S
SunGaofeng 推送
test=develop (#17322) ddb24d48
24157次提交
名称 最后提交 最后更新
..
contrib Fix the KL algorithm bug when calculated the size of tensor. (#17198)
distributed remove async executor python api to fix document (#17174)
dygraph test=develop, fix error with training and test on diff device (#17276)
incubate Reformat fleet API (#17135)
layers test=develop (#17322)
tests Double backward of conv2d. (#17211)
transpiler truncated_gaussian_random supported in distributed training, test=develop (#17091)
.gitignore Fix CI and enhance gitignore
__init__.py remove unused FLAGS_warpctc_dir (#17162)
annotations.py Apply 2to3 to current paddle main python code
average.py fix the wrong format
backward.py Repair api example (#17221)
clip.py Fix clip.py (#14718)
compiler.py Polish Executor and Compiler doc (#17262)
data_feed_desc.py modify c++ and python dataset related code & fix bug
data_feeder.py Merge develop
dataset.py Fleet unify distributed training (#16791)
debugger.py Add print_function for all python files
default_scope_funcs.py Add print_function for all python files
device_worker.py fix code style for incubator
distribute_lookup_table.py add doc string for downpour.py and distribute_lookup_table.py
evaluator.py Refine detection mAP in metrics.py.
executor.py Double backward of conv2d. (#17211)
framework.py Repair api example (#17221)
graphviz.py Add print_function for all python files
inferencer.py
initializer.py
install_check.py
io.py
layer_helper.py
layer_helper_base.py
lod_tensor.py
metrics.py
net_drawer.py
nets.py
op.py
optimizer.py
parallel_executor.py
param_attr.py
profiler.py
reader.py
recordio_writer.py
regularizer.py
trainer_desc.py
trainer_factory.py
unique_name.py
wrapped_decorator.py

项目简介

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

:rocket: Github 镜像仓库 :rocket:

源项目地址 :arrow_down: :arrow_down: :arrow_down:

https://github.com/paddlepaddle/paddle

发行版本

当前项目没有发行版本

贡献者 228

全部贡献者

开发语言

  • C++ 45.8 %
  • Python 45.5 %
  • Cuda 6.4 %
  • CMake 1.1 %
  • Shell 0.7 %