups
2053

C
chengduoZH 已提交
2054 2055 2056
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2057
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2058

C
chengduoZH 已提交
2059 2060
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
2061 2062

    input_shape = input.shape
M
minqiyang 已提交
2063
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
2064 2065

    def _get_default_param_initializer():
2066 2067
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
2068 2069 2070 2071 2072 2073 2074 2075
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

2076
    pre_bias = helper.create_variable_for_type_inference(dtype)
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

2092
    helper.append_op(
2093
        type=l_type,
2094 2095 2096 2097 2098
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2099 2100 2101
        attrs={
            'strides': stride,
            'paddings': padding,
2102
            'dilations': dilation,
C
chengduoZH 已提交
2103
            'groups': groups,
2104
            'use_cudnn': use_cudnn,
2105
            'use_mkldnn': False,
2106
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2107
        })
2108 2109 2110 2111 2112 2113

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2131 2132 2133 2134 2135 2136
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2146 2147
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2148 2149 2150
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2151
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2177
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2178 2179
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2180
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2181 2182
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2183
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2184 2185
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2186
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2187 2188 2189 2190 2191 2192
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2203 2204
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
2205 2206
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2207
        name (str|None): A name for this layer(optional). If set None, the layer
2208
            will be named automatically. Default: None.
C
chengduoZH 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2221 2222
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2223 2224 2225
    """

    l_type = 'conv3d'
2226
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
2237
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
2251 2252 2253
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2254 2255 2256 2257 2258 2259 2260 2261
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

2262
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2277
            'use_mkldnn': False
C
chengduoZH 已提交
2278 2279
        })

2280
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2281 2282 2283 2284

    return helper.append_activation(pre_act)


2285
def sequence_pool(input, pool_type, is_test=False):
2286
    """
2287 2288 2289
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2301
         x.lod = [[2, 3, 2]]
2302 2303 2304 2305 2306
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2307
         with condition len(x.lod[-1]) == out.dims[0]
2308 2309 2310 2311 2312 2313 2314

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2315 2316
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2317

2318 2319
    Args:
        input(variable): The input variable which is a LoDTensor.
2320
        pool_type (string): The pooling type of sequence_pool.
2321
            It supports average, sum, sqrt and max.
2322
        is_test(bool, Default False): Used distinguish training from scoring mode.
2323 2324 2325 2326 2327 2328 2329

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2330

2331
             x = fluid.layers.data(name='x', shape=[7, 1],
2332 2333 2334 2335 2336
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2337 2338
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
2339
    """
L
lujun 已提交
2340
    assert not in_dygraph_mode(), (
2341
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2342
    helper = LayerHelper('sequence_pool', **locals())
2343
    dtype = helper.input_dtype()
2344 2345
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
2346 2347 2348 2349 2350 2351

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2352 2353
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
2354

2355 2356 2357 2358 2359
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

2360 2361 2362
    return pool_out


C
add doc  
chengduoZH 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2381
    assert not in_dygraph_mode(), (
2382
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2383
    helper = LayerHelper('sequence_concat', **locals())
2384
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2385 2386 2387 2388 2389
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2390
def sequence_first_step(input):
2391
    """
L
Luo Tao 已提交
2392
    This function gets the first step of sequence.
2393 2394 2395 2396

    .. code-block:: text

       x is a 1-level LoDTensor:
2397
         x.lod = [[2, 3, 2]]
2398 2399 2400 2401 2402
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2403
         with condition len(x.lod[-1]) == out.dims[0]
2404
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2415

2416
             x = fluid.layers.data(name='x', shape=[7, 1],
2417 2418 2419
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2420 2421 2422
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2423
def sequence_last_step(input):
2424
    """
L
Luo Tao 已提交
2425
    This function gets the last step of sequence.
2426 2427 2428 2429

    .. code-block:: text

       x is a 1-level LoDTensor:
2430
         x.lod = [[2, 3, 2]]
2431 2432 2433 2434 2435
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2436
         with condition len(x.lod[-1]) == out.dims[0]
2437
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2448

2449
             x = fluid.layers.data(name='x', shape=[7, 1],
2450 2451 2452
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2453 2454 2455
    return sequence_pool(input=input, pool_type="last")


2456 2457 2458 2459
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2460
    The layer crops a subsequence from given sequence with given start
2461 2462 2463 2464 2465
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2466

2467
              - Case:
2468

2469
            Given the input Variable **input**:
2470

2471 2472 2473
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
2474

2475
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
2476

2477
            the output Variable will be
2478

2479 2480 2481
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2482

M
minqiyang 已提交
2483
    Note:
2484
          The first dimension size of **input**, **offset** and **length**
2485
          should be equal. The **offset** should start from 0.
2486

2487
    Args:
2488
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2489
                         sequences.
2490 2491 2492 2493 2494 2495
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2496
        Variable: The output subsequences.
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2507
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
2508 2509
                                                   length=length)
    """
L
lujun 已提交
2510
    assert not in_dygraph_mode(), (
2511
        "sequence layer is not supported in dygraph mode yet.")
2512 2513
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
2514
    out = helper.create_variable_for_type_inference(dtype)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2529
@templatedoc()
2530
def pool2d(input,
C
chengduoZH 已提交
2531 2532
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2533 2534
           pool_stride=1,
           pool_padding=0,
2535
           global_pooling=False,
C
chengduoZH 已提交
2536
           use_cudnn=True,
2537
           ceil_mode=False,
2538 2539
           name=None,
           exclusive=True):
2540
    """
F
fengjiayi 已提交
2541
    ${comment}
2542 2543

    Args:
2544 2545 2546
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2547
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2548
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2549 2550
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2551
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2552 2553 2554 2555 2556 2557
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2558 2559 2560
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2561
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2562
                        layer will be named automatically.
2563
        exclusive (bool): Whether to exclude padding points in average pooling
2564
                          mode, default is true
F
fengjiayi 已提交
2565

2566
    Returns:
F
fengjiayi 已提交
2567
        Variable: The pooling result.
F
fengjiayi 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
2580
          pool2d = fluid.layers.pool2d(
2581 2582 2583 2584
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2585
                            global_pooling=False)
2586 2587 2588 2589 2590
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2591

C
chengduoZH 已提交
2592 2593 2594 2595 2596
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2597 2598 2599 2600
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2601 2602
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
2603

C
Add doc  
chengduoZH 已提交
2604
    l_type = 'pool2d'
2605 2606

    helper = LayerHelper(l_type, **locals())
2607
    dtype = helper.input_dtype()
2608
    pool_out = helper.create_variable_for_type_inference(dtype)
2609 2610

    helper.append_op(
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2622 2623
            "use_mkldnn": False,
            "exclusive": exclusive,
2624 2625 2626 2627 2628
        })

    return pool_out


2629
@templatedoc()
2630 2631 2632 2633 2634 2635 2636 2637
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2638 2639
           name=None,
           exclusive=True):
2640
    """
2641
    ${comment}
2642 2643

    Args:
2644 2645 2646 2647 2648
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
2649 2650 2651 2652 2653
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2654 2655 2656 2657 2658 2659 2660
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2661
        exclusive (bool): Whether to exclude padding points in average pooling
2662
                          mode, default is true
2663

2664
    Returns:
2665
        Variable: output of pool3d layer.
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
2679 2680 2681 2682 2683
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2684

C
chengduoZH 已提交
2685 2686 2687 2688 2689
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2690 2691 2692
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2693

C
chengduoZH 已提交
2694 2695
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
2696

2697 2698
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
2699
    dtype = helper.input_dtype()
2700
    pool_out = helper.create_variable_for_type_inference(dtype)
2701 2702

    helper.append_op(
2703
        type=l_type,
2704 2705 2706 2707 2708 2709 2710
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2711
            "paddings": pool_padding,
2712
            "use_cudnn": use_cudnn,
2713
            "ceil_mode": ceil_mode,
2714 2715
            "use_mkldnn": False,
            "exclusive": exclusive,
2716 2717 2718 2719 2720
        })

    return pool_out


2721 2722 2723 2724 2725 2726 2727
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
2728 2729 2730 2731 2732 2733 2734
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2749 2750 2751 2752 2753 2754 2755 2756 2757

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
2758 2759
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2774
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2775
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2776
          # of input data into m * n grids averagely and performs poolings in each
2777 2778
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2779
          #
2780 2781 2782 2783 2784 2785 2786 2787
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2788 2789
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
2790
          pool_out = fluid.layers.adaptive_pool2d(
2791 2792
                            input=data,
                            pool_size=[3, 3],
2793
                            pool_type='avg')
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2804
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

2830
    return (pool_out, mask) if require_index else pool_out
2831 2832 2833 2834 2835 2836 2837 2838 2839


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
2840 2841 2842 2843 2844 2845 2846
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2865 2866 2867

    Args:
        input (Variable): The input tensor of pooling operator. The format of
2868 2869 2870
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2871
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
2872
            it must contain three integers, (Depth, Height, Width).
2873
        pool_type: ${pooling_type_comment}
2874 2875
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2890 2891
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2892
          # of input data into l * m * n grids averagely and performs poolings in each
2893 2894
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2895
          #
2896 2897 2898 2899 2900 2901 2902 2903 2904
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2905
          #                 output[:, :, i, j, k] =
2906 2907
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2908 2909
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
2910
          pool_out, mask = fluid.layers.adaptive_pool3d(
2911
                            input=data,
2912
                            pool_size=[3, 3, 3],
2913
                            pool_type='avg')
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2924
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

2950
    return (pool_out, mask) if require_index else pool_out
2951 2952


2953 2954 2955 2956 2957 2958 2959
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
2960
               data_layout='NCHW',
Y
Yang Yang 已提交
2961
               in_place=False,
2962 2963
               name=None,
               moving_mean_name=None,
2964
               moving_variance_name=None,
2965
               do_model_average_for_mean_and_var=False,
2966 2967
               fuse_with_relu=False,
               use_global_stats=False):
2968
    """
Q
qiaolongfei 已提交
2969 2970 2971 2972
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2973

Q
qiaolongfei 已提交
2974
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2975

Q
qiaolongfei 已提交
2976 2977
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2978 2979 2980
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2993

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3007
    Args:
3008
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3009
        act(string, Default None): Activation type, linear|relu|prelu|...
3010 3011 3012 3013 3014 3015 3016 3017 3018
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
3019 3020 3021 3022 3023 3024 3025 3026
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3027
        data_layout(string, default NCHW): NCHW|NHWC
3028
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3029 3030 3031 3032
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3033
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3034
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3035 3036 3037 3038 3039
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3040 3041

    Returns:
Q
qiaolongfei 已提交
3042
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3043 3044 3045 3046 3047

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3048
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3049 3050
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
3051
    """
3052
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
3053 3054 3055
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3056 3057 3058 3059
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3078
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
3079

3080 3081
    mean = helper.create_parameter(
        attr=ParamAttr(
3082 3083 3084
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3085
            do_model_average=do_model_average_for_mean_and_var),
3086
        shape=param_shape,
W
Wu Yi 已提交
3087
        dtype=dtype)
3088 3089 3090 3091 3092 3093
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
3094
            trainable=False,
W
wanghaoshuang 已提交
3095
            do_model_average=do_model_average_for_mean_and_var),
3096
        shape=param_shape,
W
Wu Yi 已提交
3097
        dtype=dtype)
3098
    variance.stop_gradient = True
3099 3100 3101 3102 3103 3104

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
3105 3106 3107 3108
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
3109

3110 3111
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3129 3130 3131 3132
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3133
            "data_layout": data_layout,
X
Xin Pan 已提交
3134
            "use_mkldnn": False,
3135 3136
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3137
        })
3138 3139 3140 3141

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3261
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3262 3263 3264 3265

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3266
@templatedoc()
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3277
    ${comment}
3278 3279 3280

    The formula is as follows:

Y
yuyang18 已提交
3281
    ..  math::
3282 3283 3284 3285 3286 3287 3288

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3289 3290 3291 3292 3293 3294 3295 3296
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3297

3298 3299
    Args:
        input(Variable): The input tensor variable.
3300
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3301
            normalization. Default True.
3302
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3303 3304
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
3305
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3306
            Default 1.
3307
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3308
            division by zero. Default 1e-05.
3309
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3310 3311
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3312 3313
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
3314
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3315 3316
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3317
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3318
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
3319
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3320 3321 3322
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
3323 3324

    Returns:
Y
yuyang18 已提交
3325
        ${y_comment}
3326 3327 3328

    Examples:

Y
yuyang18 已提交
3329 3330 3331
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
3332
    """
L
lujun 已提交
3333
    assert in_dygraph_mode(
3334
    ) is not True, "please use FC instead of fc in dygraph mode!"
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3349
    if shift:
3350 3351 3352 3353 3354 3355
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
3356 3357 3358 3359 3360
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

3388
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3436 3437
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3455
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
3456 3457 3458
    """
    **Spectral Normalization Layer**

3459
    This layer calculates the spectral normalization value of weight parameters of
3460
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
3461
    Parameters. Calculations are showed as follows.
3462

D
dengkaipeng 已提交
3463 3464 3465
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
3466
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
3479
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3480 3481 3482 3483

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3484

D
dengkaipeng 已提交
3485
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3486 3487
                

3488 3489 3490 3491
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3492 3493 3494
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
3495 3496 3497
        name (str): The name of this layer. It is optional.

    Returns:
3498
        Variable: A tensor variable of weight parameters after spectral normalization.
3499 3500 3501 3502 3503 3504 3505 3506

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3507
    dtype = weight.dtype
3508 3509 3510

    # create intput and parameters
    inputs = {'Weight': weight}
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
3529 3530

    # create output
3531
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3532 3533

    helper.append_op(
3534
        type="spectral_norm",
D
Dun 已提交
3535
        inputs=inputs,
3536 3537 3538 3539 3540 3541
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3542

3543
    return out
D
Dun 已提交
3544 3545


3546 3547 3548 3549
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3550 3551 3552
                     padding=0,
                     stride=1,
                     dilation=1,
3553
                     groups=None,
3554
                     param_attr=None,
3555
                     bias_attr=None,
C
chengduoZH 已提交
3556
                     use_cudnn=True,
3557
                     act=None,
3558
                     name=None):
3559
    """
3560 3561 3562 3563 3564 3565 3566 3567
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3568 3569
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3570 3571 3572
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3573 3574 3575 3576 3577

    For each input :math:`X`, the equation is:

    .. math::

3578
        Out = \sigma (W \\ast X + b)
3579

3580
    Where:
3581 3582 3583

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3584 3585 3586 3587
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
3588

3589 3590 3591 3592
    Example:

        - Input:

3593
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3594

3595
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3596 3597 3598

        - Output:

3599
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3600 3601

        Where
3602

3603 3604
        .. math::

3605 3606
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
3607 3608
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
3609 3610

    Args:
3611 3612 3613 3614
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3615 3616 3617 3618
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3647
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
3648 3649 3650
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3651
        name(str|None): A name for this layer(optional). If set None, the layer
3652
            will be named automatically. Default: True.
3653 3654

    Returns:
3655
        Variable: The tensor variable storing the convolution transpose result.
3656 3657

    Raises:
3658 3659
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3660 3661 3662 3663

    Examples:
       .. code-block:: python

3664 3665
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
3666
    """
3667
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3668 3669 3670 3671 3672 3673 3674 3675
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
3676 3677 3678
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3679 3680 3681
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
3682

C
chengduoZH 已提交
3683 3684
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
3685

3686 3687 3688 3689 3690
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
3691

3692 3693
        h_in = input.shape[2]
        w_in = input.shape[3]
3694

C
chengduoZH 已提交
3695
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
3696
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3697
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
3698
                         padding[1] - 1) // dilation[1] + 1
3699
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3700 3701 3702
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
3703

3704 3705 3706 3707 3708 3709 3710
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3711
    groups = 1 if groups is None else groups
3712
    filter_shape = [input_channel, num_filters // groups] + filter_size
3713

3714 3715 3716
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

3717
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
3718
    helper.append_op(
3719
        type=op_type,
3720 3721
        inputs={'Input': [input],
                'Filter': [img_filter]},
3722
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3723
        attrs={
3724
            'output_size': output_size,
3725 3726 3727 3728 3729
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
3730 3731
        })

3732 3733 3734
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
3735 3736


3737
def conv3d_transpose(input,
3738 3739 3740
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3741 3742 3743
                     padding=0,
                     stride=1,
                     dilation=1,
3744
                     groups=None,
3745
                     param_attr=None,
3746
                     bias_attr=None,
C
chengduoZH 已提交
3747
                     use_cudnn=True,
3748
                     act=None,
3749
                     name=None):
3750
    """
3751
    **Convlution3D transpose layer**
3752

3753
    The convolution3D transpose layer calculates the output based on the input,
3754
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3755 3756 3757 3758 3759 3760
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3761 3762 3763
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3764 3765 3766 3767 3768

    For each input :math:`X`, the equation is:

    .. math::

3769
        Out = \sigma (W \\ast X + b)
3770 3771 3772

    In the above equation:

3773 3774
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3775 3776 3777 3778
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
3779

3780 3781 3782 3783
    Example:

        - Input:

3784
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3785

3786
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3787 3788 3789

        - Output:

3790
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3791 3792

        Where
3793

3794 3795
        .. math::

3796 3797 3798
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
3799 3800

    Args:
3801
        input(Variable): The input image with [N, C, D, H, W] format.
3802 3803 3804
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3805
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3806 3807
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3808
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3809 3810 3811
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3812 3813
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3814
        stride(int|tuple): The stride size. If stride is a tuple, it must
3815 3816
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3817
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3818 3819 3820
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3821 3822 3823 3824 3825
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3826 3827 3828 3829 3830 3831 3832 3833 3834
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3835 3836
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
3837 3838
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3839 3840
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3841 3842

    Returns:
3843
        Variable: The tensor variable storing the convolution transpose result.
3844 3845

    Raises:
3846 3847
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3848 3849 3850 3851

    Examples:
       .. code-block:: python

3852 3853
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
3854
    """
3855
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3856 3857
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
3858
    if not isinstance(input, Variable):
3859
        raise TypeError("Input of conv3d_transpose must be Variable")
3860 3861
    input_channel = input.shape[1]

3862 3863 3864
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3865

C
chengduoZH 已提交
3866 3867 3868
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3869 3870 3871 3872 3873 3874
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3875 3876 3877
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3878

3879
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
3880
                         padding[0] - 1) // dilation[0] + 1
3881
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
3882
                         padding[1] - 1) // dilation[1] + 1
3883
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
3884
                         padding[2] - 1) // dilation[2] + 1
3885
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3886
    else:
3887 3888
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
3889

3890
    groups = 1 if groups is None else groups
3891
    filter_shape = [input_channel, num_filters // groups] + filter_size
3892 3893 3894
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

3895
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
3896
    helper.append_op(
3897
        type=l_type,
3898 3899
        inputs={'Input': [input],
                'Filter': [img_filter]},
3900
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3901 3902 3903 3904
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3905
            'groups': groups,
C
chengduoZH 已提交
3906 3907
            'use_cudnn': use_cudnn
        })
3908

3909 3910
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
3911
    return out
3912 3913


Y
yangyaming 已提交
3914
def sequence_expand(x, y, ref_level=-1, name=None):
3915
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3916 3917 3918 3919
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3920 3921 3922 3923 3924

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3925
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3926
                x.data = [[a], [b], [c], [d]]
3927 3928 3929
                x.dims = [4, 1]

            y is a LoDTensor:
3930 3931
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3932

Y
yangyaming 已提交
3933
            ref_level: 0
3934

Y
yangyaming 已提交
3935
            then output is a 1-level LoDTensor:
3936
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3937
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3938 3939 3940 3941
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3942
                x.data = [[a], [b], [c]]
3943 3944 3945
                x.dims = [3, 1]

            y is a LoDTensor:
3946
                y.lod = [[2, 0, 3]]
3947

Y
yangyaming 已提交
3948
            ref_level: -1
3949

Y
yangyaming 已提交
3950 3951 3952
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3953 3954 3955
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3956 3957
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
3958
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3959
                        will be named automatically.
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3970
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3971
    """
L
lujun 已提交
3972
    assert not in_dygraph_mode(), (
3973
        "sequence layer is not supported in dygraph mode yet.")
3974
    helper = LayerHelper('sequence_expand', input=x, **locals())
3975
    dtype = helper.input_dtype()
3976
    tmp = helper.create_variable_for_type_inference(dtype)
3977
    helper.append_op(
Y
yangyaming 已提交
3978 3979 3980 3981 3982
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3983
    return tmp
3984 3985


3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4040
    assert not in_dygraph_mode(), (
4041
        "sequence layer is not supported in dygraph mode yet.")
4042 4043
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
4044
    tmp = helper.create_variable_for_type_inference(dtype)
4045 4046 4047 4048 4049 4050 4051 4052
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


4053
@templatedoc()
4054
def sequence_pad(x, pad_value, maxlen=None, name=None):
4055 4056 4057 4058 4059
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4060 4061 4062
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
4063
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4064 4065 4066 4067
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4068 4069 4070
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4071

4072
    Returns:
M
minqiyang 已提交
4073
        Variable: The padded sequence batch and the original lengths before
4074
                  padding. All sequences has the same length.
M
minqiyang 已提交
4075

4076 4077 4078 4079 4080 4081 4082
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
4083
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4084
                input=numpy.array([0.0], dtype=numpy.float32))
4085 4086 4087
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4088
    assert not in_dygraph_mode(), (
4089
        "sequence layer is not supported in dygraph mode yet.")
4090 4091
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
4092 4093
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4094 4095 4096 4097

    pad_value.stop_gradient = True
    length.stop_gradient = True

4098 4099 4100 4101 4102 4103
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4104 4105
        outputs={'Out': out,
                 'Length': length},
4106
        attrs={'padded_length': maxlen})
4107
    return out, length
4108 4109


4110
def sequence_unpad(x, length, name=None):
4111
    """
4112
    **Sequence Unpad Layer**
4113

4114 4115
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
4116 4117 4118 4119 4120 4121 4122 4123 4124
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4125 4126 4127
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4128
	specified by input Variable **length**:
4129 4130 4131 4132 4133 4134

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4135
	    out.lod = [[2, 3, 4]]
4136 4137 4138 4139 4140 4141

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4142 4143
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4156
    assert not in_dygraph_mode(), (
4157
        "sequence layer is not supported in dygraph mode yet.")
4158 4159
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
4160
    out = helper.create_variable_for_type_inference(dtype)
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4172 4173 4174 4175 4176 4177 4178
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4179
                is_accumulated=True,
4180 4181
                name=None,
                return_parent_idx=False):
4182
    """
4183 4184
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
4185 4186 4187

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4188 4189

    This layer does the search in beams for one time step. Specifically, it
4190 4191 4192
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4204 4205 4206 4207

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
4208

4209
    Args:
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4233 4234
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4235 4236
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4237 4238 4239 4240
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4241

4242
    Returns:
4243 4244 4245 4246
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
4247 4248 4249 4250

    Examples:
        .. code-block:: python

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4268
    helper = LayerHelper('beam_search', **locals())
4269 4270 4271 4272 4273 4274
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4275

4276 4277 4278
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4279 4280 4281 4282 4283
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4284 4285 4286

    helper.append_op(
        type='beam_search',
4287
        inputs=inputs,
Q
Qiao Longfei 已提交
4288 4289 4290
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4291
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4292 4293 4294 4295 4296 4297
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4298
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4299
        })
4300 4301 4302 4303
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4304 4305


4306 4307 4308 4309 4310 4311 4312
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
4313

4314 4315 4316 4317 4318 4319 4320 4321 4322
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4323

4324 4325 4326 4327 4328 4329
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
4330

4331 4332
    Examples:
        .. code-block:: python
4333

4334 4335 4336 4337 4338 4339
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
4340 4341
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


4357 4358 4359 4360
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
4361
              param_attr=None,
4362 4363
              bias_attr=None,
              name=None):
4364 4365 4366 4367
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4368
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
4369

4370
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
4371

4372
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
4373

4374
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
4375 4376 4377

            h_t & = o_t tanh(c_t)

4378 4379 4380 4381 4382 4383
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
4384 4385 4386

        .. math::

4387
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
4388 4389 4390 4391 4392 4393 4394 4395

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4396
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
4397 4398

    Args:
4399 4400 4401 4402 4403 4404
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
4405
        forget_bias (float): The forget bias of lstm unit.
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
4418 4419
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4420 4421

    Returns:
4422
        tuple: The hidden value and cell value of lstm unit.
4423 4424

    Raises:
4425 4426 4427 4428
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
4429 4430 4431 4432 4433 4434

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4435
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
4436
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
4437
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4454
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4455 4456 4457 4458
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
4459 4460
                         "cell_t_prev must be the same.")

4461 4462 4463
    if bias_attr is None:
        bias_attr = ParamAttr()

4464
    size = cell_t_prev.shape[1]
4465
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
4466 4467
    fc_out = fc(input=concat_out,
                size=4 * size,
4468
                param_attr=param_attr,
4469
                bias_attr=bias_attr)
4470
    dtype = x_t.dtype
4471 4472
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
4473 4474 4475 4476 4477 4478 4479 4480 4481

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

4482
    return h, c
4483 4484


4485
def reduce_sum(input, dim=None, keep_dim=False, name=None):
4486
    """
4487
    Computes the sum of tensor elements over the given dimension.
4488 4489 4490

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4491
        dim (list|int|None): The dimensions along which the sum is performed. If
4492 4493
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4494 4495
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4496
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
4497
            output Tensor. The result tensor will have one fewer dimension
4498
            than the :attr:`input` unless :attr:`keep_dim` is true.
4499 4500
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4501 4502 4503

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4504

4505 4506 4507 4508 4509 4510
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
4511
            # Each example is followed by the corresponding output tensor.
4512 4513 4514 4515
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4516 4517 4518 4519

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
4520
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4521 4522 4523
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

4524 4525
    """
    helper = LayerHelper('reduce_sum', **locals())
4526
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4527 4528
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4529 4530 4531 4532 4533
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4534
            'dim': dim if dim != None else [0],
4535 4536 4537 4538
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4539 4540


4541
def reduce_mean(input, dim=None, keep_dim=False, name=None):
4542
    """
4543
    Computes the mean of the input tensor's elements along the given dimension.
4544 4545 4546

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
4547 4548 4549
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
4550
            must be in the range :math:`[-rank(input), rank(input))`. If
4551
            :math:`dim[i] < 0`, the dimension to reduce is
4552
            :math:`rank(input) + dim[i]`.
4553 4554
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4555
            than the :attr:`input` unless :attr:`keep_dim` is true.
4556
        name(str|None): A name for this layer(optional). If set `None`, the layer
4557
                       will be named automatically.
4558 4559

    Returns:
4560
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4561

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4572 4573
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4574 4575 4576 4577 4578 4579 4580

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
4581 4582
    """
    helper = LayerHelper('reduce_mean', **locals())
4583
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4584 4585
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4586 4587 4588 4589 4590
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4591
            'dim': dim if dim != None else [0],
4592 4593 4594 4595
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4596 4597


4598
def reduce_max(input, dim=None, keep_dim=False, name=None):
4599
    """
4600
    Computes the maximum of tensor elements over the given dimension.
4601 4602 4603

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4604
        dim (list|int|None): The dimension along which the maximum is computed.
4605 4606 4607
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4608
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4609 4610
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4611
            than the :attr:`input` unless :attr:`keep_dim` is true.
4612 4613
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4614 4615 4616

    Returns:
        Variable: The reduced Tensor variable.
4617

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4629 4630 4631 4632 4633 4634 4635

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4636 4637
    """
    helper = LayerHelper('reduce_max', **locals())
4638
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4639 4640
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4641 4642 4643 4644 4645
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4646
            'dim': dim if dim != None else [0],
4647 4648 4649 4650 4651 4652
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


4653
def reduce_min(input, dim=None, keep_dim=False, name=None):
4654
    """
4655
    Computes the minimum of tensor elements over the given dimension.
4656 4657 4658

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4659
        dim (list|int|None): The dimensions along which the minimum is computed.
4660 4661 4662
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4663
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4664 4665
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4666
            than the :attr:`input` unless :attr:`keep_dim` is true.
4667 4668
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4669 4670 4671

    Returns:
        Variable: The reduced Tensor variable.
4672

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4684 4685 4686 4687 4688 4689 4690

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4691 4692
    """
    helper = LayerHelper('reduce_min', **locals())
4693
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4694 4695
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4696 4697 4698 4699 4700
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4701
            'dim': dim if dim != None else [0],
4702 4703 4704 4705
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4706 4707


4708 4709 4710 4711 4712 4713
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4714
        dim (list|int|None): The dimensions along which the product is performed. If
4715 4716
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4717 4718
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4719 4720 4721
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4722
        name(str|None): A name for this layer(optional). If set None, the
4723
            layer will be named automatically.
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4738
            fluid.layers.reduce_prod(x, dim=1,
4739
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4740 4741 4742 4743 4744 4745 4746

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4747 4748
    """
    helper = LayerHelper('reduce_prod', **locals())
4749
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4750 4751
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4752 4753 4754 4755 4756
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4757
            'dim': dim if dim != None else [0],
4758 4759 4760 4761 4762 4763
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4764 4765
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4766
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4786
        
Z
zhoukunsheng 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4816
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4836

Z
zhoukunsheng 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4859 4860 4861 4862 4863
            'reduce_all': True if dim == None else False
        })
    return out


4864
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4865
    """
4866
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4867 4868 4869

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
4870 4871 4872 4873 4874
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4875
            :attr:`dim` dimension orderly.
4876
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4877
            dimension to split along is :math:`rank(input) + dim`.
4878 4879
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4880 4881

    Returns:
D
dzhwinter 已提交
4882
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4892 4893
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4905
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4906 4907 4908
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
4909
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
4923 4924 4925 4926 4927 4928 4929 4930 4931


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4932
    .. math::
4933 4934

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
4935 4936 4937 4938 4939

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4940
        x(Variable|list): The input tensor to l2_normalize layer.
4941
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4942 4943
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4944
        epsilon(float): The epsilon value is used to avoid division by zero, \
4945
            the defalut value is 1e-12.
4946
        name(str|None): A name for this layer(optional). If set None, the layer \
4947
            will be named automatically.
4948 4949

    Returns:
4950
        Variable: The output tensor variable is the same shape with `x`.
4951 4952

    Examples:
4953

4954 4955
        .. code-block:: python

4956 4957 4958 4959
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
4960 4961
    """

F
fengjiayi 已提交
4962 4963
    if len(x.shape) == 1:
        axis = 0
4964 4965
    helper = LayerHelper("l2_normalize", **locals())

4966 4967
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
4968
    helper.append_op(
4969 4970 4971 4972
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
4973
        attrs={
4974 4975
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
4976 4977
        })
    return out
4978 4979


S
sneaxiy 已提交
4980
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
4981
    """
Y
ying 已提交
4982 4983 4984 4985
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
4986

C
chengduoZH 已提交
4987
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4988
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
4989

4990 4991 4992 4993 4994
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4995
      :math:`[1, D]` in transposed form.
4996

C
chengduoZH 已提交
4997
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4998
      performs in the following way.
4999

5000
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5001
      - If either is n-D, it is treated as a stack of matrices residing in the
5002
        last two dimensions and a batched matrix multiply supporting broadcast
5003
        applies on the two tensors.
5004

5005 5006
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5007
    removed after matrix multiplication.
5008 5009 5010

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5011 5012 5013
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5014
        alpha (float): The scale of output. Default 1.0.
5015
        name(str|None): A name for this layer(optional). If set None, the layer
5016
            will be named automatically.
5017 5018

    Returns:
5019
        Variable: The product Tensor variable.
5020

G
guosheng 已提交
5021 5022 5023
    Examples:
        .. code-block:: python

5024
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5025 5026
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5027

5028 5029
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5030

5031 5032
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5033

5034 5035
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5036 5037 5038 5039

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5040 5041
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5042

Y
ying 已提交
5043
            # x: [M], y: [N]
5044
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5045
    """
Y
ying 已提交
5046 5047 5048 5049 5050 5051 5052

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5053
            y_shape = y_shape + [1]
Y
ying 已提交
5054 5055 5056 5057 5058 5059 5060

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5061 5062
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5063

C
chengduo 已提交
5064
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5065
            for i, dim_x in enumerate(x_shape[:-2]):
5066 5067 5068
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5069
                if dim_x != y_shape[i]:
C
chengduo 已提交
5070 5071
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5072 5073 5074

    __check_input(x, y)

5075
    helper = LayerHelper('matmul', **locals())
5076
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5077
    helper.append_op(
5078 5079 5080 5081
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5082 5083 5084
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5085
            'alpha': float(alpha),
S
sneaxiy 已提交
5086
        })
5087
    return out
5088 5089


5090
def topk(input, k, name=None):
5091 5092 5093 5094
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5095
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
5096 5097 5098 5099 5100 5101
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

5123 5124 5125
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
5126
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5127
                 of input.
5128
        name(str|None): A name for this layer(optional). If set None, the layer
5129
                       will be named automatically.
F
fengjiayi 已提交
5130
                       Default: None
5131 5132

    Returns:
5133 5134 5135
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5136
        within the last dimension of input.
5137

F
fengjiayi 已提交
5138 5139
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
5140 5141 5142 5143 5144 5145 5146

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
5147 5148
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
5149 5150 5151 5152 5153 5154
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
5155 5156
    helper.append_op(
        type="top_k",
5157
        inputs=inputs,
5158 5159
        outputs={"Out": [values],
                 "Indices": [indices]},
5160
        attrs=attrs)
5161 5162 5163 5164 5165
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5166
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5167
    """
Y
ying 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5177

Y
ying 已提交
5178
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5179

5180
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5181 5182
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5183
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5184

5185
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5186 5187
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5188

5189 5190 5191
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5192
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5193
                          the length of reference string.
5194
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5195
                                     calculating edit distance.
5196
        name (str): The name of this layer. It is optional.
5197

W
wanghaoshuang 已提交
5198
    Returns:
W
wanghaoshuang 已提交
5199
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5200 5201 5202 5203

    Examples:
        .. code-block:: python

T
tink2123 已提交
5204 5205
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5206
            cost = fluid.layers.edit_distance(input=x,label=y)
5207
    """
5208
    helper = LayerHelper("edit_distance", **locals())
5209

5210
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5211
    if ignored_tokens is not None and len(ignored_tokens) > 0:
5212 5213
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5214 5215 5216 5217 5218

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5219
            attrs={"tokens": ignored_tokens})
5220 5221 5222 5223 5224
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
5225
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5226
            attrs={"tokens": ignored_tokens})
5227 5228
        label = erased_label

5229
    # edit distance op
5230 5231
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5232 5233 5234 5235
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5236 5237
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5238 5239
        attrs={"normalized": normalized})

5240
    return edit_distance_out, sequence_num
5241 5242 5243 5244 5245


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5246

Y
ying 已提交
5247 5248 5249 5250
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5268
        input.lod = [[4, 4]]
M
minqiyang 已提交
5269

5270
        Computation:
5271

5272 5273 5274 5275 5276 5277
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5278 5279 5280 5281 5282

        output.data = [[2],
                       [1],
                       [3]]

5283
        output.lod = [[2, 1]]
5284

5285

5286 5287
    Args:

Y
ying 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5297
        name (str): The name of this layer. It is optional.
5298 5299

    Returns:
5300 5301 5302
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5303
                  LoD [[]] and dims [1, 1].
5304 5305 5306 5307

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5308
            import paddle.fluid as fluid
5309 5310
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5311
    """
5312
    helper = LayerHelper("ctc_greedy_decoder", **locals())
5313
    _, topk_indices = topk(input, k=1)
5314 5315

    # ctc align op
5316
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5317 5318 5319
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5320
        outputs={"Output": [ctc_out]},
5321 5322
        attrs={"merge_repeated": True,
               "blank": blank})
5323
    return ctc_out
5324 5325


W
Wu Yi 已提交
5326
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
5327
    """
5328 5329
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
5330
    to compute Connectionist Temporal Classification (CTC) loss.
5331 5332
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
5333 5334 5335
    input tensor.

    Args:
5336
       input (Variable): The unscaled probabilities of variable-length sequences,
5337 5338 5339 5340
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5341
       label (Variable): The ground truth of variable-length sequence,
5342 5343 5344
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
5345 5346
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5347 5348 5349
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5350
         follewed by a mean_op.
W
Wu Yi 已提交
5351
       use_cudnn (bool, default false): Whether to use cudnn.
5352 5353

    Returns:
5354 5355
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
5356 5357

    Examples:
5358

5359
        .. code-block:: python
5360

5361 5362 5363
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
5364 5365

    """
F
fengjiayi 已提交
5366
    helper = LayerHelper('warpctc', **locals())
5367 5368
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5369 5370 5371 5372 5373 5374
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5375 5376 5377 5378 5379
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
5380
    return loss_out
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5396 5397 5398
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5399 5400 5401 5402 5403
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5404

5405
            out.lod  = [[0, 1, 3]]
5406 5407 5408 5409

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5410 5411 5412 5413 5414 5415 5416
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5417 5418 5419

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5420 5421

    Returns:
5422

5423 5424 5425 5426 5427
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5428
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5429
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5430
    """
L
lujun 已提交
5431
    assert not in_dygraph_mode(), (
5432
        "sequence layer is not supported in dygraph mode yet.")
5433
    helper = LayerHelper('sequence_reshape', **locals())
5434
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5435 5436 5437 5438 5439 5440
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
5441 5442


5443 5444 5445 5446
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5447 5448 5449 5450 5451 5452
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
5453
        num_neg_samples=None,
5454 5455 5456
        name=None,
        sampler="uniform",
        custom_dist=None,
5457 5458
        seed=0,
        is_sparse=False):
5459 5460 5461 5462 5463 5464 5465
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5466 5467
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5468
            sample is 1.0.
5469 5470 5471 5472 5473 5474 5475 5476 5477
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5478
        num_neg_samples (int): ${num_neg_samples_comment}
5479 5480
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5481 5482 5483
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5484
        custom_dist (float[]): A float[] with size=num_total_classes.
5485 5486 5487 5488
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5489
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5490

5491
    Returns:
5492 5493 5494 5495 5496 5497
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


5498
	    import numpy as np
5499

5500 5501 5502 5503 5504 5505 5506 5507
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
5508

5509 5510 5511 5512
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
5513

5514 5515 5516
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5517

5518 5519 5520 5521
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5522

5523 5524 5525 5526 5527 5528 5529 5530
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5531
    """
Y
Yang Yu 已提交
5532 5533 5534
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
5535 5536

    dim = input.shape[1]
Y
Yang Yu 已提交
5537 5538 5539 5540 5541 5542
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5543
    inputs = {}
5544 5545 5546 5547 5548 5549 5550
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
5551 5552 5553
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5554

5555 5556 5557 5558
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5559 5560 5561 5562 5563 5564 5565

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5566 5567
        # assert isinstance(custom_dist, Variable)

5568
        custom_dist_len = num_total_classes
5569 5570 5571 5572 5573 5574
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5575
            if normal_prob - 1.0 > 0:
5576
                bigs.append((i, normal_prob))
5577
            elif 1.0 - normal_prob > 0:
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5593
            if big_left - 1.0 > 0:
5594
                bigs.append((big_idx, big_left))
5595
            elif 1.0 - big_left > 0:
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5625 5626 5627 5628
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5629 5630 5631 5632 5633
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5634 5635 5636 5637
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5638

Y
Yang Yu 已提交
5639 5640
    attrs = {
        'num_total_classes': int(num_total_classes),
5641 5642
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5643
        'sampler': sampler,
5644 5645
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5646
    }
Y
Yang Yu 已提交
5647 5648 5649

    helper.append_op(
        type='nce',
5650
        inputs=inputs,
Y
Yang Yu 已提交
5651 5652 5653 5654 5655 5656
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5657
    return cost / (num_neg_samples + 1)
5658 5659


5660 5661
def hsigmoid(input,
             label,
5662
             num_classes,
5663 5664
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5665
             name=None,
5666 5667 5668
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5669
             is_sparse=False):
W
weixing02 已提交
5670 5671
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5672
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5673
    complete binary tree, or you can use is_custom to pass your own tree to
5674
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5675 5676 5677 5678 5679 5680
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5681
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5682
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5683

5684 5685
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

5686 5687 5688 5689
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5690
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
5691
       related to the same batch of inputs.
5692

W
weixing02 已提交
5693
    Args:
M
minqiyang 已提交
5694
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5695 5696 5697 5698
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5699 5700
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5701
            which indicates the num of classes using by binary classify.
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5713
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5714
            it should be in leaf -> root order
M
minqiyang 已提交
5715 5716 5717
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5718
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5719
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5720
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5721
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5722
             of W and input will be sparse.
W
weixing02 已提交
5723 5724

    Returns:
J
JiabinYang 已提交
5725
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5726 5727 5728 5729 5730

    Examples:

        .. code-block:: python

G
guosheng 已提交
5731 5732 5733
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5734 5735 5736 5737
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
5738 5739
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5740
    dim = input.shape[1]
5741
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5742 5743 5744
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5745 5746 5747 5748 5749 5750 5751 5752 5753
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5754
    if (is_custom) and (path_code is None):
5755
        raise ValueError("path_code should not be None with custom tree")
5756
    elif (is_custom) and (path_table is None):
5757
        raise ValueError("path_table should not be None with custom tree")
5758
    elif (is_custom) and (num_classes is None):
5759
        raise ValueError("num_classes should not be None with custom tree")
5760 5761 5762
    else:
        pass

J
JiabinYang 已提交
5763
    weights = None
5764 5765 5766 5767
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5768
    if not is_custom:
J
JiabinYang 已提交
5769 5770 5771 5772 5773 5774 5775 5776
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5777
            shape=[num_classes, dim],
J
JiabinYang 已提交
5778 5779
            is_bias=False,
            dtype=input.dtype)
5780 5781 5782
    inputs = {
        "X": input,
        "W": weights,
5783
        "PathTable": path_table,
5784
        "PathCode": path_code,
5785 5786
        "Label": label
    }
W
weixing02 已提交
5787
    if helper.bias_attr:
5788
        if not is_custom:
J
JiabinYang 已提交
5789 5790
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5791
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5792 5793 5794 5795 5796 5797
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5798
                shape=[num_classes, 1],
J
JiabinYang 已提交
5799 5800 5801
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5802 5803
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5804
        inputs=inputs,
W
weixing02 已提交
5805
        outputs={"Out": out,
5806 5807 5808 5809 5810 5811 5812
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5813 5814 5815
    return out


Y
fix ci.  
ying 已提交
5816
def transpose(x, perm, name=None):
5817 5818 5819 5820 5821 5822 5823
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5824 5825 5826
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
5827 5828 5829 5830 5831 5832 5833

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5834
            # use append_batch_size=False to avoid prepending extra
5835
            # batch size in shape
5836
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5837
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5838
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
5839 5840
    """

Y
fix ci.  
ying 已提交
5841
    if len(perm) != len(x.shape):
5842 5843 5844
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5845 5846 5847 5848 5849 5850
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
5851 5852

    helper = LayerHelper('transpose', **locals())
5853 5854
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
5855
    helper.append_op(
5856
        type='transpose2',
Y
fix ci.  
ying 已提交
5857
        inputs={'X': [x]},
5858 5859
        outputs={'Out': [out],
                 'XShape': [x_shape]},
5860 5861
        attrs={'axis': perm})
    return out
5862 5863


5864 5865 5866 5867 5868 5869 5870
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5871
    """
5872 5873 5874 5875 5876 5877 5878
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5907 5908 5909 5910 5911 5912 5913 5914 5915
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5916 5917 5918
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5919 5920 5921 5922 5923
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5951 5952 5953
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5966
            output.dims = {8, 8}
5967

5968
            output.lod = [[4, 4]]
5969

5970
    Examples:
5971 5972 5973

        .. code-block:: python

5974 5975
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5976 5977

    """
L
lujun 已提交
5978
    assert not in_dygraph_mode(), (
5979
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5990 5991 5992 5993 5994 5995 5996
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5997
    helper = LayerHelper('im2sequence', **locals())
5998
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5999
    helper.append_op(
6000
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6001
    return out
6002 6003


Y
yuyang18 已提交
6004
@templatedoc()
6005
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6006 6007
    """
    ${comment}
6008 6009

    Args:
Y
yuyang18 已提交
6010
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6011 6012
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6013 6014 6015 6016 6017
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6018
        ${out_comment}.
6019 6020

    Examples:
Y
yuyang18 已提交
6021 6022 6023 6024
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6025 6026 6027 6028 6029 6030
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
6031
    out = helper.create_variable_for_type_inference(dtype)
6032 6033 6034 6035 6036
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6037
    return helper.append_activation(out)
6038 6039


Y
yuyang18 已提交
6040
@templatedoc()
6041 6042
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6043 6044
    ${comment}

L
lujun 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6088 6089

    Args:
Y
yuyang18 已提交
6090 6091
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6092 6093

    Returns:
Y
yuyang18 已提交
6094
        ${out_comment}.
6095 6096
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6097 6098 6099 6100 6101

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

6102
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6103 6104 6105 6106 6107 6108
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6109 6110


6111 6112 6113
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6114
                               ignore_index=kIgnoreIndex,
6115
                               numeric_stable_mode=True,
6116 6117
                               return_softmax=False,
                               axis=-1):
6118 6119
    """
    **Softmax With Cross Entropy Operator.**
6120

6121
    Cross entropy loss with softmax is used as the output layer extensively. This
6122 6123 6124
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6125

6126 6127 6128
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6129

6130 6131 6132 6133
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6134

6135
    The equation is as follows:
6136

6137
    1) Hard label (one-hot label, so every sample has exactly one class)
6138

6139 6140 6141 6142
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6143

6144 6145 6146
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6147

6148 6149 6150 6151
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6152 6153
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6154 6155

    .. math::
6156

6157
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6158

6159
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6160

6161
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6162 6163 6164

    and then cross entropy loss is calculated by softmax and label.

6165
    Args:
6166 6167 6168 6169 6170 6171
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6172
        soft_label (bool): A flag to indicate whether to interpretate the given
6173
            labels as soft labels. Default False.
M
minqiyang 已提交
6174 6175
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6176 6177
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6178 6179
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6180 6181 6182 6183
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6184
                                    Note that the speed may be slower when use
6185
                                    stable algorithm. Default: True
6186
        return_softmax (bool): A flag indicating whether to return the softmax
6187
                               along with the cross entropy loss. Default: False
6188 6189 6190
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6191

6192
    Returns:
6193 6194
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6195 6196 6197 6198
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6199 6200 6201 6202 6203 6204 6205

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6206 6207
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6208 6209
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
6210 6211
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6212 6213 6214 6215 6216 6217
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6218 6219 6220
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6221 6222
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6223
        })
6224 6225 6226 6227

    if return_softmax:
        return loss, softmax

6228 6229 6230
    return loss


6231 6232 6233
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6234
                                       num_true=1,
6235
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6236 6237 6238
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6239
                                       seed=0):
X
xuezhong 已提交
6240 6241 6242 6243 6244
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6245
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6246 6247 6248 6249 6250 6251 6252 6253
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6254
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6255 6256 6257 6258 6259 6260 6261 6262
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6263
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6275
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6276 6277 6278 6279 6280
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6281
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6282
            logits.
X
xuezhong 已提交
6283 6284 6285 6286 6287
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6288 6289 6290
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
6311 6312
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6313 6314
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6315 6316 6317 6318 6319

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6320
            'Labels': label,
X
xuezhong 已提交
6321 6322
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6323 6324 6325 6326
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6327
            'SampledLabels': sampled_label,
6328 6329 6330
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6331 6332
        },
        attrs={
X
xuezhong 已提交
6333
            'use_customized_samples': use_customized_samples,
6334
            'uniq': True,
X
xuezhong 已提交
6335 6336 6337 6338
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6339 6340
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
6341 6342 6343 6344 6345 6346
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6347 6348
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6349
        inputs={'Logits': sampled_logits,
6350
                'Label': sampled_softlabel},
X
xuezhong 已提交
6351 6352 6353
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
6354
            'soft_label': True,
X
xuezhong 已提交
6355 6356 6357
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6358
    return loss / num_true
X
xuezhong 已提交
6359 6360


6361 6362
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6363 6364
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
6365
    For each instance, it computes the smooth L1 loss element by element first
6366
    and then sums all the losses. So the shape of ouput Variable is
6367
    [batch_size, 1].
6368

6369 6370
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
6371
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6372
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6373
            L1 loss op with same shape as :attr:`x`.
6374
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6375 6376
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6377
            by this tensor element by element.
6378
        outside_weight (Variable|None): A tensor with rank at least 2. This
6379 6380
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6381
            element by element.
6382
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6383 6384
           scalar with default value 1.0.

6385
    Returns:
6386
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6387 6388 6389 6390 6391

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6392 6393
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6394
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6395
            out = fluid.layers.smooth_l1(x=fc, y=label)
6396
    """
6397

6398
    helper = LayerHelper('smooth_l1_loss', **locals())
6399 6400
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6411
        attrs={'sigma': sigma if sigma is not None else 1.0})
6412
    return loss
6413 6414 6415 6416


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6417
    This layer creates the one-hot representations for input indices.
6418 6419

    Args:
Y
Yibing Liu 已提交
6420 6421
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6422 6423

    Returns:
Y
Yibing Liu 已提交
6424
        Variable: The one-hot representations of input.
6425 6426

    Examples:
6427
        .. code-block:: python
6428

6429 6430
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6431 6432
    """
    helper = LayerHelper("one_hot", **locals())
6433
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6434 6435 6436 6437
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6438 6439
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6440
    return one_hot_out
Y
Yu Yang 已提交
6441 6442


Y
Yu Yang 已提交
6443
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6444
    """
Y
yi.wu 已提交
6445 6446 6447
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6448 6449 6450 6451 6452 6453

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6454 6455
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6456 6457 6458 6459 6460

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
6461
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6462 6463
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6464 6465
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6466 6467 6468 6469 6470
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6471
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6472
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6473 6474
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6475
            outputs={'Out': [counter]},
6476 6477
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6478 6479 6480
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6481 6482


6483
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
6484
    """
C
caoying03 已提交
6485 6486
    Gives a new shape to the input Tensor without changing its data.

6487 6488 6489 6490 6491
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6492

6493
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6494

6495 6496 6497 6498
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6499
    2. 0 means the actual dimension value is going to be copied from the
6500 6501 6502 6503
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6504 6505

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6506
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6507
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6508

6509
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6510 6511
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6512 6513
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6514
    dimensions.
C
caoying03 已提交
6515

6516
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6517 6518 6519 6520
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
6521 6522

    Args:
6523
        x(variable): The input tensor.
6524 6525
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6526 6527 6528 6529 6530
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6531 6532
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6533 6534 6535
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6536
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6537
        name (str): The name of this layer. It is optional.
6538

6539
    Returns:
G
guosheng 已提交
6540 6541 6542 6543
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
6544

6545 6546 6547
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

6548 6549
    Examples:
        .. code-block:: python
6550

6551
            data = fluid.layers.data(
6552
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6553
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6554
                x=data, shape=[-1, 0, 3, 2], inplace=True)
6555 6556 6557
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6558
        raise ValueError("Input shape must be a python list or tuple.")
6559 6560 6561 6562 6563
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
6564

6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6580
    helper = LayerHelper("reshape2", **locals())
6581 6582
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
6583
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
6584
    helper.append_op(
6585
        type="reshape2",
6586
        inputs=inputs,
D
dzhwinter 已提交
6587
        attrs={"shape": shape},
6588 6589
        outputs={"Out": out,
                 "XShape": x_shape})
6590

D
dzhwinter 已提交
6591
    return helper.append_activation(out)
6592

6593

6594
def squeeze(input, axes, name=None):
6595
    """
M
minqiyang 已提交
6596 6597 6598
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
6599
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6600

6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6622

6623
    Args:
6624
        input (Variable): The input variable to be squeezed.
6625
        axes (list): List of integers, indicating the dimensions to be squeezed.
6626
        name (str|None): Name for this layer.
6627 6628 6629 6630 6631 6632 6633 6634

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6635
            y = layers.sequeeze(input=x, axes=[1])
6636
    """
L
lujun 已提交
6637
    assert not in_dygraph_mode(), (
6638
        "squeeze layer is not supported in dygraph mode yet.")
6639
    helper = LayerHelper("squeeze", **locals())
6640 6641
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
6642
    helper.append_op(
6643
        type="squeeze2",
6644
        inputs={"X": input},
6645
        attrs={"axes": axes},
6646 6647
        outputs={"Out": out,
                 "XShape": x_shape})
6648

6649 6650 6651
    return out


6652
def unsqueeze(input, axes, name=None):
6653
    """
M
minqiyang 已提交
6654 6655 6656
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
6657

M
minqiyang 已提交
6658
    For example:
6659 6660 6661

    .. code-block:: text

M
minqiyang 已提交
6662
      Given a tensor such that tensor with shape [3, 4, 5],
6663
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6664

6665
    Args:
6666
        input (Variable): The input variable to be unsqueezed.
6667
        axes (list): List of integers, indicating the dimensions to be inserted.
6668
        name (str|None): Name for this layer.
6669 6670 6671 6672 6673 6674 6675 6676

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6677
            y = layers.unsequeeze(input=x, axes=[1])
6678 6679
    """
    helper = LayerHelper("unsqueeze", **locals())
6680 6681
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
6682
    helper.append_op(
6683
        type="unsqueeze2",
6684
        inputs={"X": input},
6685
        attrs={"axes": axes},
6686 6687
        outputs={"Out": out,
                 "XShape": x_shape})
6688

6689 6690
    return out

6691

6692
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6693
    """
Y
Yibing Liu 已提交
6694
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6695 6696 6697 6698
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6699
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6700 6701 6702 6703 6704 6705

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6706
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6707 6708 6709
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6710
            target_lod: [4, 2]
Y
yangyaming 已提交
6711 6712

            then we get a 1-level LoDTensor:
6713
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6714 6715 6716 6717 6718 6719
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6720
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6721 6722 6723 6724
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6725
                y.data = [[2, 4]]
Y
yangyaming 已提交
6726 6727 6728
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6729
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6730 6731 6732 6733 6734 6735
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6736
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6737 6738 6739 6740
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6741
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6742 6743 6744 6745
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6746
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6747 6748 6749 6750 6751
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6752
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6753
                           from :attr:`y`.
Y
yangyaming 已提交
6754
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6755
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6756 6757

    Returns:
Y
Yibing Liu 已提交
6758
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6759 6760

    Raises:
Y
Yibing Liu 已提交
6761
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
6771
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

6797
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6826 6827
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

6840 6841 6842
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
6856 6857 6858 6859


def pad(x, paddings, pad_value=0., name=None):
    """
6860
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6861
    padded width is specified by :attr:`paddings`.
6862

6863 6864 6865 6866
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6889
                         The length of :attr:paddings must be
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
6900

6901
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6902 6903
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
6904 6905 6906 6907 6908
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
6909
    out = helper.create_variable_for_type_inference(dtype)
6910 6911 6912 6913 6914 6915 6916
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6917 6918


6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
6950 6951
		And
            pad_value = -1,
6952

6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6983 6984 6985
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
6986 6987 6988 6989 6990
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
6991
    out = helper.create_variable_for_type_inference(dtype)
6992 6993 6994 6995 6996 6997 6998 6999 7000
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7001 7002 7003 7004 7005 7006 7007
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7008 7009
    called label-smoothing regularization (LSR).

7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7033
                              be :math:`(1, class\_num)`.
7034 7035
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7036
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
7056
    smooth_label = helper.create_variable_for_type_inference(dtype)
7057 7058 7059 7060 7061 7062 7063
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7064 7065


W
wopeizl 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7102 7103


J
jerrywgz 已提交
7104 7105 7106 7107 7108 7109
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7110 7111
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7128 7129 7130 7131
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7132 7133 7134
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7135 7136 7137 7138 7139 7140
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7141
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7182 7183
        .. code-block:: python

S
SunGaofeng 已提交
7184 7185 7186
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7187
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7188
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7189 7190
    """
    label = one_hot(label, depth=input.shape[-1])
7191
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7192 7193 7194 7195 7196 7197
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7198 7199


7200 7201 7202 7203
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7204
                 resample='BILINEAR',
7205 7206
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7207
                 align_mode=1):
7208
    """
Q
qiaolongfei 已提交
7209
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7210

7211
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7212 7213 7214
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7215

7216
        'BILINEAR' : Bilinear interpolation
7217

7218
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7219

7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7230
    Align_corners and align_mode are optinal parameters,the calculation method 
7231 7232 7233 7234
    of interpolation can be selected by them.

    Example:

7235
    .. code-block:: text
7236

7237
        For scale:
7238
          
7239
            if align_corners = True && out_size > 1 :
7240

7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7252

7253 7254
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7255

7256 7257
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7258

7259 7260
          else:
              align_corners = True
7261

7262 7263
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7264

7265 7266
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7267

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7278

7279 7280 7281 7282
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7283

7284 7285
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7286 7287 7288 7289 7290 7291 7292 7293 7294

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7295
    Args:
7296
        input (Variable): The input tensor of image resize layer,
7297 7298
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7299
        out_shape(list|tuple|Variable|None): Output shape of image resize
7300 7301
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7302
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7303
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
7304
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
7305
             Default: None.
7306 7307
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7308
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7309
                       currently.
7310
                       Default: 'BILINEAR'
7311 7312 7313
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7314
                                :attr:`out_shape` and :attr:`scale` specifying
7315 7316 7317 7318 7319 7320 7321
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7322 7323
                                constructing stage.
                                Default: None
7324 7325 7326 7327
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7328
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7329 7330
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7331 7332

    Returns:
Q
update  
qiaolongfei 已提交
7333 7334
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7335

7336 7337 7338
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7339
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7340 7341 7342
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7343
        ValueError: scale should be greater than zero.
7344 7345
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7346

7347 7348 7349
    Examples:
        .. code-block:: python

7350
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7351
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7352
    """
7353 7354 7355 7356
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7357 7358
    if resample not in resample_methods:
        raise ValueError(
7359
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7360
        )
7361
    resample_type = resample_methods[resample]
7362 7363 7364 7365 7366 7367

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7368
    if out_shape is None and scale is None:
7369
        raise ValueError("One of out_shape and scale must not be None.")
7370
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7371
    dtype = helper.input_dtype()
7372 7373 7374 7375

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7376
    inputs = {"X": input}
D
dengkaipeng 已提交
7377
    attrs = {
7378 7379
        "out_h": 0,
        "out_w": 0,
7380 7381 7382 7383 7384
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7385
    if out_shape is not None:
7386 7387 7388 7389
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7390
            inputs['OutSize'] = out_shape
7391 7392
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7393 7394
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7395 7396 7397 7398 7399 7400 7401
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7402
    else:
7403 7404
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
7405
        attrs['scale'] = float(scale)
7406

7407 7408 7409 7410 7411
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

7412
    out = helper.create_variable_for_type_inference(dtype)
7413
    helper.append_op(
7414
        type='{}_interp'.format(resample_type),
7415
        inputs=inputs,
7416
        outputs={"Out": out},
7417
        attrs=attrs)
7418
    return out
F
stash  
fengjiayi 已提交
7419 7420


7421
@templatedoc(op_type="bilinear_interp")
7422 7423 7424 7425
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7426 7427
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7428
                    align_mode=1):
7429
    """
7430 7431
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7432 7433
    in priority order.

7434 7435 7436 7437
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7438 7439
    again in the other direction.

7440
    For details of bilinear interpolation, please refer to Wikipedia:
7441
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7442

T
tink2123 已提交
7443
    Align_corners and align_mode are optinal parameters,the calculation 
7444 7445 7446 7447
    method of interpolation can be selected by them.

    Example:

7448
    .. code-block:: text
7449

7450
        For scale:
7451
          
7452
            if align_corners = True && out_size > 1 :
7453

7454 7455 7456 7457 7458
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7459

7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7470 7471


7472
          else:
T
tink2123 已提交
7473

7474 7475
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7476

7477 7478
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7479 7480 7481



Y
yuyang18 已提交
7482 7483 7484
    Args:
        input(${x_type}): ${x_comment}.

7485 7486 7487
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7488

Y
yuyang18 已提交
7489
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7490
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
7491
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
7492
             Default: None.
Y
yuyang18 已提交
7493 7494

        name(str|None): The output variable name.
7495 7496 7497
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7498
                                :attr:`out_shape` and :attr:`scale` specifying
7499 7500 7501 7502 7503 7504 7505
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7506 7507
                                constructing stage.
                                Default: None
7508 7509
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7510 7511 7512

    Returns:
        ${out_comment}.
7513 7514 7515 7516

    Examples:
        .. code-block:: python

7517
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7518
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7519 7520
    """

7521 7522
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7523 7524


7525
@templatedoc(op_type="nearest_interp")
7526 7527 7528 7529
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7530 7531
                   actual_shape=None,
                   align_corners=True):
7532
    """
7533
    Resize input by performing nearest neighbor interpolation in both the
7534 7535
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7536 7537
    out_shape and scale in priority order.

7538 7539
    Example:

7540 7541 7542 7543 7544
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7545

7546 7547 7548 7549 7550 7551 7552 7553
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7554
          
7555 7556
          if:
              align_corners = False
7557

7558 7559
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7560

7561 7562
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7563

7564 7565
          else:
              align_corners = True
7566

7567 7568
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7569

7570 7571
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7572 7573


7574
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7575
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7576 7577 7578 7579

    Args:
        input(${x_type}): ${x_comment}.

7580 7581 7582
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7583

Y
yuyang18 已提交
7584
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7585
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
7586
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
7587
             Default: None.
Y
yuyang18 已提交
7588 7589

        name(str|None): The output variable name.
7590 7591 7592
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7593
                                :attr:`out_shape` and :attr:`scale` specifying
7594 7595 7596 7597 7598 7599 7600
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7601 7602
                                constructing stage.
                                Default: None
7603
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7604 7605 7606

    Returns:
        ${out_comment}.
7607 7608 7609 7610

    Examples:
        .. code-block:: python

7611
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7612
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7613 7614
    """

7615 7616
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7617 7618 7619 7620


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7621 7622 7623
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7624 7625 7626 7627 7628 7629 7630
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7631
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7632

7633
    Returns:
Q
update  
qiaolongfei 已提交
7634
        Variable: The output is a 4-D tensor of the shape
7635
        (num_batches, channls, out_h, out_w).
7636 7637 7638 7639 7640 7641

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7652 7653 7654
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7655 7656 7657
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7658 7659
def gather(input, index):
    """
Q
qiaolongfei 已提交
7660 7661
    **Gather Layer**

7662
    Output is obtained by gathering entries of the outer-most dimension
7663 7664 7665 7666
    of X indexed by `index` and concatenate them together.

    .. math::

7667
        Out = X[Index]
7668 7669 7670 7671 7672 7673 7674


    .. code-block:: text


                Given:

7675 7676
                X = [[1, 2],
                     [3, 4],
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7687
        input (Variable): The source input with rank>=1.
7688 7689 7690 7691 7692 7693
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7694

7695 7696
        .. code-block:: python

7697 7698
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
7699 7700 7701 7702
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
7703
    out = helper.create_variable_for_type_inference(dtype)
7704 7705 7706 7707 7708 7709 7710 7711
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
7743
    out = helper.create_variable_for_type_inference(dtype)
7744 7745 7746 7747 7748 7749 7750 7751 7752
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


7753 7754 7755 7756 7757 7758 7759 7760 7761
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
7762

7763
    Given the following input:
7764

7765
    .. code-block:: text
7766

7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
7779

7780
    .. code-block:: text
7781

7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
7797
        Variable: The output is a tensor with the same shape as input.
7798 7799 7800 7801 7802 7803 7804 7805

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7806
    assert not in_dygraph_mode(), (
7807
        "sequence layer is not supported in dygraph mode yet.")
7808 7809
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
7810
    out = helper.create_variable_for_type_inference(dtype)
7811 7812 7813 7814 7815 7816 7817 7818 7819
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7833

7834 7835 7836
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
7837
    """
F
stash  
fengjiayi 已提交
7838
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7839
    dtype = x.dtype
7840
    out = helper.create_variable_for_type_inference(dtype)
7841
    if seed is None:
7842
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7843
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7844
    if isinstance(seed, int):
F
fengjiayi 已提交
7845 7846 7847 7848 7849
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7850 7851 7852 7853
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7854
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7855 7856
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7857 7858
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7859
    return out
W
whs 已提交
7860 7861


7862
def log(x, name=None):
7863 7864 7865 7866 7867
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7868
        Out = \\ln(x)
7869 7870

    Args:
7871
        x (Variable): Input tensor.
7872 7873
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
7874 7875 7876 7877 7878 7879 7880 7881

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7882
            output = fluid.layers.log(x)
7883 7884
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7885
    dtype = helper.input_dtype(input_param_name='x')
7886
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7887
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
7888 7889 7890
    return out


7891
def relu(x, name=None):
7892 7893
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7894
    where the rectified linear function, y = max(0, x), is applied to
7895 7896 7897 7898
    the tensor elementwise.

    .. math::

7899
        Out = \\max(0, x)
7900 7901

    Args:
7902
        x (Variable): The input tensor.
7903 7904
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
7905 7906 7907 7908 7909 7910 7911 7912

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7913
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7914
            output = fluid.layers.relu(x)
7915 7916
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7917
    dtype = helper.input_dtype(input_param_name='x')
7918
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7919 7920
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
7921
    return out
7922 7923


C
chengduo 已提交
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7965 7966 7967
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7968 7969 7970 7971
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7972
    .. math::
7973

7974
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7975

7976
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7977 7978 7979 7980 7981
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7982
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7983
                           Its shape should be the same as input.
7984
        num_classes (int): The possible number of labels.
W
whs 已提交
7985 7986

    Returns:
M
minqiyang 已提交
7987 7988
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

7989
                     Three variables:
M
minqiyang 已提交
7990

7991 7992 7993
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7994 7995 7996 7997

    Examples:

        .. code-block:: python
7998

W
whs 已提交
7999 8000 8001 8002
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
8003 8004 8005
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8006 8007
    helper.append_op(
        type="mean_iou",
8008 8009
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8010
        outputs={
8011 8012 8013
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8014 8015 8016
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8059
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8060
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8061
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8079
            import paddle.fluid as fluid
8080 8081 8082 8083 8084 8085
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
8086
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8087 8088 8089 8090 8091

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8092
            isinstance(shape, Variable)):
8093 8094 8095 8096 8097
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

8098
    out = helper.create_variable_for_type_inference(x.dtype)
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8116 8117


8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8135

8136
              out_shape = [2, 3, 5, 5]
8137

8138
          Step 1:
8139

8140 8141 8142
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8143

8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8189
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
8190
                                             ``out_shape`` can be a Variable or a list or tuple.
8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
8203

S
SunGaofeng 已提交
8204
            import paddle.fluid as fluid
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8216
            isinstance(out_shape, Variable)):
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8238 8239
def rank_loss(label, left, right, name=None):
    """
8240

8241 8242
    **Rank loss layer for RankNet**

8243
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8244 8245 8246
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8247

8248 8249
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8250

8251 8252
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8253 8254
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8255

8256 8257 8258 8259 8260 8261 8262 8263
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8264 8265 8266

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

8301
    out = helper.create_variable_for_type_inference("float32")
8302 8303 8304 8305 8306 8307 8308 8309

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8310 8311


8312 8313
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8314
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8315
    which compares left score and right score passed in.
M
minqiyang 已提交
8316
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8317 8318 8319

    .. math::

8320
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8321 8322

    Args:
M
minqiyang 已提交
8323
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8324 8325
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8326
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8327 8328
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
8329

M
minqiyang 已提交
8330
    Returns:
M
minqiyang 已提交
8331
       Variable: The ranking loss.
8332

M
minqiyang 已提交
8333
    Raises:
M
minqiyang 已提交
8334
       ValueError: Any of label, left, and right is not a Variable.
8335

M
minqiyang 已提交
8336
    Examples:
8337

M
minqiyang 已提交
8338
        .. code-block:: python
8339

8340 8341 8342
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8343 8344
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
8345
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8346 8347 8348 8349 8350 8351
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
8352 8353
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
8377
        .. code-block:: text
W
whs 已提交
8378

8379
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8380

8381 8382
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8383

8384
	      Case 0:
M
minqiyang 已提交
8385

8386 8387 8388
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8389

8390 8391 8392
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8393

8394
	      Case 1:
M
minqiyang 已提交
8395

8396 8397
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8398

8399 8400 8401
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8402

8403
	      Case 2:
M
minqiyang 已提交
8404

8405 8406
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8407

8408 8409 8410
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8411 8412


W
whs 已提交
8413 8414
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8415
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
8439
    out = helper.create_variable_for_type_inference(dtype)
8440 8441 8442 8443 8444 8445 8446 8447 8448
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8449
    helper.append_op(
8450
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8451 8452 8453 8454

    return out


8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8467 8468 8469 8470 8471

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8472 8473
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8474 8475
    """
    helper = LayerHelper('elu', **locals())
8476
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8497 8498 8499 8500 8501

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8502 8503
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8504 8505
    """
    helper = LayerHelper('relu6', **locals())
8506
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8527 8528 8529 8530 8531

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8532 8533
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8534 8535
    """
    helper = LayerHelper('pow', **locals())
8536
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8558 8559 8560 8561 8562

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8563
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8564
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8565 8566
    """
    helper = LayerHelper('stanh', **locals())
8567
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8590 8591 8592 8593 8594

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8595 8596
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8597 8598
    """
    helper = LayerHelper('hard_sigmoid', **locals())
8599
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
8621 8622 8623 8624 8625

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8626 8627
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8628 8629
    """
    helper = LayerHelper('swish', **locals())
8630
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8631 8632 8633 8634 8635 8636 8637 8638
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


8639 8640 8641 8642
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

8643 8644
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
8645 8646 8647

    Args:
        x (Variable): The input tensor.
8648
        param_attr(ParamAttr|None): The parameter attribute for the learnable
8649
          weight (alpha).
8650
        mode (string): The mode for weight sharing. It supports all, channel
8651 8652 8653
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
8654
        name(str|None): A name for this layer(optional). If set None, the layer
8655
          will be named automatically.
8656 8657 8658 8659 8660 8661 8662 8663

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8664
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8678
        attr=helper.param_attr,
8679 8680 8681 8682
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
8683
    out = helper.create_variable_for_type_inference(dtype)
8684 8685 8686 8687 8688 8689 8690 8691 8692
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8703
    Returns:
8704
        output(${out_type}): ${out_comment}
8705 8706 8707

    Examples:

8708
    .. code-block:: python
8709

8710 8711
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8712 8713
    """
    helper = LayerHelper('brelu', **locals())
8714
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8733
    Returns:
8734
        output(${out_type}): ${out_comment}
8735 8736 8737 8738 8739

    Examples:

        .. code-block:: python

8740 8741
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8742 8743
    """
    helper = LayerHelper('leaky_relu', **locals())
8744
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8762
    Returns:
8763
        output(${out_type}): ${out_comment}
8764 8765 8766 8767 8768

    Examples:

        .. code-block:: python

8769 8770
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8771 8772
    """
    helper = LayerHelper('soft_relu', **locals())
8773
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8774 8775 8776 8777 8778 8779 8780 8781
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8782 8783 8784 8785
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8786

8787
    For Example:
M
minqiyang 已提交
8788

8789
    .. code-block:: text
8790

8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8812 8813 8814

    Args:
        x (Variable): A tensor of rank >= axis.
8815 8816
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8817 8818 8819 8820 8821 8822 8823 8824
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8825 8826 8827
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8828 8829 8830 8831
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8832
        ValueError: If axis is not in range [0, rank(x)].
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

8849 8850
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8851
    helper.append_op(
8852
        type='flatten2',
8853
        inputs={"X": x},
8854 8855
        outputs={'Out': out,
                 'XShape': x_shape},
8856 8857
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8858 8859


8860
def sequence_enumerate(input, win_size, pad_value=0, name=None):
8861
    """
8862
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8863
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8864 8865
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8866

8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
8884 8885

    Args:
8886 8887 8888
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8899
    assert not in_dygraph_mode(), (
8900
        "sequence layer is not supported in dygraph mode yet.")
8901
    helper = LayerHelper('sequence_enumerate', **locals())
8902 8903
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
8904 8905 8906 8907 8908 8909
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
8910
    return out
8911

8912

8913 8914 8915 8916 8917 8918 8919 8920 8921
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8922

8923
    .. math::
8924

8925 8926 8927
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8928
        x (Variable): Input tensor of sequence_mask layer,
8929 8930 8931 8932
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8933 8934 8935
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

8936 8937
    Returns:
        Variable: The output sequence mask.
8938

8939
    """
L
lujun 已提交
8940
    assert not in_dygraph_mode(), (
8941
        "sequence layer is not supported in dygraph mode yet.")
8942

8943
    helper = LayerHelper('sequence_mask', **locals())
8944
    if name is None:
8945
        out = helper.create_variable_for_type_inference(dtype=dtype)
8946
    else:
8947
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
8948

8949 8950 8951
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
8952 8953
        outputs={'Y': out},
        attrs={
8954
            'maxlen': maxlen if maxlen is not None else -1,
8955 8956 8957
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8958 8959


X
Xin Pan 已提交
8960
def stack(x, axis=0):
S
sneaxiy 已提交
8961 8962 8963 8964
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8965 8966 8967 8968 8969 8970 8971

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8972
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8973
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8974

C
chengduozh 已提交
8975 8976
    For Example:

C
chengduozh 已提交
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9015
    Args:
9016
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9017
        axis (int|None): The axis along which all inputs are stacked.
9018

S
sneaxiy 已提交
9019 9020
    Returns:
        Variable: The stacked variable.
9021

S
sneaxiy 已提交
9022 9023
    """

X
Xin Pan 已提交
9024 9025 9026 9027 9028 9029
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

9030
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9031
    helper.append_op(
S
sneaxiy 已提交
9032 9033
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9034

X
Xin Pan 已提交
9035
    return out
D
dzhwinter 已提交
9036 9037 9038 9039 9040 9041 9042


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9043

D
dzhwinter 已提交
9044 9045 9046
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9047
    raised.
D
dzhwinter 已提交
9048 9049

    Args:
M
minqiyang 已提交
9050
        x (Variable): Input variable.
D
dzhwinter 已提交
9051 9052
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9053

D
dzhwinter 已提交
9054 9055
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9056

D
dzhwinter 已提交
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
9067
    for _ in range(num):
9068
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9069 9070 9071 9072 9073 9074 9075 9076

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9089

9090 9091 9092 9093
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9094

9095
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9096

9097
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9098

9099 9100 9101 9102
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9103

9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
9120
    out = helper.create_variable_for_type_inference(dtype)
9121 9122 9123 9124 9125 9126
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9127 9128


G
fix  
gongweibao 已提交
9129 9130 9131
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9132
@templatedoc()
G
fix  
gongweibao 已提交
9133 9134 9135 9136 9137 9138 9139 9140 9141
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9142
    ${comment}
G
fix  
gongweibao 已提交
9143 9144

    Args:
G
gongweibao 已提交
9145 9146 9147
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9148
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9149 9150 9151
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9152 9153
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9154
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9155

9156 9157 9158 9159 9160
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9161 9162 9163
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
9164
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9181 9182


G
gongweibao 已提交
9183
@templatedoc()
X
Xin Pan 已提交
9184
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9185
    """
G
gongweibao 已提交
9186
    ${comment}
G
fix  
gongweibao 已提交
9187 9188

    Args:
G
gongweibao 已提交
9189 9190 9191 9192
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9193 9194 9195
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9196
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9197

9198 9199 9200 9201
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9202 9203 9204
    """

    helper = LayerHelper('gaussian_random', **locals())
9205
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9206 9207 9208 9209 9210 9211 9212 9213 9214 9215
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9216
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9217 9218 9219 9220 9221
        })

    return out


G
gongweibao 已提交
9222
@templatedoc()
G
fix  
gongweibao 已提交
9223
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9224
    """
G
gongweibao 已提交
9225
    ${comment}
G
fix  
gongweibao 已提交
9226 9227

    Args:
G
gongweibao 已提交
9228 9229 9230 9231
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9232
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9233 9234

    Returns:
G
gongweibao 已提交
9235
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9236

9237 9238 9239
    Examples:
        .. code-block:: python

9240
            x = fluid.layers.data(
9241 9242 9243 9244 9245
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

9246
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9247 9248 9249
    """

    helper = LayerHelper('sampling_id', **locals())
9250
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9262
@templatedoc()
G
fix  
gongweibao 已提交
9263 9264 9265 9266 9267 9268 9269 9270 9271
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9272
    ${comment}
G
fix  
gongweibao 已提交
9273 9274

    Args:
G
gongweibao 已提交
9275 9276
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9277
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9278 9279 9280 9281
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9282
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9283 9284

    Returns:
G
gongweibao 已提交
9285
        out (Variable): ${out_comment}
9286 9287 9288 9289

    Examples:
        .. code-block:: python

9290
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9291

9292
            out = fluid.layers.gaussian_random_batch_size_like(
9293
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9294 9295 9296
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
9297
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9316
@templatedoc()
X
Xin Pan 已提交
9317
def sum(x):
G
fix  
gongweibao 已提交
9318
    """
G
gongweibao 已提交
9319
    ${comment}
G
fix  
gongweibao 已提交
9320 9321

    Args:
G
gongweibao 已提交
9322
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9323 9324

    Returns:
G
gongweibao 已提交
9325
        out (Variable): ${out_comment}
9326 9327 9328 9329 9330 9331

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9332 9333 9334
    """

    helper = LayerHelper('sum', **locals())
9335 9336
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9337 9338 9339 9340
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9341
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9342 9343 9344 9345

    return out


G
gongweibao 已提交
9346
@templatedoc()
G
fix  
gongweibao 已提交
9347 9348
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9349
    ${comment}
G
fix  
gongweibao 已提交
9350 9351

    Args:
G
gongweibao 已提交
9352 9353 9354 9355
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9356 9357

    Returns:
G
gongweibao 已提交
9358
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9359

9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9371 9372 9373
    """

    helper = LayerHelper('slice', **locals())
9374 9375
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9389 9390
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9391
    Get the shape of the input.
G
fix  
gongweibao 已提交
9392 9393

    Args:
C
chengduozh 已提交
9394
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9395 9396

    Returns:
C
fix doc  
chengduozh 已提交
9397
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9398

9399 9400 9401 9402 9403 9404
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9405 9406 9407
    """

    helper = LayerHelper('shape', **locals())
9408
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9409
    helper.append_op(
G
fix  
gongweibao 已提交
9410
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9411 9412

    return out
G
merge  
gongweibao 已提交
9413 9414


Z
zhoukunsheng 已提交
9415 9416 9417 9418
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9419
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9441 9442 9443 9444
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9445
    if in_dygraph_mode():
9446 9447 9448
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9449 9450 9451 9452
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9453 9454
    name = helper.kwargs.get('name', None)
    if name is None:
9455
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9456 9457 9458
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9459

S
sneaxiy 已提交
9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9471
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9472 9473 9474 9475 9476 9477 9478 9479
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9480
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9481
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9482 9483 9484 9485 9486 9487

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9488
    if name is None:
9489
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9490 9491 9492
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9493 9494 9495 9496 9497 9498 9499 9500 9501 9502

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9503
    return helper.append_activation(out)
S
sneaxiy 已提交
9504 9505


X
Xin Pan 已提交
9506
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9507 9508 9509
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9510
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9511 9512 9513
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9514
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9515 9516 9517
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9518
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9519 9520 9521
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9522
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9523 9524 9525
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9526
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9527 9528 9529
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9530
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9531 9532 9533
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9534 9535 9536 9537 9538 9539 9540 9541
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9542
for func in [
9543 9544 9545 9546 9547 9548 9549 9550 9551
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9552 9553 9554 9555 9556
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9557 9558
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9559
        ])
M
minqiyang 已提交
9560 9561


9562
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9563 9564
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9565 9566
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9567 9568 9569

    if out is None:
        if name is None:
9570
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9586
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9598 9599 9600 9601 9602 9603 9604 9605 9606

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9607 9608 9609 9610 9611 9612 9613
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9614
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9626 9627 9628 9629 9630 9631 9632 9633 9634

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9635 9636 9637 9638 9639 9640 9641
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9642
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9654 9655 9656 9657 9658 9659 9660 9661 9662

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9663 9664 9665 9666 9667 9668 9669
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9670
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9671 9672 9673 9674 9675 9676 9677 9678 9679 9680
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9681 9682 9683 9684 9685 9686 9687

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9688 9689 9690 9691
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9707 9708 9709 9710

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9711
            import paddle.fluid as fluid
9712 9713 9714
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9715 9716 9717 9718 9719
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9720 9721 9722 9723
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9747 9748 9749 9750 9751 9752 9753

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9754 9755 9756 9757 9758
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9759 9760 9761 9762
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9763 9764 9765 9766 9767 9768 9769 9770

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
9789
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9790 9791 9792 9793 9794 9795 9796 9797 9798 9799
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
9842
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9843 9844 9845 9846 9847 9848 9849 9850 9851
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9852 9853
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9854 9855 9856 9857 9858 9859
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9860 9861 9862
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9863 9864
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9865 9866 9867 9868 9869 9870
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9871
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9872
        name(basestring|None): Name of the output.
9873 9874
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9875 9876 9877

    Returns:
        out(${out_type}): ${out_comment}
9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9892 9893 9894 9895 9896
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
9897
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9898 9899 9900 9901 9902 9903 9904 9905
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9906 9907
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9924 9925 9926 9927 9928 9929 9930 9931 9932

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9933 9934 9935 9936
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
9937
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9948 9949


J
JiabinYang 已提交
9950
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9951
    """
J
JiabinYang 已提交
9952
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9953 9954 9955

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9956
    The attr blocksize indicates the input block size.
9957 9958

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9959
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9960 9961

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9962
    (but keeping all data)
J
JiabinYang 已提交
9963

J
JiabinYang 已提交
9964
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9965
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9966 9967 9968 9969 9970
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9971
    Args:
J
JiabinYang 已提交
9972
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9973
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9974 9975

    Returns:
J
JiabinYang 已提交
9976
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9977 9978

    Raises:
J
JiabinYang 已提交
9979
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9980 9981 9982 9983 9984

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9985
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9986
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9987
                x=data, blocksize=2)
9988 9989 9990 9991 9992 9993

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9994 9995
    """

J
JiabinYang 已提交
9996
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9997

J
JiabinYang 已提交
9998 9999
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10000 10001

    if name is None:
J
JiabinYang 已提交
10002 10003
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10004 10005 10006 10007 10008
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10009
        type="space_to_depth",
J
JiabinYang 已提交
10010
        inputs={"X": x},
J
JiabinYang 已提交
10011
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10012
        outputs={"Out": out})
J
JiabinYang 已提交
10013 10014
    return out

J
JiabinYang 已提交
10015

S
sneaxiy 已提交
10016 10017
@templatedoc()
def sequence_reverse(x, name=None):
10018
    """
S
sneaxiy 已提交
10019 10020 10021 10022 10023 10024 10025 10026 10027
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10028
    assert not in_dygraph_mode(), (
10029
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10030 10031
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10032
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10033 10034 10035 10036 10037 10038 10039 10040 10041 10042
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10043 10044


10045 10046 10047 10048 10049 10050
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10051 10052 10053 10054 10055
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10056

10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10069
        act (str, default None): Activation to be applied to the output of this layer.
10070 10071 10072 10073 10074 10075 10076

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10077
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10089
    return helper.append_activation(out)
10090 10091


B
barrierye 已提交
10092
def similarity_focus(input, axis, indexes, name=None):
10093
    """
10094
    SimilarityFocus Operator
B
barrierye 已提交
10095 10096

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10097

10098 10099 10100
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10101
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10102 10103 10104 10105 10106 10107 10108
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10109
       each index.
B
barrierye 已提交
10110 10111 10112 10113
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10163
    Args:
10164
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10165
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10166
        axis(int): Indicating the dimension to be selected. It can only be
10167
            1, 2 or 3.
B
barrierye 已提交
10168
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10169 10170

    Returns:
10171 10172
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10173

B
barrierye 已提交
10174 10175
    Examples:
        .. code-block:: python
10176

B
barrierye 已提交
10177
            data = fluid.layers.data(
10178 10179
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10192 10193 10194 10195 10196
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10197 10198 10199 10200 10201 10202 10203
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10204 10205


M
minqiyang 已提交
10206 10207
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10208 10209
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10210 10211
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10250
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10251
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10252 10253 10254 10255 10256 10257

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
10258

10259
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10260
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10261 10262
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10263 10264
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10265 10266 10267 10268 10269 10270 10271
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
10272 10273


10274
@templatedoc()
10275 10276
def grid_sampler(x, grid, name=None):
    """
10277
    This operation samples input X by using bilinear interpolation based on
10278
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10279 10280 10281 10282
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10283
    interpolation value of 4 nearest corner points.
10284

10285
    .. code-block:: text
10286

10287 10288
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10289

10290 10291
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10292

10293 10294 10295
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10296

10297 10298 10299 10300 10301 10302 10303 10304 10305
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10306

10307 10308 10309 10310
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10311

10312 10313 10314 10315
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10316

10317 10318 10319 10320
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10321

10322 10323
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
10324 10325

    Args:
10326 10327 10328
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
10329 10330

    Returns:
10331
        Variable: Output of shape [N, C, H, W] data samples input X
10332 10333
        using bilnear interpolation based on input grid.

10334 10335 10336 10337 10338 10339 10340 10341
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10342

10343 10344 10345 10346 10347 10348 10349 10350 10351
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10352
    out = helper.create_variable_for_type_inference(x.dtype)
10353 10354
    ipts = {'X': x, 'Grid': grid}

10355
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10356 10357 10358
    return out


10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

10386 10387
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
10426
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
10427 10428 10429 10430 10431 10432 10433
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10434

10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


10449 10450 10451 10452
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

10453
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
10454 10455
    output Tensor of shape [N x M x P] with positional encoding value.

10456
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
10457 10458

    .. math::
10459 10460 10461
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
10462 10463

    Where:
10464 10465
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
10480

10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
10497 10498 10499 10500 10501 10502 10503 10504 10505 10506


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10507
    **Add Bilinear Tensor Product Layer**
10508

Q
Qiao Longfei 已提交
10509
    This layer performs bilinear tensor product on two inputs.
10510 10511 10512
    For example:

    .. math::
10513
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
10514

10515
    In this formula:
10516 10517
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
10518
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
10519
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
10520 10521 10522
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10523 10524
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
10525 10526 10527
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
10528
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
10529
            parameters/weights of this layer.
10530
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
10531 10532 10533 10534
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
10535
        Variable: A 2-D Tensor of shape [batch_size, size].
10536 10537 10538 10539

    Examples:
        .. code-block:: python

10540 10541 10542
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
10543 10544
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10545
    dtype = helper.input_dtype('x')
10546 10547 10548 10549

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10550
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10591 10592


S
shippingwang 已提交
10593
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10594 10595
    """
    **Shuffle Channel Operator**
10596

10597 10598 10599 10600 10601 10602
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10603
    
10604
    .. code-block:: text
10605

10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10634
    Args: 
10635 10636
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10637 10638

    Returns:
10639 10640
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10641 10642

    Raises:
S
shippingwang 已提交
10643
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10644 10645 10646

    Examples:
        .. code-block:: python
10647 10648

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
10649
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10650 10651 10652
    """
    helper = LayerHelper("shuffle_channel", **locals())

10653
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10654 10655 10656 10657 10658 10659 10660 10661 10662

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10663
    return out
S
Add  
shippingwang 已提交
10664 10665


10666
@templatedoc()
10667
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10668 10669 10670 10671 10672 10673 10674 10675
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
10676
        shift_ratio(float): ${shift_ratio_comment}
10677
        name (str, default None): The name of this layer.
10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
10690
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10703 10704
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10705 10706 10707
    return out


S
sneaxiy 已提交
10708
class PyFuncRegistry(object):
S
sneaxiy 已提交
10709 10710 10711
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10712
        if func is None or not callable(func):
S
sneaxiy 已提交
10713 10714 10715
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10716
        # find named args using reflection
S
sneaxiy 已提交
10717 10718 10719 10720 10721 10722 10723
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10724 10725 10726
        '''
        Why record self here?

M
minqiyang 已提交
10727 10728
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10729
           to find the registered function corresponding
M
minqiyang 已提交
10730
           to :code:`idx`.
S
sneaxiy 已提交
10731

M
minqiyang 已提交
10732 10733
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10734
           whose reference count is 1 would cause
M
minqiyang 已提交
10735
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10736 10737
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10738
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10753 10754 10755 10756 10757 10758 10759 10760 10761
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10762

S
sneaxiy 已提交
10763 10764
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10765 10766

        ret = []
S
sneaxiy 已提交
10767 10768 10769
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10770 10771
                continue

S
sneaxiy 已提交
10772 10773
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10774

S
sneaxiy 已提交
10775 10776 10777
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10778

S
sneaxiy 已提交
10779
        return tuple(ret)
S
sneaxiy 已提交
10780 10781


S
sneaxiy 已提交
10782 10783 10784 10785
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10786

S
sneaxiy 已提交
10787 10788 10789 10790 10791 10792 10793 10794
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10795
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10796

S
sneaxiy 已提交
10797 10798
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10799 10800 10801 10802
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10803
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10804
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10805 10806
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10807 10808 10809 10810 10811
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10812
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10813
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10814
                                       None means no backward. Default None.
S
sneaxiy 已提交
10815
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10816
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10817 10818
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10819
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10820 10821 10822

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10823 10824

    Examples:
M
minqiyang 已提交
10825

S
sneaxiy 已提交
10826 10827 10828 10829 10830
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10831
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10832 10833
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10834
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10835 10836 10837
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10838
        >>>
S
sneaxiy 已提交
10839 10840 10841 10842 10843
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10844
        >>>     print(x)
S
sneaxiy 已提交
10845 10846 10847 10848 10849 10850
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10851
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10852 10853
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10854 10855
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10856 10857 10858 10859 10860 10861 10862 10863
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10864
    """
S
sneaxiy 已提交
10865
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10866 10867 10868
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10869
        x = [x]
S
sneaxiy 已提交
10870 10871
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10872

S
sneaxiy 已提交
10873 10874 10875
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10876
        out_list = [out]
S
sneaxiy 已提交
10877
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10878
        out_list = out
S
sneaxiy 已提交
10879 10880 10881
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10882

S
sneaxiy 已提交
10883 10884
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10885
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10886 10887

    for each_out in out_list:
S
sneaxiy 已提交
10888 10889
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10890 10891
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10892

S
sneaxiy 已提交
10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10908 10909 10910 10911

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10912 10913
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10914 10915 10916
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10917
        })
S
sneaxiy 已提交
10918
    return out
S
sneaxiy 已提交
10919 10920 10921


# For debug usage
S
sneaxiy 已提交
10922 10923 10924 10925
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
10939 10940 10941 10942 10943
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10956 10957 10958 10959
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10985

M
minqiyang 已提交
10986

M
minqiyang 已提交
10987
def huber_loss(input, label, delta):
10988
    """
M
minqiyang 已提交
10989 10990 10991
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10992 10993 10994 10995

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10996
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10997 10998 10999 11000

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11001
        huber\_loss = 0.5 * (label - input) * (label - input)
11002 11003 11004 11005 11006 11007 11008


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11009
        delta (float): The parameter of huber loss, which controls
11010 11011 11012
                       the range of outliers

    Returns:
M
minqiyang 已提交
11013
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11014 11015 11016 11017 11018

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
11019
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
11020
    """
M
minqiyang 已提交
11021
    helper = LayerHelper('huber_loss', **locals())
11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11033 11034


11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11097 11098 11099
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11100
          # edges must be directional
11101 11102 11103 11104
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11105
          # After reshape, output tensor could be nodes_vector for next tree convolution
11106 11107
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11108
          # also output tensor could be pooling(the pooling in paper called global pooling)
11109
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11133 11134


C
ceci3 已提交
11135
from .ops import square
C
ceci3 已提交
11136
from .control_flow import equal
C
ceci3 已提交
11137 11138


C
ceci3 已提交
11139 11140 11141
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11142

C
ceci3 已提交
11143
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11144 11145

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11146
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11147 11148 11149 11150 11151
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11152 11153
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11154 11155 11156 11157 11158 11159 11160

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11161 11162 11163 11164 11165 11166 11167 11168
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11169 11170 11171 11172 11173 11174 11175
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11176
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11177 11178
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11179 11180
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11181 11182 11183 11184
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11185 11186 11187
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11188 11189 11190
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11191 11192


R
ruri 已提交
11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11222
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11223 11224 11225 11226 11227 11228 11229 11230 11231

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

11232
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
11293 11294 11295 11296


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11297

11298
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11299

H
fix doc  
heqiaozhi 已提交
11300
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11301 11302 11303
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
11304
    
H
fix doc  
heqiaozhi 已提交
11305
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11306

11307
    Args:
H
fix doc  
heqiaozhi 已提交
11308 11309

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
11310 11311
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11312 11313
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11314

11315
    Returns:
H
fix doc  
heqiaozhi 已提交
11316 11317 11318

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

11319
    Examples:
H
fix doc  
heqiaozhi 已提交
11320

11321
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11322

11323 11324 11325 11326 11327 11328 11329 11330 11331 11332
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11333

11334 11335 11336 11337 11338 11339 11340 11341 11342
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11343
    return out
反馈
建议
客服 返回
顶部