nn.py 526.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
37
from ..data_feeder import convert_dtype, check_type_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
38 39

__all__ = [
X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
51 52
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
53
    'batch_norm',
L
lvmengsi 已提交
54
    'instance_norm',
H
heqiaozhi 已提交
55
    'data_norm',
X
Xin Pan 已提交
56 57 58 59 60 61 62
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
63 64
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72 73 74 75
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
76
    'group_norm',
D
dengkaipeng 已提交
77
    'spectral_norm',
X
Xin Pan 已提交
78 79 80 81 82 83 84
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
85
    'lod_append',
X
Xin Pan 已提交
86 87 88 89 90
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
91
    'roi_align',
X
Xin Pan 已提交
92 93 94 95
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
96
    'resize_trilinear',
97
    'resize_nearest',
X
Xin Pan 已提交
98
    'gather',
99
    'gather_nd',
X
Xin Pan 已提交
100
    'scatter',
101 102
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
103 104 105
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
106
    'selu',
X
Xin Pan 已提交
107 108
    'log',
    'crop',
109
    'crop_tensor',
X
Xin Pan 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
124
    'unique',
125
    'unique_with_counts',
X
Xin Pan 已提交
126
    'expand',
127
    'expand_as',
X
Xin Pan 已提交
128 129 130 131 132 133 134 135
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
136 137
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
138 139 140 141 142 143
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
144
    'strided_slice',
X
Xin Pan 已提交
145
    'shape',
Z
zhoukunsheng 已提交
146
    'rank',
Z
zhoukunsheng 已提交
147
    'size',
X
Xin Pan 已提交
148 149 150 151 152 153 154 155 156
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
157
    'space_to_depth',
W
whs 已提交
158
    'affine_grid',
159
    'affine_channel',
B
barrierye 已提交
160
    'similarity_focus',
M
minqiyang 已提交
161
    'hash',
D
dengkaipeng 已提交
162
    'grid_sampler',
G
gmcather 已提交
163 164
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
165
    'bilinear_tensor_product',
C
chengduo 已提交
166 167
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
168
    'shuffle_channel',
169
    'temporal_shift',
S
sneaxiy 已提交
170
    'py_func',
171
    'psroi_pool',
172
    'prroi_pool',
R
ruri 已提交
173
    'pixel_shuffle',
174
    'fsp_matrix',
H
heqiaozhi 已提交
175
    'continuous_value_model',
Z
zhoukunsheng 已提交
176
    'where',
Z
zhoukunsheng 已提交
177
    'sign',
178
    'deformable_conv',
179
    'unfold',
C
cjt222 已提交
180
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
181
    'filter_by_instag',
182
    'shard_index',
H
huangjun12 已提交
183
    'hard_swish',
G
Guo Sheng 已提交
184
    'gather_tree',
185
    'uniform_random',
Y
Yu Yang 已提交
186 187 188 189 190 191 192 193 194
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
195
       name=None):
Y
Yu Yang 已提交
196
    """
197
    **Fully Connected Layer**
Y
Yu Yang 已提交
198

199 200 201
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
202
    which represents a fully connected weight matrix from each input unit to
203 204 205 206
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
207
    is not None, a bias variable will be created and added to the output.
208
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
209

210
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
211

212 213 214 215
    .. math::

        Out = Act({XW + b})

216
    When the input is a list of Tensor(or LoDTensor):
217 218 219

    .. math::

220
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
221 222 223

    In the above equation:

224 225 226
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
227
    * :math:`b`: The bias parameter created by this layer (if needed).
228
    * :math:`Act`: The activation function.
229
    * :math:`Out`: The output Tensor.
230 231 232

    .. code-block:: text

233 234 235 236 237 238 239 240 241 242 243 244 245 246
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
247 248 249 250 251 252 253 254 255 256 257 258 259
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
260
    Args:
261 262 263 264 265 266
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
        size(int): The number of output units in this layer, which also means the feature size of ouput
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
267
            two dimensions. If this happens, the multidimensional tensor will first be flattened
268 269
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
270
            dimensions will be flatten to form the first dimension of the final matrix (height of
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
286 287

    Raises:
288
        ValueError: If dimensions of the input Tensor is less than 2.
289 290 291 292

    Examples:
        .. code-block:: python

293
          import paddle.fluid as fluid
294
          # when input is single tensor
295
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
296
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
297 298

          # when input are multiple tensors
299 300
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
301
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
302
    """
C
caoying03 已提交
303
    helper = LayerHelper("fc", **locals())
304
    check_type(input, 'input', (list, tuple, Variable), 'fc')
305 306
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
307
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
308
    dtype = helper.input_dtype()
309
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
310
    mul_results = []
311 312
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
313 314 315
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
316

Y
Yu Yang 已提交
317
        w = helper.create_parameter(
318
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
319
        tmp = helper.create_variable_for_type_inference(dtype)
320
        helper.append_op(
321 322 323
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
324
            outputs={"Out": tmp},
M
mozga-intel 已提交
325 326
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
327 328 329 330
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
331
    else:
X
Xin Pan 已提交
332
        pre_bias = helper.create_variable_for_type_inference(dtype)
333
        helper.append_op(
334 335 336
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
337
            attrs={"use_mkldnn": False})
338 339 340 341
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
342 343


344 345 346
def embedding(input,
              size,
              is_sparse=False,
347
              is_distributed=False,
348 349 350
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
351
    """
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
405 406

    Args:
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
434

435
    Returns:
436
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
437

438 439
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
440

B
bdzhuxiaoning 已提交
441
          import paddle.fluid as fluid
442 443 444 445 446 447 448 449 450 451 452 453 454 455
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

          # exampel 1
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
456 457 458
    """

    helper = LayerHelper('embedding', **locals())
459 460 461 462
    check_type_and_dtype(input, 'input', Variable, ['int64'],
                         'fluid.layers.embedding')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
463
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
464 465
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
466 467
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
468
    tmp = helper.create_variable_for_type_inference(dtype)
469 470
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
471 472 473 474 475
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
476 477 478
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
479
            'remote_prefetch': remote_prefetch,
480 481
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
482 483 484
    return tmp


H
hutuxian 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
533
@templatedoc()
534
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
535 536 537 538 539 540
    """
    Linear Chain CRF.

    ${comment}

    Args:
541
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
542
        label(${label_type}): ${label_comment}
543
        Length(${length_type}): ${length_comment}
544
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
545 546

    Returns:
D
dzhwinter 已提交
547 548
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
549
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
550

J
JesseyXujin 已提交
551 552 553
    Examples:
        .. code-block:: python

554 555 556 557 558 559 560
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
561 562
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
585 586 587
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
588 589 590 591 592 593
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
594
                     name='crfw',
595 596 597 598 599 600
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
601

602 603 604
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
605
            ll=np.array([[3],[3],[4],[2]])
606 607 608
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
609 610 611 612 613
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

614 615 616
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
617
            
Y
yuyang18 已提交
618
    """
Y
Yu Yang 已提交
619
    helper = LayerHelper('linear_chain_crf', **locals())
620
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
621 622 623 624
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
625 626 627 628 629 630 631 632
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
633 634 635 636 637 638
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
639
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
640 641
    helper.append_op(
        type='linear_chain_crf',
642
        inputs=this_inputs,
Y
Yu Yang 已提交
643 644 645 646 647 648 649 650 651 652
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
653
@templatedoc()
654
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
655 656
    """
    ${comment}
Y
yi.wu 已提交
657

W
wopeizl 已提交
658 659
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
660

Y
Yibing Liu 已提交
661 662 663
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
664

Y
Yibing Liu 已提交
665
        label(${label_type}, optional): ${label_comment}
666
        
Y
Yibing Liu 已提交
667
        length(${length_type}, optional): ${length_comment}
668

W
wopeizl 已提交
669 670
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
671

W
wopeizl 已提交
672 673
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
674

675
           import paddle.fluid as fluid
676 677 678

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
679 680
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
681 682 683
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
684
                     param_attr=fluid.ParamAttr(name="crfw"))
685
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
686
                     param_attr=fluid.ParamAttr(name="crfw"))
687 688 689

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
690 691 692
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
693 694 695 696 697 698 699
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
700 701 702 703 704
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
705 706 707
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
708 709
    helper.append_op(
        type='crf_decoding',
710
        inputs=inputs,
W
wopeizl 已提交
711
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
712

W
wopeizl 已提交
713
    return viterbi_path
Y
Yu Yang 已提交
714 715


Y
yi.wu 已提交
716
@templatedoc()
F
fengjiayi 已提交
717
def cos_sim(X, Y):
Y
Yu Yang 已提交
718
    """
Y
yi.wu 已提交
719 720 721
    ${comment}

    Args:
722 723
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
724

Y
yi.wu 已提交
725
    Returns:
L
lvmengsi 已提交
726
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
727 728 729 730

    Examples:
        .. code-block:: python

731
            import paddle.fluid as fluid
L
lvmengsi 已提交
732 733
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
734
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
735
    """
F
fengjiayi 已提交
736
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
737 738 739
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
740 741 742 743 744 745 746 747 748 749
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
750 751 752 753 754
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
755
            dropout_implementation="downgrade_in_infer"):
756 757 758 759 760
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
761
    training. The dropout operator randomly sets (according to the given dropout
762 763 764
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
765 766
    dropout op can be removed from the program to make the program more efficient.

767
    Args:
L
lvmengsi 已提交
768
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
769
        dropout_prob (float): Probability of setting units to zero.
770 771 772 773
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
774
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
775 776
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
777 778
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
779
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
780 781

                                           - train: out = input * mask
C
ceci3 已提交
782
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
783 784 785

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
786
                                        2. upscale_in_train, upscale the outcome at training time
787

H
haowang101779990 已提交
788 789
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
790

H
haowang101779990 已提交
791 792
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
793

M
minqiyang 已提交
794

795
    Returns:
L
lvmengsi 已提交
796
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
797 798

    Examples:
799

800 801
        .. code-block:: python

802
            import paddle.fluid as fluid
L
lvmengsi 已提交
803
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
804
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
805 806
    """

F
fengjiayi 已提交
807
    helper = LayerHelper('dropout', **locals())
808 809
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'dropout')
X
Xin Pan 已提交
810 811
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
812
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
813 814 815 816

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

817 818 819 820 821
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
822 823 824 825
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
826
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
827
            'dropout_implementation': dropout_implementation,
828
        })
829 830 831
    return out


Y
yi.wu 已提交
832
@templatedoc()
Y
Yu Yang 已提交
833 834 835 836
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
837 838
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
839
    """
G
Guo Sheng 已提交
840 841
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
842

M
minqiyang 已提交
843
    For some basics of chunking, please refer to
H
haowang101779990 已提交
844
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
845

G
Guo Sheng 已提交
846 847
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
848 849

    .. code-block:: python
850

Y
yi.wu 已提交
851 852 853 854 855 856 857 858 859 860
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
861
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
862

G
Guo Sheng 已提交
863 864 865
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
866 867 868 869 870 871 872 873 874 875

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
876

Y
yi.wu 已提交
877 878 879 880 881 882
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
883 884
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
885 886 887 888 889 890 891 892 893 894 895

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
896 897
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
898

Y
yi.wu 已提交
899
    Args:
G
Guo Sheng 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
            It shoud have the same shape, lod and data type as ``input`` .
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
916

Y
yi.wu 已提交
917
    Returns:
G
Guo Sheng 已提交
918 919 920 921
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
922

Y
yi.wu 已提交
923 924 925
    Examples:
        .. code-block:: python

926 927 928 929
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
930 931 932
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
933 934 935 936
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
937
            crf = fluid.layers.linear_chain_crf(
938
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
939
            crf_decode = fluid.layers.crf_decoding(
940
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
941 942 943 944 945
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
946
    """
F
fengjiayi 已提交
947
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
948 949

    # prepare output
X
Xin Pan 已提交
950 951 952 953 954 955 956
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
957

958 959 960 961 962
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
963 964
    helper.append_op(
        type="chunk_eval",
965
        inputs=this_input,
Y
Yu Yang 已提交
966 967 968
        outputs={
            "Precision": [precision],
            "Recall": [recall],
969 970 971 972
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
973 974 975
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
976 977
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
978
        })
979 980
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
981 982


983
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
984
    """
985
    This operator implements the softmax layer. The calculation process is as follows:
986

987
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
988
    
989 990 991 992 993 994 995
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
996

997 998
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
999

1000 1001 1002 1003 1004
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1005

1006
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1007

1008
    .. math::
1009

1010
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1011

1012
    Example:
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1059
    Args:
1060 1061
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1062
            library is installed. To improve numerical stablity, set use_cudnn to \
1063 1064
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1065
            will be named automatically. Default: None.
1066
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1067
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1068
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1069 1070

    Returns:
1071
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1072 1073 1074 1075 1076

    Examples:

        .. code-block:: python

1077 1078
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1089
    """
1090
    helper = LayerHelper('softmax', **locals())
1091 1092
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'softmax')
1093

1094
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1095
    softmax_out = helper.create_variable_for_type_inference(dtype)
1096 1097 1098 1099
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1100 1101
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1102 1103 1104
    return softmax_out


Y
Yu Yang 已提交
1105 1106 1107
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1108 1109
           stride=1,
           padding=0,
1110
           dilation=1,
Y
Yu Yang 已提交
1111 1112 1113
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1114
           use_cudnn=True,
1115
           act=None,
L
liym27 已提交
1116 1117
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1118
    """
C
chengduoZH 已提交
1119
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1120
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1121
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1122
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1123 1124 1125 1126 1127 1128
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1129
    for more details.
1130 1131 1132
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1133

1134
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1135

C
chengduoZH 已提交
1136 1137
    .. math::

C
refine  
chengduoZH 已提交
1138
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1139

T
tensor-tang 已提交
1140
    Where:
C
chengduoZH 已提交
1141

L
liym27 已提交
1142
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1143 1144 1145 1146
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1147
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1148 1149 1150

    Example:

1151 1152
        - Input:

W
weixing02 已提交
1153
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1154

W
weixing02 已提交
1155
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1156

1157
        - Output:
T
tensor-tang 已提交
1158

W
weixing02 已提交
1159
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1160

C
chengduoZH 已提交
1161
        Where
1162 1163

        .. math::
C
chengduoZH 已提交
1164

W
weixing02 已提交
1165 1166
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1167 1168

    Args:
L
lvmengsi 已提交
1169 1170
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1171
        num_filters(int): The number of filter. It is as same as the output
1172
            image channel.
1173 1174
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1175 1176 1177 1178 1179 1180 1181
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimention.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1182 1183
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1184 1185 1186
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1187 1188 1189
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1190 1191 1192 1193
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1194 1195 1196 1197
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1198 1199 1200 1201 1202
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1203
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1204 1205 1206 1207 1208
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1209 1210
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1211 1212
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1213 1214 1215
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1216 1217
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1218 1219
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1220 1221

    Returns:
L
lvmengsi 已提交
1222 1223 1224 1225
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1240 1241 1242
    Examples:
        .. code-block:: python

1243
          import paddle.fluid as fluid
L
lvmengsi 已提交
1244
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1245
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1246 1247
    """

1248 1249
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'conv2d')
1250
    num_channels = input.shape[1]
L
liym27 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1266
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1267

1268
    l_type = 'conv2d'
X
xzl 已提交
1269 1270
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1271
        l_type = 'depthwise_conv2d'
1272 1273 1274 1275

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1276 1277 1278 1279
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1280
            raise ValueError(
1281 1282 1283
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1284
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1285

C
chengduoZH 已提交
1286 1287
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1288
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1289

L
liym27 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1313 1314 1315
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1330
            padding = [0, 0]
L
liym27 已提交
1331 1332
        elif padding == "SAME":
            padding_algorithm = "SAME"
1333
            padding = [0, 0]
L
liym27 已提交
1334 1335

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1336

M
minqiyang 已提交
1337
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1338 1339

    def _get_default_param_initializer():
C
chengduo 已提交
1340 1341
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1342 1343 1344 1345 1346 1347 1348 1349
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1350
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1351 1352

    helper.append_op(
1353
        type=l_type,
Y
Yu Yang 已提交
1354 1355 1356 1357 1358
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1359 1360 1361
        attrs={
            'strides': stride,
            'paddings': padding,
1362
            'dilations': dilation,
C
chengduoZH 已提交
1363
            'groups': groups,
1364
            'use_cudnn': use_cudnn,
1365
            'use_mkldnn': False,
L
liym27 已提交
1366 1367 1368
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1369
        })
Y
Yu Yang 已提交
1370

1371 1372 1373 1374
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1375 1376 1377 1378

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1390 1391
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1392 1393 1394
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1395
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1396 1397 1398 1399 1400
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1410
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1411
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1412 1413 1414
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1415
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1437 1438
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1439
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1440
            image channel.
1441 1442 1443 1444
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1445 1446 1447 1448 1449
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimention. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1450 1451 1452 1453 1454 1455 1456 1457
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1458 1459 1460 1461
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1462 1463 1464 1465 1466
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1477 1478
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1479 1480
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1481 1482 1483
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1484 1485 1486 1487
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1488 1489

    Returns:
L
lvmengsi 已提交
1490 1491 1492 1493
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1508 1509 1510
    Examples:
        .. code-block:: python

1511
          import paddle.fluid as fluid
L
lvmengsi 已提交
1512
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1513
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1514 1515 1516
    """

    l_type = 'conv3d'
C
chengduo 已提交
1517
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1518 1519 1520
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1536 1537 1538 1539 1540

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1541 1542 1543 1544
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1545
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1546 1547 1548 1549 1550

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1573 1574
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1575 1576
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1577 1578
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1593
            padding = [0, 0, 0]
L
liym27 已提交
1594 1595
        elif padding == "SAME":
            padding_algorithm = "SAME"
1596
            padding = [0, 0, 0]
L
liym27 已提交
1597 1598

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1599 1600 1601 1602 1603

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1604 1605 1606
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1607 1608 1609 1610 1611 1612 1613 1614
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1615
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1630 1631 1632
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1633 1634
        })

1635 1636 1637 1638
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1639 1640 1641 1642

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1643
@templatedoc()
Y
Yu Yang 已提交
1644
def pool2d(input,
C
chengduoZH 已提交
1645 1646
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1647 1648
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1649
           global_pooling=False,
C
chengduoZH 已提交
1650
           use_cudnn=True,
1651
           ceil_mode=False,
1652
           name=None,
1653 1654
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1655
    """
F
fengjiayi 已提交
1656
    ${comment}
1657 1658

    Args:
K
Kaipeng Deng 已提交
1659 1660 1661 1662 1663
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1664
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1665 1666
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1667
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1668 1669 1670
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1671 1672 1673 1674 1675 1676 1677
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1678
            Otherwise, the pool padding size will be a square of an int.
1679 1680 1681
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1682 1683 1684
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1685
        exclusive (bool): Whether to exclude padding points in average pooling
1686 1687 1688 1689
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1690

1691
    Returns:
K
Kaipeng Deng 已提交
1692
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1693 1694

    Raises:
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1707 1708 1709 1710 1711

    Examples:

        .. code-block:: python

1712
          import paddle.fluid as fluid
1713

K
Kaipeng Deng 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1757 1758 1759
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1760
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1761
            str(pool_type))
C
chengduoZH 已提交
1762

C
chengduoZH 已提交
1763 1764
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1765 1766 1767 1768
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1769 1770
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1771 1772 1773 1774 1775

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1776

C
chengduoZH 已提交
1777 1778 1779
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1802

1803 1804
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1819
            pool_padding = [0, 0]
1820 1821 1822 1823 1824 1825
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1826
            pool_padding = [0, 0]
1827 1828 1829 1830 1831

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1832
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1833
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1834 1835

    helper.append_op(
1836
        type=op_type,
1837 1838 1839 1840 1841 1842 1843 1844
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
1845
            "padding_algorithm": padding_algorithm,
1846 1847
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1848 1849
            "use_mkldnn": False,
            "exclusive": exclusive,
1850
            "data_format": data_format,
1851 1852 1853 1854 1855
        })

    return pool_out


D
dengkaipeng 已提交
1856
@templatedoc()
1857 1858 1859 1860 1861 1862 1863 1864
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
1865
           name=None,
1866 1867
           exclusive=True,
           data_format="NCDHW"):
1868
    """
1869
    ${comment}
1870 1871

    Args:
K
Kaipeng Deng 已提交
1872 1873
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1874 1875 1876
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1877
                          of the feature.
D
dengkaipeng 已提交
1878 1879 1880 1881 1882
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1894 1895 1896
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1897 1898 1899
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1900
        exclusive (bool): Whether to exclude padding points in average pooling
1901 1902 1903 1904
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1905

1906
    Returns:
K
Kaipeng Deng 已提交
1907
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1922 1923 1924 1925
    Examples:

        .. code-block:: python

1926
          import paddle.fluid as fluid
1927

K
Kaipeng Deng 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
1976 1977 1978
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1979
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1980
            str(pool_type))
C
chengduoZH 已提交
1981

C
chengduoZH 已提交
1982 1983
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1984 1985 1986 1987 1988
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
1989 1990
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
1991 1992 1993 1994 1995

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
1996

1997 1998
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2022 2023
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2024 2025 2026

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2027 2028
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2043
            pool_padding = [0, 0, 0]
2044 2045 2046 2047 2048 2049
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2050
            pool_padding = [0, 0, 0]
2051 2052 2053 2054 2055

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2056
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2057
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2058 2059

    helper.append_op(
2060
        type=op_type,
Y
Yu Yang 已提交
2061 2062 2063 2064 2065 2066 2067
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2068
            "paddings": pool_padding,
2069
            "padding_algorithm": padding_algorithm,
2070
            "use_cudnn": use_cudnn,
2071
            "ceil_mode": ceil_mode,
2072 2073
            "use_mkldnn": False,
            "exclusive": exclusive,
2074
            "data_format": data_format,
Y
Yu Yang 已提交
2075 2076 2077 2078 2079
        })

    return pool_out


2080 2081 2082 2083 2084 2085 2086
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2087
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2088 2089 2090 2091
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2092
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2107 2108

    Args:
K
Kaipeng Deng 已提交
2109 2110 2111 2112 2113
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2114 2115 2116
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2117
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2118 2119 2120 2121
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2122 2123

    Returns:
K
Kaipeng Deng 已提交
2124 2125
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2126 2127 2128 2129 2130 2131 2132 2133 2134

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2135
          # average adaptive pool2d
M
minqiyang 已提交
2136
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2137
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2138
          # of input data into m * n grids averagely and performs poolings in each
2139 2140
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2141
          #
2142 2143 2144 2145 2146 2147 2148 2149
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2150
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2151
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2152
          pool_out = fluid.layers.adaptive_pool2d(
2153 2154
                            input=data,
                            pool_size=[3, 3],
2155
                            pool_type='avg')
K
Kaipeng Deng 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2188
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2214
    return (pool_out, mask) if require_index else pool_out
2215 2216 2217 2218 2219 2220 2221 2222 2223


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2224
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2225 2226 2227 2228
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2229 2230
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2249 2250

    Args:
K
Kaipeng Deng 已提交
2251 2252 2253
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2254
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2255
                          The data type is float32 or float64.
2256
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2257
            it must contain three integers, (Depth, Height, Width).
2258
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2259
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2260 2261 2262 2263
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2264 2265

    Returns:
K
Kaipeng Deng 已提交
2266
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2267 2268 2269 2270 2271 2272 2273 2274 2275

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2276
          # average adaptive pool3d
2277 2278
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2279
          # of input data into l * m * n grids averagely and performs poolings in each
2280 2281
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2282
          #
2283 2284 2285 2286 2287 2288 2289 2290 2291
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2292
          #                 output[:, :, i, j, k] =
2293 2294
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2295 2296 2297

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2298 2299
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2300
          pool_out = fluid.layers.adaptive_pool3d(
2301
                            input=data,
D
dengkaipeng 已提交
2302
                            pool_size=[3, 3, 3],
2303
                            pool_type='avg')
K
Kaipeng Deng 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2343
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2369
    return (pool_out, mask) if require_index else pool_out
2370 2371


Y
Yu Yang 已提交
2372 2373 2374 2375 2376 2377 2378
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2379
               data_layout='NCHW',
Y
Yang Yang 已提交
2380
               in_place=False,
2381 2382
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2383
               moving_variance_name=None,
2384
               do_model_average_for_mean_and_var=True,
2385
               use_global_stats=False):
Y
Yu Yang 已提交
2386
    """
Q
qiaolongfei 已提交
2387 2388
    **Batch Normalization Layer**

L
lvmengsi 已提交
2389
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2390
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2391

Q
qiaolongfei 已提交
2392
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2393

Q
qiaolongfei 已提交
2394 2395
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2396 2397 2398
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2411

L
lvmengsi 已提交
2412 2413 2414
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2415

L
lvmengsi 已提交
2416
    moving_mean is global mean and moving_var is global variance.
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2430 2431 2432 2433
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

2434
    Args:
2435
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2436
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2437
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2438 2439
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2440 2441 2442
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2443 2444 2445 2446 2447
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2448 2449
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2450 2451 2452
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2453 2454
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2455 2456 2457
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2458 2459 2460 2461
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2462
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2463 2464 2465
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2466 2467
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2468
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2469 2470
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2471 2472
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2473 2474 2475 2476 2477
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2478 2479

    Returns:
L
lvmengsi 已提交
2480 2481
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2482 2483 2484 2485 2486

    Examples:

        .. code-block:: python

2487
            import paddle.fluid as fluid
L
lvmengsi 已提交
2488
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2489 2490
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2518
    """
C
chengduo 已提交
2519
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2520 2521
    helper = LayerHelper('batch_norm', **locals())

2522 2523
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'batch_norm')
2524
    dtype = helper.input_dtype()
W
Wu Yi 已提交
2525 2526 2527 2528
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2547
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2548

2549 2550
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2551 2552 2553
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2554
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2555
        shape=param_shape,
W
Wu Yi 已提交
2556
        dtype=dtype)
2557 2558 2559 2560 2561 2562
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2563
            trainable=False,
W
wanghaoshuang 已提交
2564
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2565
        shape=param_shape,
W
Wu Yi 已提交
2566
        dtype=dtype)
2567
    variance.stop_gradient = True
Y
Yu Yang 已提交
2568 2569 2570 2571 2572 2573

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2574 2575 2576 2577
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2578

X
Xin Pan 已提交
2579 2580
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2581

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
Y
Yu Yang 已提交
2601 2602
    helper.append_op(
        type="batch_norm",
2603
        inputs=inputs,
Y
Yu Yang 已提交
2604 2605 2606 2607 2608 2609 2610
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2611
        attrs=attrs)
Y
Yu Yang 已提交
2612 2613 2614 2615

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2616 2617 2618 2619 2620 2621 2622 2623
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2624
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2638
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2639
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2640
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2641 2642 2643 2644
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2645 2646
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2647 2648

    Args:
L
lvmengsi 已提交
2649 2650
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2667 2668
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2669 2670 2671 2672 2673 2674

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2675
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2739
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2740 2741 2742
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2743 2744 2745
    """
    **Data Normalization Layer**

2746
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2770 2771 2772 2773
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2774 2775 2776 2777 2778
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2779 2780
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2781 2782 2783 2784 2785 2786 2787
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2788 2789 2790
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2791 2792 2793 2794 2795 2796 2797

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2798 2799
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2800

2801
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2802
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
2879 2880 2881 2882

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2883
@templatedoc()
G
guosheng 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
2894 2895 2896 2897
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2898 2899 2900

    The formula is as follows:

Y
yuyang18 已提交
2901
    ..  math::
G
guosheng 已提交
2902

2903
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2904

2905
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2906

2907
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2908

2909 2910 2911 2912 2913
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2914

G
guosheng 已提交
2915
    Args:
2916 2917 2918 2919 2920 2921
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2922
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2923 2924 2925 2926
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2927 2928
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2929
            a default :code:`ParamAttr` would be added as scale. The
2930 2931
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2932 2933
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2934
            a default :code:`ParamAttr` would be added as bias. The
2935 2936 2937 2938
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2939 2940

    Returns:
2941
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2942 2943 2944

    Examples:

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
2957
    """
L
lujun 已提交
2958
    assert in_dygraph_mode(
L
lujun 已提交
2959
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
2960 2961 2962 2963 2964 2965 2966 2967
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2968
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
2969 2970 2971 2972 2973 2974
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
2975 2976 2977
    else:
        if param_attr:
            warnings.warn("param_attr is only avaliable with scale is True.")
G
guosheng 已提交
2978
    if shift:
2979
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
2980 2981 2982
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
2983 2984 2985
    else:
        if bias_attr:
            warnings.warn("bias_attr is only avaliable with shift is True.")
G
guosheng 已提交
2986 2987

    # create output
X
Xin Pan 已提交
2988 2989 2990 2991 2992
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3020
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3021

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        act(str, optional): Activation to be applied to the output of group normalizaiton.
3037 3038 3039 3040
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3041 3042
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3043 3044

    Returns:
3045 3046 3047 3048
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3049 3050 3051 3052 3053 3054
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3055 3056

    Examples:
3057
       .. code-block:: python
D
Dun 已提交
3058

3059 3060 3061
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3062 3063 3064 3065 3066 3067 3068
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3069 3070 3071 3072 3073 3074
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3088 3089
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3100 3101 3102 3103 3104
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3105 3106 3107 3108 3109

    return helper.append_activation(group_norm_out)


@templatedoc()
3110
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3111 3112 3113
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3114
    This operation calculates the spectral normalization value of weight parameters of
3115
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3116 3117
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3118

D
dengkaipeng 已提交
3119 3120 3121
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3122
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3123 3124 3125

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
K
Kaipeng Deng 已提交
3126 3127
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3128 3129 3130 3131 3132 3133 3134 3135

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3136
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3137 3138 3139 3140

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3141

D
dengkaipeng 已提交
3142
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3143 3144
                

D
dengkaipeng 已提交
3145 3146 3147 3148
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3149 3150 3151
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3152 3153 3154
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3155 3156

    Returns:
D
dengkaipeng 已提交
3157
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3158
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3159 3160

    Examples:
K
Kaipeng Deng 已提交
3161
       .. code-block:: python
D
dengkaipeng 已提交
3162

K
Kaipeng Deng 已提交
3163 3164
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3165
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3166
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3167 3168
    """
    helper = LayerHelper('spectral_norm', **locals())
3169
    dtype = weight.dtype
D
dengkaipeng 已提交
3170 3171 3172

    # create intput and parameters
    inputs = {'Weight': weight}
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3191 3192

    # create output
3193
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3194 3195

    helper.append_op(
3196
        type="spectral_norm",
D
Dun 已提交
3197
        inputs=inputs,
3198 3199 3200 3201 3202 3203
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3204

3205
    return out
D
Dun 已提交
3206 3207


Y
Yu Yang 已提交
3208 3209 3210 3211
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3212 3213 3214
                     padding=0,
                     stride=1,
                     dilation=1,
3215
                     groups=None,
C
caoying03 已提交
3216
                     param_attr=None,
3217
                     bias_attr=None,
C
chengduoZH 已提交
3218
                     use_cudnn=True,
3219
                     act=None,
3220 3221
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3222
    """
3223 3224
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3225
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3226 3227 3228
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3229
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3230
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3231 3232 3233
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3234 3235 3236 3237 3238

    For each input :math:`X`, the equation is:

    .. math::

3239
        Out = \sigma (W \\ast X + b)
3240

3241
    Where:
3242

3243 3244
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3245
    * :math:`\\ast`: Convolution operation.
3246
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3247
    * :math:`\\sigma`: Activation function.
3248
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3249

3250 3251 3252 3253
    Example:

        - Input:

3254
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3255

3256
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3257 3258 3259

        - Output:

3260
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3261 3262

        Where
Y
Yu Yang 已提交
3263

3264 3265
        .. math::

3266 3267
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3268
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3269 3270
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3271
    Note:
L
lvmengsi 已提交
3272 3273 3274 3275
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3276 3277 3278 3279
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3280 3281

    Args:
3282 3283
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3284 3285
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3286
        output_size(int|tuple, optional): The output image size. If output size is a
3287
            tuple, it must contain two integers, (image_height, image_width). None if use
3288
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3289 3290 3291
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3292
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3293 3294
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3295 3296 3297 3298 3299 3300 3301
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3302 3303 3304 3305 3306 3307 3308 3309 3310
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3311 3312 3313 3314 3315 3316 3317
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3318
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3319 3320 3321 3322
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3323
            Default: groups = 1.
3324
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3325 3326 3327
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3328
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3329 3330 3331 3332
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3333
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3334
            library is installed. Default: True.
3335
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3336
            Default: None.
L
lvmengsi 已提交
3337 3338 3339
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3340 3341 3342 3343
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3344 3345

    Returns:
L
lvmengsi 已提交
3346 3347 3348 3349 3350 3351
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3352 3353

    Raises:
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3365 3366 3367 3368

    Examples:
       .. code-block:: python

3369
          import paddle.fluid as fluid
L
lvmengsi 已提交
3370
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3371
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3372
    """
C
chengduo 已提交
3373
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3374 3375 3376 3377
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3378

3379
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3380 3381 3382 3383 3384 3385
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3386 3387 3388
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3389 3390
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3391

C
chengduoZH 已提交
3392 3393
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3438 3439 3440 3441 3442
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3443

3444 3445
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3446

3447 3448 3449 3450
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3451
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3452 3453 3454
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3455

3456 3457 3458
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3459 3460 3461 3462 3463 3464
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3465
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3466
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3467

Y
Yu Yang 已提交
3468 3469 3470
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3471
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3472
    helper.append_op(
3473
        type=op_type,
Y
Yu Yang 已提交
3474 3475
        inputs={'Input': [input],
                'Filter': [img_filter]},
3476
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3477
        attrs={
3478
            'output_size': output_size,
3479 3480
            'strides': stride,
            'paddings': padding,
3481
            'padding_algorithm': padding_algorithm,
3482 3483
            'dilations': dilation,
            'groups': groups,
3484 3485
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3486 3487
        })

3488 3489 3490 3491
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3492 3493
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3494 3495


3496
def conv3d_transpose(input,
Y
Yu Yang 已提交
3497 3498 3499
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3500 3501 3502
                     padding=0,
                     stride=1,
                     dilation=1,
3503
                     groups=None,
C
caoying03 已提交
3504
                     param_attr=None,
3505
                     bias_attr=None,
C
chengduoZH 已提交
3506
                     use_cudnn=True,
3507
                     act=None,
3508 3509
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3510
    """
3511
    The convolution3D transpose layer calculates the output based on the input,
3512
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3513
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3514 3515 3516 3517
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3518
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3519 3520 3521
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3522 3523 3524 3525 3526

    For each input :math:`X`, the equation is:

    .. math::

3527
        Out = \sigma (W \\ast X + b)
3528 3529 3530

    In the above equation:

3531 3532
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3533
    * :math:`\\ast`: Convolution operation.
3534
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3535 3536
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3537

3538 3539 3540 3541
    Example:

        - Input:

3542
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3543

3544
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3545 3546 3547

        - Output:

3548
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3549 3550

        Where
Y
Yu Yang 已提交
3551

3552 3553
        .. math::

L
lvmengsi 已提交
3554 3555 3556 3557 3558 3559
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3560

L
lvmengsi 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3576 3577
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3578
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3579 3580 3581 3582
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3583
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3584
            it must contain three integers, (filter_size_depth, filter_size_height,
3585 3586
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3587 3588 3589 3590
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3591 3592 3593 3594 3595 3596 3597 3598
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3599 3600 3601 3602 3603 3604 3605 3606
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3607
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3608 3609 3610 3611 3612
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3613
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3614 3615 3616
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3617
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3618 3619 3620 3621
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3622
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3623
            library is installed. Default: True
3624
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3625
            Default: None.
L
lvmengsi 已提交
3626 3627 3628
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3629 3630 3631 3632
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3633 3634

    Returns:
L
lvmengsi 已提交
3635 3636 3637 3638 3639
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3640 3641

    Raises:
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3653 3654 3655 3656

    Examples:
       .. code-block:: python

3657
          import paddle.fluid as fluid
L
lvmengsi 已提交
3658
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3659
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3660
    """
C
chengduo 已提交
3661
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3662 3663 3664 3665
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3666 3667
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3668
    if not isinstance(input, Variable):
3669
        raise TypeError("Input of conv3d_transpose must be Variable")
3670 3671
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3672

3673 3674
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3675

C
chengduoZH 已提交
3676 3677 3678
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3693 3694 3695 3696 3697 3698 3699 3700
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3701

3702 3703
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3704

3705 3706 3707 3708 3709 3710 3711
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3712

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3726

3727
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3728

3729 3730 3731 3732 3733
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3734

3735 3736 3737
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3749

3750 3751
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3752

3753 3754 3755 3756
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3757

3758 3759 3760 3761
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3762

3763
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3764
    helper.append_op(
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3778

3779 3780 3781 3782 3783 3784
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3785 3786


C
caoying03 已提交
3787
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3788
    """
Y
yangyaming 已提交
3789
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3790 3791

    Args:
3792 3793 3794
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3795 3796
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3797 3798
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3799
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3800
            output Tensor. The result tensor will have one fewer dimension
3801 3802 3803 3804
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3805 3806

    Returns:
3807 3808
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3809

3810 3811 3812
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3813 3814 3815
    Examples:
        .. code-block:: python

3816
            import paddle.fluid as fluid
G
guosheng 已提交
3817 3818 3819
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3820
            # Each example is followed by the corresponding output tensor.
3821
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3822 3823 3824 3825
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3826

3827
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3828 3829
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3830
            # Each example is followed by the corresponding output tensor.
3831
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3832 3833
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3834

G
guosheng 已提交
3835 3836
    """
    helper = LayerHelper('reduce_sum', **locals())
3837 3838
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
X
Xin Pan 已提交
3839
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3840 3841
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3842 3843 3844 3845 3846
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3847
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3848 3849 3850 3851
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3852 3853


C
caoying03 已提交
3854
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3855
    """
Y
Yibing Liu 已提交
3856
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3857 3858

    Args:
3859 3860 3861
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3862 3863
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3864
            must be in the range :math:`[-rank(input), rank(input))`. If
3865
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3866
            :math:`rank(input) + dim[i]`.
3867
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3868
            output Tensor. The result tensor will have one fewer dimension
3869 3870 3871 3872 3873
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
3874
    Returns:
3875 3876 3877 3878 3879 3880
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3881 3882 3883
    Examples:
        .. code-block:: python

3884
            import paddle.fluid as fluid
G
guosheng 已提交
3885 3886 3887 3888
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
3889
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3890 3891 3892
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3893
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3894

3895
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3896 3897 3898
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
3899
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3900 3901
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3902 3903
    """
    helper = LayerHelper('reduce_mean', **locals())
3904 3905 3906
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'reduce_mean')
X
Xin Pan 已提交
3907
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3908 3909
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3910 3911 3912 3913 3914
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3915
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3916 3917 3918 3919
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3920 3921


C
caoying03 已提交
3922
def reduce_max(input, dim=None, keep_dim=False, name=None):
3923
    """
Y
yangyaming 已提交
3924
    Computes the maximum of tensor elements over the given dimension.
3925 3926

    Args:
3927 3928 3929
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3930 3931 3932
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3933
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3934
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3935
            output Tensor. The result tensor will have one fewer dimension
3936 3937 3938 3939
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
3940 3941

    Returns:
3942 3943
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
3944

3945 3946 3947
    Examples:
        .. code-block:: python

3948
            import paddle.fluid as fluid
3949 3950 3951 3952
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
3953
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
3954 3955 3956 3957
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3958

3959
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3960 3961 3962
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
3963
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3964 3965
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
3966 3967
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3968
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3969 3970
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3971 3972 3973 3974 3975
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3976
            'dim': dim if dim != None else [0],
3977 3978 3979 3980 3981 3982
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3983
def reduce_min(input, dim=None, keep_dim=False, name=None):
3984
    """
Y
yangyaming 已提交
3985
    Computes the minimum of tensor elements over the given dimension.
3986 3987

    Args:
3988 3989 3990
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3991 3992 3993
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3994
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3995
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3996
            output Tensor. The result tensor will have one fewer dimension
3997 3998 3999 4000
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4001 4002

    Returns:
4003 4004
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4005

4006 4007 4008
    Examples:
        .. code-block:: python

4009
            import paddle.fluid as fluid
4010 4011 4012 4013
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4014
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4015 4016 4017 4018
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4019

4020
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4021 4022 4023
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4024
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4025 4026
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4027 4028
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4029
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4030 4031
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4032 4033 4034 4035 4036
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4037
            'dim': dim if dim != None else [0],
4038 4039 4040 4041
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4042 4043


4044 4045 4046 4047 4048
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4049 4050 4051
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
4052 4053
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4054 4055
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4056
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4057
            output Tensor. The result tensor will have one fewer dimension
4058 4059 4060 4061
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4062 4063

    Returns:
4064 4065 4066
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4067 4068 4069
    Examples:
        .. code-block:: python

4070
            import paddle.fluid as fluid
4071 4072 4073 4074
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4075
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4076 4077 4078
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4079
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4080
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4081

4082
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4083 4084 4085
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4086
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4087 4088
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4089 4090
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4091
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4092 4093
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4094 4095 4096 4097 4098
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4099
            'dim': dim if dim != None else [0],
4100 4101 4102 4103 4104 4105
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4106 4107
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4108
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4109 4110

    Args:
4111 4112
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4113 4114 4115
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4116
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4117 4118
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4119
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4120
        name(str|None): A name for this layer(optional). If set None, the layer
4121
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4122

4123 4124
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4125 4126 4127

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4128
        
4129
            import paddle.fluid as fluid
4130 4131 4132
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4133 4134 4135
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4136 4137 4138 4139 4140 4141
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4142 4143
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4144
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4145
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4166
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4167 4168

    Args:
4169 4170 4171
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4172 4173
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4174
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4175 4176
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4177
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4178 4179
        name(str|None): A name for this layer(optional). If set None, the layer

4180 4181
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4182 4183 4184

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4185

4186
            import paddle.fluid as fluid
4187 4188 4189
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4190 4191 4192
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4193 4194 4195 4196 4197 4198
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4199 4200
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4201
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4202
                                     keep_dim=True)  # [[True], [False]]
4203
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4217 4218 4219 4220 4221
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4222
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4223
    """
4224
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4225 4226

    Args:
4227
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4228
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4229 4230
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4231 4232 4233 4234 4235
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4236
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4237 4238

    Returns:
4239
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4240

4241 4242 4243 4244
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4245
    Example:
G
guosheng 已提交
4246 4247
        .. code-block:: python

4248 4249
            import paddle.fluid as fluid

4250 4251
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4252 4253
                 name="input", shape=[3, 9, 5], dtype="float32")

4254 4255 4256 4257
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4258

4259 4260 4261 4262 4263 4264 4265 4266 4267
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4268
    """
4269 4270 4271 4272 4273 4274 4275 4276 4277
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4278 4279
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4311 4312
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4313 4314 4315 4316 4317
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4318 4319
        num = num_or_sections
    else:
4320 4321 4322
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4323
        num = len(num_or_sections)
4324 4325 4326 4327 4328 4329 4330 4331 4332
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
        contain_var = not all(not isinstance(ele, Variable)
                              for ele in num_or_sections)
        if contain_var:
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4333
    outs = [
X
Xin Pan 已提交
4334
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4335 4336 4337
        for i in range(num)
    ]
    helper.append_op(
4338
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4339
    return outs
C
caoying03 已提交
4340 4341 4342 4343


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4344
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4345 4346
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4347
    .. math::
4348 4349

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4350 4351 4352 4353 4354

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4355
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4356
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4357 4358
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4359
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4360
            the default value is 1e-12.
R
ruri 已提交
4361 4362
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4363
    Returns:
R
ruri 已提交
4364
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4365 4366

    Examples:
4367

C
caoying03 已提交
4368
        .. code-block:: python
R
ruri 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4381

R
ruri 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4406 4407
    """

F
fengjiayi 已提交
4408 4409
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4410 4411
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4412 4413
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4414
    helper.append_op(
4415 4416 4417 4418
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4419
        attrs={
4420 4421
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4422 4423
        })
    return out
4424 4425


S
sneaxiy 已提交
4426
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4427
    """
Y
ying 已提交
4428 4429 4430 4431
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4432

C
chengduoZH 已提交
4433
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4434
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4435

4436 4437 4438 4439 4440
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4441
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4442

C
chengduoZH 已提交
4443
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4444
      performs in the following way.
G
guosheng 已提交
4445

4446
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4447
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4448
        last two dimensions and a batched matrix multiply supporting broadcast
4449
        applies on the two tensors.
G
guosheng 已提交
4450

Y
ying 已提交
4451 4452
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4453
    removed after matrix multiplication.
G
guosheng 已提交
4454 4455 4456

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4457 4458 4459
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4460
        alpha (float): The scale of output. Default 1.0.
4461
        name(str|None): A name for this layer(optional). If set None, the layer
4462
            will be named automatically.
G
guosheng 已提交
4463 4464

    Returns:
石晓伟 已提交
4465
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4466

G
guosheng 已提交
4467 4468 4469
    Examples:
        .. code-block:: python

4470
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4471
            # x: [B, ..., M, K], y: [B, ..., K, N]
4472
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4473

4474
            # x: [B, M, K], y: [B, K, N]
4475
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4476

4477
            # x: [B, M, K], y: [K, N]
4478
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4479

4480
            # x: [M, K], y: [K, N]
4481
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4482 4483

            # x: [B, M, K], y: [K]
4484
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4485

4486
            # x: [K], y: [K]
4487
            # fluid.layers.matmul(x, y)  # out: [1]
4488

Y
ying 已提交
4489
            # x: [M], y: [N]
4490 4491
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4492
            import paddle.fluid as fluid
4493 4494 4495
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4496
    """
Y
ying 已提交
4497 4498

    def __check_input(x, y):
4499 4500
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4501 4502
            check_type_and_dtype(val, name, Variable,
                                 ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4503 4504 4505 4506 4507
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4508
            y_shape = y_shape + [1]
Y
ying 已提交
4509 4510 4511 4512 4513 4514 4515

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4516 4517 4518 4519 4520
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4521

C
chengduo 已提交
4522
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4523
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4524 4525 4526
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4527
                if dim_x != y_shape[i]:
4528 4529 4530 4531 4532
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4533 4534 4535

    __check_input(x, y)

4536
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4537
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4538
    helper.append_op(
4539 4540 4541 4542
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4543 4544 4545
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4546
            'alpha': float(alpha),
S
sneaxiy 已提交
4547
        })
4548
    return out
4549 4550


4551
def topk(input, k, name=None):
Q
qingqing01 已提交
4552
    """
4553
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4554 4555
    for the last dimension.

4556 4557
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4558 4559 4560 4561

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4562 4563
    .. code-block:: text

4564 4565 4566 4567 4568
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4569 4570 4571 4572
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4573
          Output:
F
fengjiayi 已提交
4574
            The first output:
4575 4576
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4577 4578 4579 4580
                      [10, 25],
                      [6, 10]]

            The second output:
4581 4582
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4583 4584 4585
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4586
    Args:
4587 4588 4589 4590
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4591 4592

    Returns:
4593 4594
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4595

F
fengjiayi 已提交
4596
    Raises:
4597
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4598 4599 4600 4601

    Examples:
        .. code-block:: python

4602
            import paddle.fluid as fluid
4603
            import paddle.fluid.layers as layers
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4617 4618
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4619 4620
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4621 4622 4623 4624 4625 4626
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4627 4628
    helper.append_op(
        type="top_k",
W
whs 已提交
4629
        inputs=inputs,
Q
qingqing01 已提交
4630 4631
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4632
        attrs=attrs)
Q
qingqing01 已提交
4633 4634 4635 4636 4637
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4638 4639 4640 4641 4642
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4643
    """
S
SunGaofeng 已提交
4644
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4645

S
SunGaofeng 已提交
4646
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4647 4648 4649
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4650

S
SunGaofeng 已提交
4651 4652 4653 4654
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4655 4656 4657 4658 4659
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4660
        (1) for lod mode:
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4672
        input.lod = [[4, 4]]
M
minqiyang 已提交
4673

W
whs 已提交
4674
        Computation:
4675

W
whs 已提交
4676 4677 4678 4679 4680 4681
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4682 4683 4684 4685 4686

        output.data = [[2],
                       [1],
                       [3]]

4687
        output.lod = [[2, 1]]
4688

S
SunGaofeng 已提交
4689
        (2) for padding mode:
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4716
    Parameters:
4717

S
SunGaofeng 已提交
4718 4719
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4720
                         where Lp is the sum of all input sequences' length and
4721 4722
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4723
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4724
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4725
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4726
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4727 4728
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4729
        padding_value(int): padding value.
S
SunGaofeng 已提交
4730 4731 4732
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4733 4734

    Returns:
S
SunGaofeng 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

        For padding mode, returns a tuple of (output, output_length), which was describled as below: 

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4752 4753 4754 4755

    Examples:
        .. code-block:: python

4756
            # for lod mode
S
SunGaofeng 已提交
4757
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4758
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4759
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4760 4761

            # for padding mode
S
SunGaofeng 已提交
4762 4763
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4764 4765 4766
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4767
    """
4768
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4769
    _, topk_indices = topk(input, k=1)
4770 4771

    # ctc align op
X
Xin Pan 已提交
4772
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
4798 4799


Y
fix ci.  
ying 已提交
4800
def transpose(x, perm, name=None):
Y
ying 已提交
4801
    """
4802
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
4803 4804 4805 4806 4807

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4808 4809
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
        perm (list): Permute the input accoring to the data of perm.
4810
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4811 4812

    Returns:
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
4837 4838

    Examples:
4839

Y
ying 已提交
4840 4841
        .. code-block:: python

4842
            # use append_batch_size=False to avoid prepending extra
4843
            # batch size in shape
4844
            import paddle.fluid as fluid
4845
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
4846
                            dtype='float32', append_batch_size=False)
4847
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
4848 4849
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
4850

4851
    """
4852 4853 4854 4855
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'transpose')
    check_type(perm, 'perm', list, 'transpose')
Y
fix ci.  
ying 已提交
4856
    if len(perm) != len(x.shape):
Y
ying 已提交
4857
        raise ValueError(
4858 4859 4860 4861
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
4862 4863 4864
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
4865 4866 4867
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4868 4869

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4870 4871
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4872
    helper.append_op(
4873
        type='transpose2',
Y
fix ci.  
ying 已提交
4874
        inputs={'X': [x]},
4875 4876
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4877 4878
        attrs={'axis': perm})
    return out
4879 4880


4881 4882 4883 4884 4885 4886 4887
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4888
    """
4889
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
4890 4891 4892
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
4893 4894
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4895 4896 4897

    .. math::

L
Liufang Sang 已提交
4898 4899 4900 4901
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
4902

L
Liufang Sang 已提交
4903
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
4904

L
Liufang Sang 已提交
4905 4906
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
4907

L
Liufang Sang 已提交
4908 4909 4910
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
4911

L
Liufang Sang 已提交
4912 4913
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
4914

L
Liufang Sang 已提交
4915 4916 4917 4918 4919 4920 4921
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
4922

L
Liufang Sang 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
            If out_stride is List,  it must contain two intergers,
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4966 4967 4968
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4981
            output.dims = {8, 8}
4982

4983
            output.lod = [[4, 4]]
4984

T
Tink_Y 已提交
4985
    Examples:
4986 4987 4988

        .. code-block:: python

B
Bai Yifan 已提交
4989
            import paddle.fluid as fluid
L
Liufang Sang 已提交
4990
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
4991
                                     dtype='float32')
4992
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
4993 4994
                input=data, stride=[1, 1], filter_size=[2, 2])

4995 4996

    """
L
lujun 已提交
4997
    assert not in_dygraph_mode(), (
4998
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5009
    inputs = {"X": input}
5010
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5011 5012 5013 5014 5015
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5016
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5017
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5018
    helper.append_op(
5019
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5020
    return out
5021 5022


Y
yuyang18 已提交
5023
@templatedoc()
5024
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5025 5026
    """
    ${comment}
5027 5028

    Args:
Y
yuyang18 已提交
5029
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5030 5031
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5032 5033 5034 5035 5036
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5037
        ${out_comment}.
5038 5039

    Examples:
D
Double_V 已提交
5040
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5041
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5042
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5043 5044
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5045 5046 5047
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5048 5049 5050 5051 5052 5053
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5054
    out = helper.create_variable_for_type_inference(dtype)
5055 5056 5057 5058 5059
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5060
    return helper.append_activation(out)
5061 5062


Y
yuyang18 已提交
5063
@templatedoc()
5064 5065
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5066

5067
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5068

5069
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5070

5071
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5072

5073
    For Example:
L
lujun 已提交
5074

5075
            .. code-block:: text
L
lujun 已提交
5076

5077
                Given:
L
lujun 已提交
5078

5079 5080 5081 5082
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5083

5084
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5085

5086 5087 5088 5089
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5090 5091


5092 5093 5094
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5095

5096
    Returns:
5097
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5098 5099

    Examples:
5100

X
xuezhong 已提交
5101 5102
        .. code-block:: python

5103
            import paddle.fluid as fluid
5104
            import numpy as np
5105

5106 5107 5108 5109
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5120

5121 5122 5123 5124 5125 5126 5127 5128
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5129
    helper.append_op(
5130 5131 5132 5133 5134
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5135 5136


5137 5138
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5139 5140
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5141
    For each instance, it computes the smooth L1 loss element by element first
5142
    and then sums all the losses. So the shape of ouput Variable is
5143
    [batch_size, 1].
5144

5145 5146
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5147
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5148
            A LoDTensor or Tensor with type float32.
5149
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5150
            L1 loss op with same shape as :attr:`x`.
5151
            A LoDTensor or Tensor with type float32.
5152
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5153 5154
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5155
            by this tensor element by element.
5156
            A Tensor with type float32.
5157
        outside_weight (Variable|None): A tensor with rank at least 2. This
5158 5159
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5160
            element by element.
5161
            A Tensor with type float32.
5162
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5163 5164
           scalar with default value 1.0.

5165
    Returns:
5166
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5167 5168 5169 5170

    Examples:
        .. code-block:: python

5171
            import paddle.fluid as fluid
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5189
    """
5190

5191
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5192 5193
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5204
        attrs={'sigma': sigma if sigma is not None else 1.0})
5205
    return loss
5206 5207


5208
def one_hot(input, depth, allow_out_of_range=False):
5209
    """
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5264 5265

    Args:
5266 5267 5268 5269 5270
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5271
        allow_out_of_range(bool): A bool value indicating whether the input
5272 5273 5274 5275
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5276 5277

    Returns:
5278
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5279 5280

    Examples:
C
caoying03 已提交
5281
        .. code-block:: python
5282

5283
            import paddle.fluid as fluid
5284 5285 5286
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5287 5288
    """
    helper = LayerHelper("one_hot", **locals())
5289

X
Xin Pan 已提交
5290
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5291 5292 5293

    if in_dygraph_mode():
        inputs = {'X': input}
Y
Yi Liu 已提交
5294
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5295 5296
    else:
        if not isinstance(depth, Variable):
G
Guo Sheng 已提交
5297
            # user attribute
5298
            inputs = {'X': input}
Y
Yi Liu 已提交
5299
            attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5300
        else:
H
Hongyu Liu 已提交
5301
            depth.stop_gradient = True
5302
            inputs = {'X': input, 'depth_tensor': depth}
Y
Yi Liu 已提交
5303
            attrs = {'allow_out_of_range': allow_out_of_range}
5304 5305
    helper.append_op(
        type="one_hot",
5306 5307
        inputs=inputs,
        attrs=attrs,
5308 5309
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5310
    return one_hot_out
Y
Yu Yang 已提交
5311 5312


Y
Yu Yang 已提交
5313
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5314
    """
Y
Yibing Liu 已提交
5315 5316 5317
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5318 5319

    Args:
Y
Yibing Liu 已提交
5320 5321 5322
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5323

5324
    Returns:
Y
Yibing Liu 已提交
5325
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5326 5327 5328 5329

    Examples:
        .. code-block:: python

5330
           import paddle.fluid as fluid
Y
yi.wu 已提交
5331
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5332
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5333 5334
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5335 5336
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5337
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5338 5339 5340 5341 5342
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5343 5344 5345
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5346
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5347
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5348 5349
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5350
            outputs={'Out': [counter]},
5351
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5352 5353 5354
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5355 5356


5357
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5358
    """
5359
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5360

5361 5362 5363 5364
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
5365
    gurantee shape inference in compile-time.
C
caoying03 已提交
5366

5367
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5368

5369 5370 5371 5372
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5373
    2. 0 means the actual dimension value is going to be copied from the
5374
    corresponding dimension of x. The indice of 0s in shape can not exceed
5375
    the dimension of x.
5376 5377

    Here are some examples to explain it.
C
caoying03 已提交
5378 5379

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5380
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5381
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5382

5383
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5384 5385
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5386 5387
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5388
    dimensions.
C
caoying03 已提交
5389

5390
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5391 5392 5393 5394
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5395

5396 5397
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5398

C
caoying03 已提交
5399
    Args:
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5417

5418
    Returns:
5419
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5420

X
Xin Pan 已提交
5421
    Raises:
5422 5423 5424 5425
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5426

C
caoying03 已提交
5427 5428
    Examples:
        .. code-block:: python
G
guosheng 已提交
5429

5430
            import paddle.fluid as fluid
5431 5432 5433

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5434 5435
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5436
            reshaped_1 = fluid.layers.reshape(
5437 5438
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5439 5440 5441 5442 5443 5444

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5445
            # the shape of reshaped_2 is [5,10].
C
caoying03 已提交
5446
    """
5447 5448 5449 5450 5451
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5452
    helper = LayerHelper("reshape2", **locals())
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5485 5486
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5487 5488 5489
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5490 5491 5492 5493
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5494 5495
                else:
                    assert dim_size > 0, (
5496 5497 5498 5499
                        "Each dimension value of 'shape' in reshape must not "
                        "be negtive except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5500 5501
        return attrs_shape

5502 5503 5504 5505
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
5506 5507 5508 5509 5510
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
5511 5512
                "The size of 'shape' in reshape can't be zero, "
                "but received %s." % len(shape))
5513 5514 5515 5516 5517 5518
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
5519

5520 5521
    out = x if inplace and not in_dygraph_mode(
    ) else helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5522
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5523
    helper.append_op(
5524
        type="reshape2",
X
Xin Pan 已提交
5525
        inputs=inputs,
5526
        attrs=attrs,
5527 5528
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5529

D
dzhwinter 已提交
5530
    return helper.append_activation(out)
5531

5532

5533
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5534
    """
5535 5536 5537
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5538

H
haowang101779990 已提交
5539

5540
    .. code-block:: text 
H
haowang101779990 已提交
5541

5542
        Case1:
H
haowang101779990 已提交
5543

5544
          Input:
H
haowang101779990 已提交
5545 5546
            X.shape = (1, 3, 1, 5)
            axes = [0]
5547
          Output:
H
haowang101779990 已提交
5548 5549
            Out.shape = (3, 1, 5)

5550
        Case2:
H
haowang101779990 已提交
5551

5552
          Input:
H
haowang101779990 已提交
5553 5554
            X.shape = (1, 3, 1, 5)
            axes = []
5555
          Output:
H
haowang101779990 已提交
5556
            Out.shape = (3, 5)
M
minqiyang 已提交
5557

5558 5559 5560 5561 5562 5563 5564 5565
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5566
    Args:
5567 5568 5569 5570 5571
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5572 5573

    Returns:
5574
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5575 5576 5577 5578

    Examples:
        .. code-block:: python

5579
            import paddle.fluid as fluid
5580
            import paddle.fluid.layers as layers
5581 5582 5583 5584
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5585 5586
    """
    helper = LayerHelper("squeeze", **locals())
5587 5588 5589 5590
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int8', 'int32', 'int64'],
                         'squeeze')
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5591 5592
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5593
    helper.append_op(
5594
        type="squeeze2",
5595
        inputs={"X": input},
Y
Yibing Liu 已提交
5596
        attrs={"axes": axes},
5597 5598
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5599

5600 5601 5602
    return out


5603
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5604
    """
5605
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5606 5607
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5608

M
minqiyang 已提交
5609
    For example:
H
haowang101779990 已提交
5610 5611 5612

    .. code-block:: text

M
minqiyang 已提交
5613
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5614
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5615

Y
Yibing Liu 已提交
5616
    Args:
5617
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5618
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5619
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5620 5621

    Returns:
5622
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5623 5624 5625 5626

    Examples:
        .. code-block:: python

5627 5628 5629
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5630

Y
Yibing Liu 已提交
5631
    """
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        contain_var = not all(not isinstance(ele, Variable) for ele in axes)
        if contain_var:
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5665 5666
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5667
    helper.append_op(
5668
        type="unsqueeze2",
5669 5670
        inputs=inputs,
        attrs=attrs,
5671 5672
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5673

5674 5675
    return out

5676

Y
yangyaming 已提交
5677
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5678
    """
Y
Yibing Liu 已提交
5679
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5680 5681 5682 5683
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5684
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5685 5686 5687 5688 5689 5690

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5691
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5692 5693 5694
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5695
            target_lod: [4, 2]
Y
yangyaming 已提交
5696 5697

            then we get a 1-level LoDTensor:
5698
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5699 5700 5701 5702 5703 5704
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5705
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5706 5707 5708 5709
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5710
                y.data = [[2, 4]]
Y
yangyaming 已提交
5711 5712 5713
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5714
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5715 5716 5717 5718 5719 5720
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5721
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5722 5723 5724 5725
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5726
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5727 5728 5729 5730
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5731
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5732 5733 5734 5735
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
5736
        x (Variable): Input variable which could be a Tensor or LoDTensor.
5737
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5738
                           from :attr:`y`.
Y
yangyaming 已提交
5739
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5740
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5741 5742

    Returns:
Y
Yibing Liu 已提交
5743
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5744 5745

    Raises:
Y
Yibing Liu 已提交
5746
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5747 5748 5749 5750

    Examples:
        .. code-block:: python

5751
            import paddle.fluid as fluid
5752 5753 5754
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
5755 5756
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5757
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
5795
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
5796 5797 5798 5799 5800 5801

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
5802

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
5813 5814 5815
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

5816 5817
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5818 5819 5820 5821 5822 5823 5824 5825

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
5826
    helper.append_op(
5827
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
5828
    return out
D
dragonwarrior 已提交
5829 5830


5831 5832
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
5833
    """
5834 5835 5836
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
5837 5838 5839 5840 5841

    The formula is as follows:

    .. math::

5842
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5843 5844 5845

    In the above equation:

5846 5847 5848 5849
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
5850 5851 5852


    Args:
5853 5854 5855
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
5856 5857 5858 5859
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
5860 5861
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
5862 5863 5864 5865 5866
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
5867
    Returns:
5868 5869
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
5870 5871 5872

    Examples:

5873 5874 5875 5876 5877 5878 5879 5880
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
5881 5882 5883 5884 5885 5886 5887 5888
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
5889
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
5890
            (dims))
5891 5892 5893 5894
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
5895

X
Xin Pan 已提交
5896 5897 5898
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5899 5900 5901 5902 5903 5904 5905
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
5906 5907 5908 5909 5910 5911 5912
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
5913 5914

    return lrn_out
G
guosheng 已提交
5915 5916 5917 5918


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
5919 5920
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
5921

S
SunGaofeng 已提交
5922 5923 5924 5925
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
5945
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
5946
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
5947 5948
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
5949 5950
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
5951 5952 5953
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
5954 5955

    Returns:
S
SunGaofeng 已提交
5956 5957 5958 5959
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
5960 5961 5962

    Examples:
        .. code-block:: python
G
guosheng 已提交
5963

S
SunGaofeng 已提交
5964 5965
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
5966
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5967
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
5968 5969 5970 5971 5972
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5973
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5974 5975 5976 5977 5978 5979 5980
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5981 5982


C
chengduo 已提交
5983 5984
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
5985
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
5986
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
5987 5988
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6013 6014
		And
            pad_value = -1,
C
chengduo 已提交
6015

T
Tink_Y 已提交
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6030 6031

    Args:
S
SunGaofeng 已提交
6032 6033 6034
        x (Variable): Tensor, its shape spicifies the shape of output.
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6035
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6036 6037 6038
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6039 6040

    Returns:
S
SunGaofeng 已提交
6041 6042 6043 6044
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6045 6046 6047 6048 6049 6050

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6051
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6052 6053
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6054 6055 6056 6057 6058
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6059
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6069 6070 6071 6072 6073 6074
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6075 6076
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6077

6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6095
    Parameters:
6096
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6112 6113 6114 6115 6116 6117

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6118
            
6119
            import paddle.fluid as fluid
6120
            import paddle.fluid.layers as layers
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6131
    smooth_label = helper.create_variable_for_type_inference(dtype)
6132 6133 6134 6135 6136 6137 6138
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6139 6140


W
wopeizl 已提交
6141 6142 6143
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6155
    Args:
6156 6157 6158 6159 6160 6161
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6162
    Returns:
6163 6164 6165
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6166
    Examples:
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6185 6186
                input=x,
                rois=rois,
6187 6188
                pooled_height=1,
                pooled_width=1,
6189
                spatial_scale=1.0)
6190 6191 6192 6193 6194
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6212 6213


J
jerrywgz 已提交
6214 6215 6216 6217 6218 6219
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6220 6221
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6222 6223 6224 6225 6226
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6227
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6239 6240

    Returns:
W
wangguanzhong 已提交
6241 6242 6243 6244 6245
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6246 6247 6248
    Examples:
        .. code-block:: python

6249
            import paddle.fluid as fluid
6250 6251 6252 6253
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6254 6255 6256
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6257 6258 6259 6260 6261 6262
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6263
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6278
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6279
    """
S
SunGaofeng 已提交
6280 6281 6282 6283
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6284 6285 6286 6287 6288 6289 6290 6291

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6292 6293 6294 6295 6296 6297
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6298 6299 6300
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6301 6302 6303
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6304 6305

    Returns:
S
SunGaofeng 已提交
6306 6307 6308
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6309

S
SunGaofeng 已提交
6310
    Example:
6311 6312
        .. code-block:: python

S
SunGaofeng 已提交
6313
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6314 6315 6316
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6317
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6318 6319
    """
    label = one_hot(label, depth=input.shape[-1])
6320
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6321 6322 6323 6324 6325 6326
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6327 6328


6329 6330 6331 6332
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6333
                 resample='BILINEAR',
6334 6335
                 actual_shape=None,
                 align_corners=True,
6336 6337
                 align_mode=1,
                 data_format='NCHW'):
6338
    """
R
ruri 已提交
6339
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6340

6341 6342 6343 6344
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
6345

6346
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6347 6348
    future and only use :attr:`out_shape` instead.

6349
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6350

6351
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6352

K
Kaipeng Deng 已提交
6353 6354
        'TRILINEAR' : Trilinear interpolation

6355
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6356

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6367 6368 6369 6370 6371
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
6372
    Align_corners and align_mode are optinal parameters,the calculation method 
6373 6374 6375 6376
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6377
    .. code-block:: text
6378

T
Tink_Y 已提交
6379
        For scale:
6380
          
T
Tink_Y 已提交
6381
            if align_corners = True && out_size > 1 :
6382

T
Tink_Y 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6394

T
Tink_Y 已提交
6395 6396
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6397

T
Tink_Y 已提交
6398 6399
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6400

T
Tink_Y 已提交
6401 6402
          else:
              align_corners = True
6403

T
Tink_Y 已提交
6404 6405
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6406

T
Tink_Y 已提交
6407 6408
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6409

T
Tink_Y 已提交
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6420

T
Tink_Y 已提交
6421 6422 6423 6424
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6425

T
Tink_Y 已提交
6426 6427
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6428

K
Kaipeng Deng 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6451 6452 6453 6454 6455 6456
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6457 6458 6459
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6460 6461


R
ruri 已提交
6462
    Parameters:
6463 6464
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6465
        out_shape(list|tuple|Variable|None): Output shape of image resize
6466 6467 6468 6469
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6470 6471 6472
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6473
             Default: None.
6474 6475
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6476 6477
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6478 6479 6480
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6481
                                :attr:`out_shape` and :attr:`scale` specifying
6482 6483
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6484 6485 6486 6487 6488 6489
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
6490
                                Default: None
6491 6492 6493 6494
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6495
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6496
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6497
                            src_idx = scale*dst_index.
6498 6499 6500 6501 6502
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6503 6504

    Returns:
6505 6506
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6507

6508 6509 6510
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6511 6512 6513 6514
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6515
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6516 6517
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6518
        ValueError: scale should be greater than zero.
6519 6520
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6521
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6522

6523 6524
    Examples:
        .. code-block:: python
R
ruri 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6557

R
ruri 已提交
6558 6559 6560 6561 6562 6563
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6564

R
ruri 已提交
6565 6566 6567 6568 6569 6570 6571 6572
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6573

R
ruri 已提交
6574 6575
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6576

R
ruri 已提交
6577 6578 6579 6580
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6581

R
ruri 已提交
6582
		# [2L, 3L, 12L, 12L]
6583

6584
    """
6585 6586
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6587
        'TRILINEAR': 'trilinear',
6588 6589
        'NEAREST': 'nearest',
    }
6590 6591
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6592 6593
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6594
    resample_type = resample_methods[resample]
6595

K
Kaipeng Deng 已提交
6596 6597 6598 6599 6600
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6601 6602 6603 6604 6605
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6606
    if out_shape is None and scale is None:
6607
        raise ValueError("One of out_shape and scale must not be None.")
6608
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6609
    dtype = helper.input_dtype()
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6620 6621 6622
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6623 6624 6625 6626 6627
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6628
    inputs = {"X": input}
D
dengkaipeng 已提交
6629
    attrs = {
6630 6631 6632
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6633 6634
        "interp_method": resample_type,
        "align_corners": align_corners,
6635 6636
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6637 6638
    }

6639
    if out_shape is not None:
6640
        if isinstance(out_shape, Variable):
6641
            out_shape.stop_gradient = True
6642
            inputs['OutSize'] = out_shape
6643 6644
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6645 6646
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6675 6676 6677 6678
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6679 6680 6681 6682 6683 6684 6685
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6686 6687 6688 6689
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6690 6691 6692 6693 6694 6695 6696 6697 6698
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6699

6700
    else:
6701 6702 6703
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6704
        elif isinstance(scale, float) or isinstance(scale, int):
6705
            if scale <= 0:
6706
                raise ValueError("Attr(scale) should be greater than zero.")
6707
            attrs['scale'] = float(scale)
6708 6709 6710
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6711

6712
    if isinstance(actual_shape, Variable):
6713 6714 6715 6716 6717
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
6718 6719 6720 6721
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6722
    out = helper.create_variable_for_type_inference(dtype)
6723
    helper.append_op(
6724
        type='{}_interp'.format(resample_type),
6725
        inputs=inputs,
6726
        outputs={"Out": out},
D
dengkaipeng 已提交
6727
        attrs=attrs)
6728
    return out
F
stash  
fengjiayi 已提交
6729 6730


6731
@templatedoc(op_type="bilinear_interp")
6732 6733 6734 6735
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6736 6737
                    actual_shape=None,
                    align_corners=True,
6738 6739
                    align_mode=1,
                    data_format='NCHW'):
6740
    """
R
ruri 已提交
6741
    This op resizes the input by performing bilinear interpolation based on given
6742
    output shape which specified by actual_shape, out_shape and scale
6743 6744
    in priority order.

6745 6746 6747
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

6748 6749 6750 6751
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6752 6753
    again in the other direction.

6754
    For details of bilinear interpolation, please refer to Wikipedia:
6755
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6756

T
tink2123 已提交
6757
    Align_corners and align_mode are optinal parameters,the calculation 
6758 6759 6760 6761
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6762
    .. code-block:: text
6763

T
Tink_Y 已提交
6764
        For scale:
6765
          
T
Tink_Y 已提交
6766
            if align_corners = True && out_size > 1 :
6767

T
Tink_Y 已提交
6768 6769 6770 6771
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
6772
              scale_factor = float(in_size/out_size)
6773

T
Tink_Y 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6784

T
Tink_Y 已提交
6785
          else:
T
tink2123 已提交
6786

T
Tink_Y 已提交
6787 6788 6789 6790
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6791

R
ruri 已提交
6792 6793
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
6794
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
6795
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
6796
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
6797 6798
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
6799
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
6800
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
6801
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
6802
             Default: None.
6803 6804 6805
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6806
                                :attr:`out_shape` and :attr:`scale` specifying
6807 6808
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6809 6810 6811 6812 6813 6814
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
6815
                                Default: None
6816 6817
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6818 6819 6820 6821
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
6822
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
6823 6824

    Returns:
R
ruri 已提交
6825 6826
	Variable: 4-D tensor(NCHW or NHWC).
    
6827 6828
    Examples:
        .. code-block:: python
R
ruri 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6861

R
ruri 已提交
6862 6863 6864 6865 6866 6867
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6868

R
ruri 已提交
6869 6870 6871 6872 6873 6874 6875 6876
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6877

R
ruri 已提交
6878 6879
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6880

R
ruri 已提交
6881 6882 6883 6884
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
6885

R
ruri 已提交
6886
		# [2L, 3L, 12L, 12L]
6887

6888 6889
    """

6890
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
6891
                        align_corners, align_mode, data_format)
6892 6893


K
Kaipeng Deng 已提交
6894 6895 6896 6897 6898 6899 6900
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
6901 6902
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
6903
    """
R
ruri 已提交
6904
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
6905 6906 6907
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

6908 6909 6910
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
6939

K
Kaipeng Deng 已提交
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
6958
    Parameters:
6959 6960
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
6961
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
6962
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
6963 6964 6965
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
6966
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
6967 6968 6969 6970 6971 6972
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6973 6974 6975 6976 6977 6978
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
6979 6980 6981
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6982 6983 6984 6985
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
6986 6987

    Returns:
R
ruri 已提交
6988
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
6989 6990 6991

    Examples:
        .. code-block:: python
R
ruri 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7024

R
ruri 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7043

R
ruri 已提交
7044 7045 7046 7047
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7048

R
ruri 已提交
7049
		# [2L, 3L, 12L, 12L, 12L]
7050 7051 7052



K
Kaipeng Deng 已提交
7053 7054 7055
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7056
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7057 7058


7059
@templatedoc(op_type="nearest_interp")
7060 7061 7062 7063
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7064
                   actual_shape=None,
7065 7066
                   align_corners=True,
                   data_format='NCHW'):
7067
    """
R
ruri 已提交
7068
    This op resizes the input by performing nearest neighbor interpolation in both the
7069 7070
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7071

7072 7073 7074
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7075 7076
    Example:

T
Tink_Y 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7089
          
T
Tink_Y 已提交
7090 7091
          if:
              align_corners = False
7092

T
Tink_Y 已提交
7093 7094
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7095

T
Tink_Y 已提交
7096 7097
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7098

T
Tink_Y 已提交
7099 7100
          else:
              align_corners = True
7101

T
Tink_Y 已提交
7102 7103
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7104

T
Tink_Y 已提交
7105 7106
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7107 7108


7109
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7110
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7111

R
ruri 已提交
7112
    Parameters:
7113 7114
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7115
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7116
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7117
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7118
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7119 7120 7121
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7122 7123
                                dynamically. If provided, image resize
                                according to this given shape rather than
7124
                                :attr:`out_shape` and :attr:`scale` specifying
7125 7126
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7127 7128 7129 7130 7131 7132
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
7133
                                Default: None
7134
        align_corners(bool): ${align_corners_comment}
7135 7136 7137 7138
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7139 7140

    Returns:
R
ruri 已提交
7141
	Variable: 4-D tensor(NCHW or NHWC).
7142 7143 7144

    Examples:
        .. code-block:: python
R
ruri 已提交
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7177

R
ruri 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7193

R
ruri 已提交
7194 7195
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7196

R
ruri 已提交
7197 7198 7199 7200 7201 7202
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7203 7204 7205



7206 7207
    """

7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7218 7219 7220 7221


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7222
    This op resizes a batch of images. The short edge of input images will be
7223 7224
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7225 7226
    constant.

R
ruri 已提交
7227 7228
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7229
        out_short_len(int): The length of output images' short edge.
7230
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7231

7232
    Returns:
R
ruri 已提交
7233
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7234 7235 7236 7237

    Examples:
        .. code-block:: python

7238
            import paddle.fluid as fluid
R
ruri 已提交
7239
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7240
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7251 7252 7253
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7254 7255 7256
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7257
def gather(input, index, overwrite=True):
W
whs 已提交
7258
    """
Q
qiaolongfei 已提交
7259 7260
    **Gather Layer**

7261
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7262 7263 7264 7265
    of X indexed by `index` and concatenate them together.

    .. math::

7266
        Out = X[Index]
W
whs 已提交
7267 7268 7269 7270 7271 7272 7273


    .. code-block:: text


                Given:

7274 7275
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7286 7287 7288 7289 7290
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7291 7292 7293 7294 7295
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7296 7297 7298 7299 7300

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7301

W
whs 已提交
7302 7303
        .. code-block:: python

7304
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7305 7306
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7307 7308 7309 7310
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7311
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7312 7313 7314 7315
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7316 7317
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7318 7319 7320
    return out


7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7373 7374 7375
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7376
        name (str|None): A name for this layer(optional). If set None, the
7377
                         layer will be named automatically.
7378 7379 7380 7381 7382 7383 7384 7385 7386

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7387 7388
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7407
def scatter(input, index, updates, name=None, overwrite=True):
7408 7409 7410
    """
    **Scatter Layer**

7411
    Output is obtained by updating the input on selected indices based on updates.
7412

7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7437 7438

    Args:
7439 7440 7441 7442 7443
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 shoule be the same as input.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7444 7445
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7446
	    Default value is True.
7447 7448

    Returns:
7449
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7450 7451 7452 7453 7454

    Examples:

        .. code-block:: python

7455
            import numpy as np
7456 7457
            import paddle.fluid as fluid

7458 7459 7460
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7461

7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7476 7477 7478
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7479
    out = helper.create_variable_for_type_inference(dtype)
7480 7481 7482 7483 7484
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7485
        attrs={'overwrite': overwrite},
7486 7487 7488 7489
        outputs={"Out": out})
    return out


7490 7491 7492 7493 7494
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7495 7496 7497
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7498 7499 7500 7501
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7502

7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
7534
        ref (Variable): The ref input. Its dtype should be int32, int64, float32, float64.
7535 7536
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7537 7538 7539
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7540 7541

    Returns:
7542
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7543 7544 7545 7546 7547 7548 7549

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7550 7551 7552
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7553 7554 7555 7556 7557 7558 7559

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7560
    dtype = helper.input_dtype(input_param_name='ref')
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
7591
        updates (Variable): The updated value of scatter_nd op. Its dtype should be int32, int64, float32, float64.
7592 7593
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7594
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7605 7606
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7607 7608 7609 7610 7611 7612 7613
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7627

7628
    Examples:
Q
qingqing01 已提交
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7642
    """
F
stash  
fengjiayi 已提交
7643
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7644
    dtype = x.dtype
X
Xin Pan 已提交
7645
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7646
    if seed is None:
7647
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7648
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7649
    if isinstance(seed, int):
F
fengjiayi 已提交
7650 7651 7652 7653 7654
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7655 7656 7657 7658
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7659
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7660 7661
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7662 7663
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7664
    return out
W
whs 已提交
7665 7666


7667
def log(x, name=None):
W
wanghaoshuang 已提交
7668 7669 7670 7671 7672
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7673
        Out = \\ln(x)
W
wanghaoshuang 已提交
7674 7675

    Args:
W
Wilber 已提交
7676 7677 7678
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7679 7680

    Returns:
W
Wilber 已提交
7681
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7682 7683 7684 7685 7686

    Examples:

        .. code-block:: python

7687
            import paddle.fluid as fluid
W
Wilber 已提交
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7701 7702
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7703
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7705
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7706 7707 7708
    return out


Z
zhupengyang 已提交
7709
@templatedoc()
7710
def relu(x, name=None):
W
wanghaoshuang 已提交
7711
    """
Z
zhupengyang 已提交
7712
    ${comment}
W
wanghaoshuang 已提交
7713 7714

    Args:
Z
zhupengyang 已提交
7715 7716 7717 7718
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
7719 7720

    Returns:
Z
zhupengyang 已提交
7721
        Variable: ${out_comment}
W
wanghaoshuang 已提交
7722 7723 7724 7725 7726

    Examples:

        .. code-block:: python

7727
            import paddle.fluid as fluid
Z
zhupengyang 已提交
7728 7729 7730 7731 7732 7733 7734 7735 7736
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
W
wanghaoshuang 已提交
7737
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7738
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7739
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7740 7741
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7742
    return out
7743 7744


C
chengduo 已提交
7745 7746
def selu(x, scale=None, alpha=None, name=None):
    """
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
7761 7762

    Args:
7763 7764
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
7765 7766 7767
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7768
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
7769 7770 7771
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7772 7773
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
7774 7775

    Returns:
7776
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
7777 7778 7779 7780

    Examples:

        .. code-block:: python
7781 7782
             
            import paddle.fluid as fluid
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7810 7811 7812
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7813 7814 7815 7816
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7817
    .. math::
7818

H
haowang101779990 已提交
7819
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7820

7821
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7822 7823 7824
    is then calculated from it.


L
Liufang Sang 已提交
7825 7826
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
7827
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7828
                           Its shape should be the same as input.
L
Liufang Sang 已提交
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
7841 7842 7843
    Examples:

        .. code-block:: python
7844

B
Bai Yifan 已提交
7845
            import paddle.fluid as fluid
L
Liufang Sang 已提交
7846
            iou_shape = [None, 32, 32]
7847
            num_classes = 5
L
Liufang Sang 已提交
7848 7849 7850
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
7851
                                                          num_classes)
W
whs 已提交
7852 7853 7854
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7855 7856 7857
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7858 7859
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7860 7861
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7862
        outputs={
W
whs 已提交
7863 7864 7865
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7866 7867 7868
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7869 7870 7871 7872 7873 7874


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
7875 7876
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
7877

7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
7906 7907 7908 7909 7910 7911
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
7912
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
7913
            iteration. If it is a list/tuple of integers, it's length must be the same
7914
            as the rank of `x`
S
SunGaofeng 已提交
7915 7916 7917
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
7918
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
7919 7920 7921 7922 7923
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
7924 7925

    Returns:
S
SunGaofeng 已提交
7926 7927 7928 7929
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
7930 7931 7932 7933 7934 7935 7936 7937

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
7938
            import paddle.fluid as fluid
S
SunGaofeng 已提交
7939 7940
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
7941 7942 7943
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
7944 7945
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
7946 7947 7948 7949 7950

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7951
            isinstance(shape, Variable)):
7952 7953 7954 7955 7956
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7957
    out = helper.create_variable_for_type_inference(x.dtype)
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7975 7976


7977 7978 7979 7980 7981 7982
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

7983 7984
        * Case 1 (input is a 2-D Tensor):
            Input:
7985
                X.shape = [3, 5]
7986 7987 7988 7989 7990 7991 7992
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
7993 7994 7995
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8006
                shape = [2, 2, -1]
8007 8008
                offsets = [0, 0, 1]
            Output:
8009 8010 8011 8012 8013
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8014 8015

    Parameters:
8016
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8017 8018 8019 8020
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Variable, it shoule be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8021 8022
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8023 8024 8025 8026 8027 8028 8029 8030
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Variable, it shoule be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8031 8032

    Returns:
8033
        Variable: The cropped Tensor has same data type with `x`.
8034 8035

    Raises:
8036 8037 8038 8039 8040 8041
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8042 8043 8044 8045 8046 8047

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8048
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8049 8050
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8051 8052
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8053 8054 8055 8056
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8057
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8058 8059
            # crop1.shape = [-1, 2, 3]

8060 8061 8062 8063 8064
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8065

8066 8067
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8068 8069 8070
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8071 8072
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8073 8074 8075 8076 8077
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8078 8079 8080 8081 8082 8083
    check_type_and_dtype(x, 'x', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8084 8085 8086 8087 8088 8089 8090 8091

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8092
    def _contain_var(input_list):
8093 8094 8095 8096 8097
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8122 8123 8124
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8125 8126
        attrs['offsets'] = [-1] * len(x.shape)
    elif _contain_var(offsets):
8127
        new_offsets_tensor = []
8128
        offsets_attr = []
8129 8130 8131 8132
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8133
                offsets_attr.append(-1)
8134
            else:
8135
                _attr_offsets_check(dim)
8136 8137 8138
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8139
                offsets_attr.append(dim)
8140
        ipts['OffsetsTensor'] = new_offsets_tensor
8141
        attrs['offsets'] = offsets_attr
8142
    else:
8143 8144
        for offset in offsets:
            _attr_offsets_check(offset)
8145 8146 8147 8148 8149
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
8150
    elif _contain_var(shape):
8151 8152
        new_shape_tensor = []
        shape_attr = []
8153
        for dim_size in shape:
8154 8155 8156
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8157
                shape_attr.append(0)
8158
            else:
8159
                _attr_shape_check(dim_size)
8160 8161 8162 8163 8164 8165 8166 8167
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8168 8169
        for dim_size in shape:
            _attr_shape_check(dim_size)
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8180 8181 8182 8183 8184 8185 8186 8187
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8188 8189 8190 8191 8192 8193
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8194 8195

    Returns:
8196
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8197 8198 8199 8200 8201 8202 8203

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8204

S
SunGaofeng 已提交
8205
            import paddle.fluid as fluid
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8220 8221 8222 8223
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8224
            isinstance(out_shape, Variable)):
W
whs 已提交
8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

    Returns: a 4-D Tensor padded accordding to paddings and mode and data type is same as input.

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8281
        .. code-block:: text
W
whs 已提交
8282

T
Tink_Y 已提交
8283
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8284

T
Tink_Y 已提交
8285 8286
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8287

T
Tink_Y 已提交
8288
	      Case 0:
M
minqiyang 已提交
8289

T
Tink_Y 已提交
8290 8291 8292
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8293

T
Tink_Y 已提交
8294 8295 8296
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8297

T
Tink_Y 已提交
8298
	      Case 1:
M
minqiyang 已提交
8299

T
Tink_Y 已提交
8300 8301
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8302

T
Tink_Y 已提交
8303 8304 8305
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8306

T
Tink_Y 已提交
8307
	      Case 2:
M
minqiyang 已提交
8308

T
Tink_Y 已提交
8309 8310
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8311

T
Tink_Y 已提交
8312 8313 8314
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8315

L
Liufang Sang 已提交
8316
    Code Examples:
W
whs 已提交
8317 8318
        .. code-block:: python

B
Bai Yifan 已提交
8319
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8320
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8321 8322 8323
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8324 8325 8326
    """

    helper = LayerHelper('pad2d', **locals())
8327 8328 8329 8330

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8331
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8332
    out = helper.create_variable_for_type_inference(dtype)
8333 8334 8335 8336 8337 8338 8339 8340 8341
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8342
    helper.append_op(
8343
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8344 8345 8346 8347

    return out


8348 8349 8350 8351 8352 8353 8354
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8355 8356
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8357
    Returns:
8358
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8359 8360 8361 8362 8363

    Examples:

        .. code-block:: python

8364
            import paddle.fluid as fluid
8365 8366 8367 8368 8369 8370 8371 8372 8373
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8374 8375
    """
    helper = LayerHelper('elu', **locals())
8376 8377
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'elu')
X
Xin Pan 已提交
8378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8391

8392 8393
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8394 8395 8396 8397
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8398 8399 8400

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8401 8402 8403 8404 8405

    Examples:

        .. code-block:: python

8406
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8407 8408 8409 8410 8411 8412 8413 8414
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8415 8416
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8417
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8429 8430 8431 8432
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8433
    Args:
8434 8435 8436
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8437 8438

    Returns:
8439
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8440 8441 8442 8443 8444

    Examples:

        .. code-block:: python

8445
            import paddle.fluid as fluid
8446

8447
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8448 8449 8450

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8451
            # y_1 is x^{2.0}
8452 8453 8454 8455

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8456
            # y_2 is x^{3.0}
8457 8458
    """
    helper = LayerHelper('pow', **locals())
8459 8460 8461 8462 8463 8464 8465 8466
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8467
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8468
    helper.append_op(
8469
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8470 8471 8472 8473
    return out


@templatedoc()
8474
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8485
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8486 8487 8488 8489 8490

    Examples:

        .. code-block:: python

8491
            import paddle.fluid as fluid
8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8507 8508
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8509
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8523 8524 8525 8526 8527 8528 8529
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8530 8531

    Returns:
8532
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8533 8534 8535 8536 8537

    Examples:

        .. code-block:: python

8538
            import paddle.fluid as fluid
8539 8540
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8541 8542
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8543
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8556 8557 8558 8559 8560 8561 8562
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8563
    Args:
8564 8565 8566 8567 8568
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8569 8570

    Returns:
8571 8572

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8573 8574 8575 8576

    Examples:

        .. code-block:: python
8577 8578 8579 8580 8581 8582
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8583
            y = fluid.layers.swish(x, beta=2.0)
8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8621 8622
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8623
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8624 8625 8626 8627 8628 8629 8630 8631
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8632 8633 8634 8635
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8636 8637
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8638

J
jerrywgz 已提交
8639 8640 8641 8642 8643 8644 8645 8646
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8647
    Args:
W
wangguanzhong 已提交
8648 8649
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8650
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8651 8652 8653 8654 8655
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8656 8657

    Returns:
W
wangguanzhong 已提交
8658 8659 8660 8661
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8662 8663 8664 8665 8666

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8667 8668
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8669
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8670
            mode = 'channel'
J
jerrywgz 已提交
8671 8672 8673
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8674 8675 8676 8677 8678 8679 8680 8681
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8682
        alpha_shape = x.shape[1:]
J
jerrywgz 已提交
8683 8684
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8685
        attr=helper.param_attr,
J
jerrywgz 已提交
8686 8687 8688
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8689
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8690
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8691 8692 8693 8694 8695 8696 8697 8698 8699
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8700 8701 8702 8703 8704 8705 8706 8707
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8708 8709
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8710
    Returns:
8711
        ${out_type}: ${out_comment}
8712 8713 8714

    Examples:

8715
    .. code-block:: python
8716

8717
            import paddle.fluid as fluid
8718 8719 8720 8721 8722 8723 8724 8725 8726
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
8727 8728
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8729
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
8746 8747
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

8748
    Returns:
8749
        output(${out_type}): ${out_comment}
8750 8751 8752 8753 8754

    Examples:

        .. code-block:: python

8755
            import paddle.fluid as fluid
W
Wilber 已提交
8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
8769 8770
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8771
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
8782 8783 8784 8785
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

8786
    Args:
8787 8788 8789 8790
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

8791
    Returns:
8792
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
8793 8794 8795

    Examples:

8796 8797 8798
        .. code-block:: python 
 
            import paddle.fluid as fluid
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
8811 8812
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8813
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8814 8815 8816 8817 8818 8819 8820 8821
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8822 8823
def flatten(x, axis=1, name=None):
    """
8824 8825 8826
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
8827

H
haowang101779990 已提交
8828
    For Example:
M
minqiyang 已提交
8829

H
haowang101779990 已提交
8830
    .. code-block:: text
8831

H
haowang101779990 已提交
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8853 8854

    Args:
8855 8856
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
8857 8858
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8859
                    The value for axis must be in the range [0, R], where R
8860 8861 8862
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
8863 8864

    Returns:
H
haowang101779990 已提交
8865 8866 8867
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8868
                  inner dimension of the output. A Tensor with type same as input x.
8869 8870 8871

    Raises:
        ValueError: If x is not a variable.
8872
        ValueError: If axis is not in range [0, rank(x)].
8873 8874 8875 8876 8877

    Examples:

        .. code-block:: python

8878
            import paddle.fluid as fluid
B
Bai Yifan 已提交
8879
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
8880
            # x shape is [4, 4, 3]
8881
            out = fluid.layers.flatten(x=x, axis=2)
8882
            # out shape is [16, 3]
8883 8884 8885 8886 8887 8888 8889 8890 8891
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8892 8893
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8894
    helper.append_op(
8895
        type='flatten2',
8896
        inputs={"X": x},
8897 8898
        outputs={'Out': out,
                 'XShape': x_shape},
8899 8900
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8901 8902 8903


def stack(x, axis=0):
S
sneaxiy 已提交
8904
    """
8905

8906
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
8907

C
chengduozh 已提交
8908 8909 8910
    .. code-block:: text

        Case 1:
8911

C
chengduozh 已提交
8912
          Input:
8913
            x[0].shape = [1, 2]
C
chengduozh 已提交
8914
            x[0].data = [ [1.0 , 2.0 ] ]
8915
            x[1].shape = [1, 2]
C
chengduozh 已提交
8916
            x[1].data = [ [3.0 , 4.0 ] ]
8917
            x[2].shape = [1, 2]
C
chengduozh 已提交
8918 8919 8920 8921 8922 8923
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
8924
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
8925 8926 8927
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
8928

C
chengduozh 已提交
8929 8930

        Case 2:
8931 8932 8933 8934


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
8935
            x[0].data = [ [1.0 , 2.0 ] ]
8936
            x[1].shape = [1, 2]
C
chengduozh 已提交
8937
            x[1].data = [ [3.0 , 4.0 ] ]
8938
            x[2].shape = [1, 2]
C
chengduozh 已提交
8939
            x[2].data = [ [5.0 , 6.0 ] ]
8940

C
chengduozh 已提交
8941 8942 8943 8944 8945

          Attrs:
            axis = 1 or axis = -2

          Output:
8946
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
8947 8948 8949
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
8950

C
chengduozh 已提交
8951

S
sneaxiy 已提交
8952
    Args:
8953 8954 8955 8956 8957 8958 8959 8960 8961
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
8962

S
sneaxiy 已提交
8963
    Returns:
8964
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
8965

8966 8967 8968
    Examples:
        .. code-block:: python

8969
            import paddle.fluid as fluid
8970
            import paddle.fluid.layers as layers
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
8981

S
sneaxiy 已提交
8982 8983
    """

X
Xin Pan 已提交
8984 8985 8986 8987 8988 8989
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8990
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8991
    helper.append_op(
S
sneaxiy 已提交
8992 8993
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8994

X
Xin Pan 已提交
8995
    return out
D
dzhwinter 已提交
8996 8997


J
Jiawei Wang 已提交
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9068 9069 9070 9071
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9072
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9073

D
dzhwinter 已提交
9074 9075 9076
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9077
    raised.
D
dzhwinter 已提交
9078 9079

    Args:
9080
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9081 9082
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9083

D
dzhwinter 已提交
9084
    Returns:
9085 9086 9087 9088
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9089

9090 9091 9092 9093
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9094 9095
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9096

9097
    """
D
dzhwinter 已提交
9098 9099 9100 9101 9102 9103 9104 9105
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9106
    for _ in range(num):
X
Xin Pan 已提交
9107
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9108 9109 9110 9111 9112 9113 9114 9115

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9116 9117 9118


def expand(x, expand_times, name=None):
9119 9120 9121 9122
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9123 9124 9125 9126 9127 9128
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9129

W
whs 已提交
9130 9131 9132 9133
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9134

W
whs 已提交
9135
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9136

W
whs 已提交
9137
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9138

W
whs 已提交
9139 9140 9141 9142
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9143

W
whs 已提交
9144
    Args:
9145 9146 9147 9148 9149
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9150 9151

    Returns:
9152
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9153

9154 9155 9156
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9157 9158 9159

    Examples:
        .. code-block:: python
L
liym27 已提交
9160

W
wangchaochaohu 已提交
9161
            import paddle.fluid as fluid
L
liym27 已提交
9162 9163 9164 9165

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9166
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9167 9168 9169 9170 9171

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9172
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9173
    """
9174 9175 9176 9177
    check_type_and_dtype(x, 'x', Variable,
                         ['bool', 'float32', 'float64', 'int32', 'int64'],
                         'expand')
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9178 9179 9180
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9181

W
whs 已提交
9182
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9215 9216 9217 9218 9219

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
9220 9221 9222 9223 9224 9225 9226 9227
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
9228

L
liym27 已提交
9229 9230
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9231
    helper.append_op(
9232
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9233
    return out
S
sneaxiy 已提交
9234 9235


9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9306 9307 9308
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9309
@templatedoc()
G
fix  
gongweibao 已提交
9310 9311 9312 9313 9314 9315 9316 9317 9318
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9319 9320 9321 9322 9323 9324
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9325

9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9352
    Args:
9353 9354 9355 9356 9357 9358 9359 9360
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9361
    Returns:
9362
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9363

9364 9365 9366
    Examples:
        .. code-block:: python

9367
            import paddle.fluid as fluid
9368 9369 9370 9371
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9372

9373 9374 9375 9376
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9377 9378 9379
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9380
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9397 9398


G
gongweibao 已提交
9399
@templatedoc()
X
Xin Pan 已提交
9400
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9401
    """
9402
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9403 9404

    Args:
9405 9406 9407 9408 9409 9410 9411 9412 9413
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9414 9415

    Returns:
9416
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9417

9418
    Examples:
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9434

9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9453 9454 9455
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9456
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9467
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9468 9469 9470 9471 9472
        })

    return out


G
gongweibao 已提交
9473
@templatedoc()
G
fix  
gongweibao 已提交
9474
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9475
    """
R
ruri 已提交
9476
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9477

R
ruri 已提交
9478 9479 9480 9481 9482
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9483
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9484 9485

    Returns:
R
ruri 已提交
9486
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9487

9488 9489 9490
    Examples:
        .. code-block:: python

9491
            import paddle.fluid as fluid
R
ruri 已提交
9492
            x = fluid.data(
9493 9494
                name="X",
                shape=[13, 11],
R
ruri 已提交
9495
                dtype='float32')
9496

Y
Yibing Liu 已提交
9497
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9498 9499 9500
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9501
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9513
@templatedoc()
G
fix  
gongweibao 已提交
9514 9515 9516 9517 9518 9519 9520 9521 9522
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9523
    ${comment}
G
fix  
gongweibao 已提交
9524 9525

    Args:
G
gongweibao 已提交
9526 9527
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9528 9529 9530 9531 9532 9533
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9534 9535

    Returns:
G
gongweibao 已提交
9536
        out (Variable): ${out_comment}
9537 9538 9539 9540

    Examples:
        .. code-block:: python

9541
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9542
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9543

Y
Yibing Liu 已提交
9544
            out = fluid.layers.gaussian_random_batch_size_like(
9545
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9546 9547 9548
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9549
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9568
@templatedoc()
X
Xin Pan 已提交
9569
def sum(x):
G
fix  
gongweibao 已提交
9570
    """
G
gongweibao 已提交
9571
    ${comment}
9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9602 9603

    Args:
9604
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9605 9606

    Returns:
9607
        Variable: ${out_comment}
9608 9609 9610 9611

    Examples:
        .. code-block:: python

9612
            import paddle.fluid as fluid
9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9635 9636 9637
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9638 9639
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9640 9641 9642 9643
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9644
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9645 9646 9647 9648

    return out


G
gongweibao 已提交
9649
@templatedoc()
G
fix  
gongweibao 已提交
9650 9651
def slice(input, axes, starts, ends):
    """
9652
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9653
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9654 9655 9656 9657 9658 9659 9660
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9661
    For slicing to the end of a dimension with unknown size, it is recommended
9662
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9663 9664 9665
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9666

9667 9668 9669 9670 9671 9672 9673 9674
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9675

9676 9677 9678 9679 9680
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9681
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9682
            Then:
9683
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9684
    Args:
9685 9686 9687 9688 9689 9690 9691 9692 9693
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
9694 9695

    Returns:
9696 9697 9698 9699 9700
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
9701

9702 9703 9704
    Examples:
        .. code-block:: python

9705
            import paddle.fluid as fluid
9706

9707 9708
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
9709

9710 9711 9712 9713 9714 9715
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
9716
            # sliced_1 is input[0:3, 0:2, 2:4].
9717 9718 9719 9720 9721

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
9722
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
9723 9724
    """

9725 9726 9727 9728 9729 9730 9731
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
9732
    helper = LayerHelper('slice', **locals())
9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
9803 9804
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9805
    helper.append_op(
9806
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
9807 9808 9809 9810

    return out


W
wangchaochaohu 已提交
9811 9812 9813
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
9827 9828 9829 9830 9831 9832 9833 9834 9835

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
9836
                strides = [1, 1]
W
wangchaochaohu 已提交
9837
            Then:
9838
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
9839 9840 9841 9842 9843
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
9844
                starts = [0, 1]
W
wangchaochaohu 已提交
9845 9846 9847 9848 9849 9850 9851 9852 9853 9854
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [-1, 1000]
9855 9856
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
9857
            Then:
9858 9859
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
9872 9873

    Returns:
W
wangchaochaohu 已提交
9874 9875 9876 9877 9878 9879
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
9880

W
wangchaochaohu 已提交
9881 9882 9883 9884 9885
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
9886
            input = fluid.data(
W
wangchaochaohu 已提交
9887 9888
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9889 9890 9891 9892 9893
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
9894 9895 9896 9897 9898
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

9899 9900 9901 9902

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
9903 9904
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
9905
    """
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
9916 9917
    helper = LayerHelper('strided_slice', **locals())

9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
9944 9945 9946
            'axes': axes,
            'starts': starts,
            'ends': ends,
9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if not contain_var(strides):
                attrs['strides'] = strides
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10005 10006 10007 10008

    return out


G
fix  
gongweibao 已提交
10009 10010
def shape(input):
    """
C
chengduozh 已提交
10011 10012
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10013
    Get the shape of the input.
G
fix  
gongweibao 已提交
10014 10015

    Args:
10016
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10017 10018

    Returns:
10019
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10020

10021 10022 10023
    Examples:
        .. code-block:: python

10024
            import paddle.fluid as fluid
10025
            import numpy as np
10026

10027 10028 10029 10030 10031 10032 10033 10034 10035 10036
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10037 10038 10039
    """

    helper = LayerHelper('shape', **locals())
10040
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10041
    helper.append_op(
G
fix  
gongweibao 已提交
10042
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10043 10044

    return out
G
merge  
gongweibao 已提交
10045 10046


Z
zhoukunsheng 已提交
10047 10048
def rank(input):
    """
10049
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10050 10051

    Args:
10052
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10053 10054

    Returns:
10055
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10056 10057 10058 10059

    Examples:
        .. code-block:: python

10060 10061
            import paddle.fluid as fluid

10062 10063
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10064 10065 10066 10067 10068 10069 10070 10071
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10101 10102 10103 10104
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10105
    if in_dygraph_mode():
X
Xin Pan 已提交
10106 10107 10108
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10109 10110
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10111 10112 10113 10114 10115 10116
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
    check_type_and_dtype(y, 'y', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
10117

S
sneaxiy 已提交
10118 10119
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10120 10121
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10122
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10123 10124 10125
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10126

S
sneaxiy 已提交
10127 10128 10129 10130 10131 10132 10133 10134 10135 10136
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10137
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10138
    """
10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10152 10153

    Args:
10154 10155 10156 10157 10158 10159
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale(float): The scale factor of the input.
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10160 10161

    Returns:
10162
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10163 10164 10165 10166 10167

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10168 10169 10170 10171 10172 10173 10174 10175 10176
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10177

10178 10179
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
S
sneaxiy 已提交
10180 10181 10182
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10183
    if name is None:
X
Xin Pan 已提交
10184
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10185 10186 10187
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10188 10189 10190 10191 10192 10193 10194 10195 10196 10197

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10198
    return helper.append_activation(out)
S
sneaxiy 已提交
10199 10200


X
Xin Pan 已提交
10201
def elementwise_add(x, y, axis=-1, act=None, name=None):
10202 10203 10204 10205 10206 10207 10208 10209 10210 10211
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10212 10213
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10214 10215
            }

10216 10217
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238
        z = fluid.layers.elementwise_add(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3., 8., 6.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10239 10240
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262
        z = fluid.layers.elementwise_add(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10263 10264
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10265 10266 10267 10268 10269 10270 10271 10272 10273 10274
        z = fluid.layers.elementwise_add(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
10275 10276 10277
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10278
def elementwise_div(x, y, axis=-1, act=None, name=None):
10279 10280 10281 10282 10283 10284 10285 10286 10287 10288
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10289 10290
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10291 10292
            }

10293 10294
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315
        z = fluid.layers.elementwise_div(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 0.6, 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10316 10317
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339
        z = fluid.layers.elementwise_div(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10340 10341
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10342 10343 10344 10345 10346 10347 10348 10349 10350 10351
        z = fluid.layers.elementwise_div(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
10352 10353 10354
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10355
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10356 10357 10358 10359 10360 10361 10362 10363 10364 10365
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10366 10367
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10368 10369
            }

10370 10371
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392
        z = fluid.layers.elementwise_sub(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1., -2., 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10393 10394
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416
        z = fluid.layers.elementwise_sub(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10417 10418
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10419 10420 10421 10422 10423 10424 10425 10426 10427 10428
        z = fluid.layers.elementwise_sub(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
S
sneaxiy 已提交
10429 10430 10431
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10432
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10433 10434 10435 10436 10437 10438 10439 10440 10441 10442
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10443 10444
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10445 10446
            }

10447 10448
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469
        z = fluid.layers.elementwise_mul(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 15., 8.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10470 10471
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493
        z = fluid.layers.elementwise_mul(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10494 10495
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10496 10497 10498 10499 10500 10501 10502 10503 10504 10505
        z = fluid.layers.elementwise_mul(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
S
sneaxiy 已提交
10506 10507 10508
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10509
def elementwise_max(x, y, axis=-1, act=None, name=None):
10510 10511 10512 10513 10514 10515 10516 10517 10518 10519
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10520 10521
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10522 10523
            }

10524 10525
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10547 10548
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
S
sneaxiy 已提交
10560 10561 10562
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10563
def elementwise_min(x, y, axis=-1, act=None, name=None):
10564 10565 10566 10567 10568 10569 10570 10571 10572 10573
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10574 10575
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10576 10577
            }

10578 10579
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10600 10601
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """

S
sneaxiy 已提交
10613 10614 10615
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10616
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10617 10618 10619 10620 10621 10622 10623 10624 10625 10626
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10627 10628
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10629 10630
            }

10631 10632
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10633 10634 10635 10636 10637 10638 10639 10640 10641 10642
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """

S
sneaxiy 已提交
10643 10644 10645
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10646
def elementwise_mod(x, y, axis=-1, act=None, name=None):
10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
10672 10673 10674 10675
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
10701 10702 10703
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10704
for func in [
10705 10706 10707 10708
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
10709 10710
        elementwise_max,
        elementwise_pow,
10711
        elementwise_min,
10712 10713
        elementwise_mod,
        elementwise_floordiv,
10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

10731
for func in []:
S
sneaxiy 已提交
10732 10733 10734 10735
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10736 10737
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10738
        ])
10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10776 10777


10778
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10779 10780
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10781 10782
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10783 10784 10785

    if out is None:
        if name is None:
X
Xin Pan 已提交
10786
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10802
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10803
    """
W
Wilber 已提交
10804 10805 10806 10807 10808 10809 10810 10811
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
10812 10813 10814 10815

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
10816 10817
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
10818 10819

    Returns:
W
Wilber 已提交
10820
        ${out_type}: ${out_comment}
10821 10822 10823 10824

    Examples:
        .. code-block:: python

10825
            import paddle.fluid as fluid
W
Wilber 已提交
10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
10844 10845 10846 10847 10848 10849 10850
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10851
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10852
    """
W
Wilber 已提交
10853 10854 10855 10856 10857 10858 10859 10860
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
10861 10862 10863 10864

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
10865 10866
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
10867 10868

    Returns:
W
Wilber 已提交
10869
        ${out_type}: ${out_comment}
10870 10871 10872 10873

    Examples:
        .. code-block:: python

10874
            import paddle.fluid as fluid
W
Wilber 已提交
10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
10893 10894 10895 10896 10897 10898 10899
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10900
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10901
    """
W
Wilber 已提交
10902 10903 10904 10905 10906 10907 10908 10909
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
10910 10911 10912 10913

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
10914 10915
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
10916 10917

    Returns:
W
Wilber 已提交
10918
        ${out_type}: ${out_comment}
10919 10920 10921 10922

    Examples:
        .. code-block:: python

10923
            import paddle.fluid as fluid
W
Wilber 已提交
10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
10942 10943 10944 10945 10946 10947 10948
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10949
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10950
    """
W
Wilber 已提交
10951 10952 10953 10954 10955 10956 10957 10958
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
10959 10960 10961

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
10962 10963
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
10964 10965

    Returns:
W
Wilber 已提交
10966
        ${out_type}: ${out_comment}
10967 10968 10969 10970

    Examples:
        .. code-block:: python

10971
            import paddle.fluid as fluid
W
Wilber 已提交
10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
            # The comment lists another availble method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
10988 10989 10990 10991
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10992 10993 10994 10995 10996 10997 10998 10999 11000


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11001 11002 11003 11004 11005
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11006 11007

    Returns:
S
SunGaofeng 已提交
11008 11009 11010 11011
        ${out_comment}

    Return Type:
        ${out_type}
11012 11013 11014 11015

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11016
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11017
            input = fluid.data(
11018 11019
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11020 11021 11022 11023 11024
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11025 11026
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11027 11028 11029

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11049 11050 11051
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11052 11053

    Returns:
W
wangguanzhong 已提交
11054 11055
        Variable:

11056
        out(${out_type}): ${out_comment}
11057

W
wangguanzhong 已提交
11058

11059 11060 11061
    Examples:
        .. code-block:: python

11062
            import paddle.fluid as fluid
11063 11064
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11065
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11066 11067 11068 11069 11070
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11071 11072
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11073 11074 11075

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11076 11077 11078 11079 11080 11081 11082 11083

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11097 11098 11099 11100

    Examples:
        .. code-block:: python

11101
            import paddle.fluid as fluid
11102 11103 11104
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11105 11106 11107
    """

    helper = LayerHelper("mean", **locals())
11108 11109
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mean')
X
Xin Pan 已提交
11110
    if name is None:
X
Xin Pan 已提交
11111
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11112 11113 11114 11115 11116 11117 11118 11119 11120 11121
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11133 11134 11135 11136

    Examples:
        .. code-block:: python

11137
            import paddle.fluid as fluid
11138 11139 11140 11141 11142
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11155 11156
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11157 11158 11159 11160 11161 11162 11163 11164
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11165 11166

    Args:
L
liu zhengxi 已提交
11167 11168 11169 11170 11171
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11172 11173

    Returns:
L
liu zhengxi 已提交
11174
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11175 11176

    Examples:
L
liu zhengxi 已提交
11177
        ..  code-block:: python
11178 11179 11180 11181 11182 11183 11184 11185 11186
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11187 11188 11189
    """

    helper = LayerHelper("mul", **locals())
11190 11191 11192 11193
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mul')
    check_type_and_dtype(y, 'y', Variable, ['float16', 'float32', 'float64'],
                         'mul')
X
Xin Pan 已提交
11194
    if name is None:
X
Xin Pan 已提交
11195
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11196 11197 11198 11199 11200 11201 11202 11203 11204
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11205 11206
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11207 11208 11209 11210 11211 11212
        },
        outputs={"Out": out})
    return out


@templatedoc()
11213
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11214 11215 11216 11217 11218
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11219 11220
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11221 11222 11223
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11224 11225

    Returns:
11226
        Variable: ${out_comment}
J
jerrywgz 已提交
11227

11228 11229
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11230
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11231

J
jerrywgz 已提交
11232 11233 11234
    Examples:
        .. code-block:: python

11235
            import paddle.fluid as fluid
11236
            input = fluid.data(
J
jerrywgz 已提交
11237
                name='data', 
11238
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11239 11240
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11241 11242
    """
    helper = LayerHelper("maxout", **locals())
11243 11244 11245 11246 11247 11248
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11249 11250

    if name is None:
X
Xin Pan 已提交
11251
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11252 11253 11254 11255 11256 11257 11258
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11259 11260
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11261 11262
        outputs={"Out": out})
    return out
11263 11264


J
JiabinYang 已提交
11265
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11266
    """
J
JiabinYang 已提交
11267
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11268

11269 11270 11271
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11272
    The attr blocksize indicates the input block size.
11273

11274 11275 11276
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] \
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11277

J
JiabinYang 已提交
11278 11279 11280 11281 11282
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11300

J
JiabinYang 已提交
11301
    Args:
11302 11303 11304 11305 11306 11307
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11308

11309 11310 11311 11312
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11313 11314

    Raises:
11315
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11316 11317 11318

    Examples:
        .. code-block:: python
11319
    
11320 11321
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11322

11323 11324
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11325
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11326
                x=data, blocksize=2)
11327

11328
            exe = fluid.Executor(fluid.CPUPlace())
11329
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11330 11331 11332 11333 11334 11335 11336

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11337
            out_main = exe.run(fluid.default_main_program(),
11338 11339 11340 11341 11342 11343 11344 11345
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11346

J
JiabinYang 已提交
11347 11348
    """

J
JiabinYang 已提交
11349
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11350

J
JiabinYang 已提交
11351 11352
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11353 11354

    if name is None:
J
JiabinYang 已提交
11355 11356
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11357 11358 11359 11360 11361
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11362
        type="space_to_depth",
J
JiabinYang 已提交
11363
        inputs={"X": x},
J
JiabinYang 已提交
11364
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11365
        outputs={"Out": out})
J
JiabinYang 已提交
11366 11367
    return out

J
JiabinYang 已提交
11368

11369 11370 11371 11372 11373 11374
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11375 11376 11377 11378 11379
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11380

11381 11382 11383
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11384
            is applied in the second dimension.The data type is float32 or float64.
11385 11386
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11387
            the input.The data type is float32 or float64.
11388 11389
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11390
            The data type is float32 or float64.
11391 11392 11393 11394 11395
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11396 11397
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11398
        act (str, default None): Activation to be applied to the output of this layer.
11399 11400

    Returns:
L
LielinJiang 已提交
11401
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11402 11403 11404

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11405 11406

            import numpy as np
B
Bai Yifan 已提交
11407
            import paddle.fluid as fluid
L
LielinJiang 已提交
11408 11409 11410 11411 11412 11413 11414 11415 11416 11417

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11418
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11419 11420 11421 11422 11423 11424 11425 11426 11427 11428
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11429

11430 11431 11432 11433
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11434
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11446
    return helper.append_activation(out)
11447 11448


B
barrierye 已提交
11449
def similarity_focus(input, axis, indexes, name=None):
11450
    """
B
barrierye 已提交
11451
    SimilarityFocus Operator
B
barrierye 已提交
11452 11453

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11454

11455 11456 11457
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11458
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11459 11460 11461 11462 11463 11464 11465
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11466
       each index.
B
barrierye 已提交
11467 11468 11469 11470
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11520
    Args:
11521
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11522 11523
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11524
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11525
            1, 2 or 3.
B
barrierye 已提交
11526
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11527 11528

    Returns:
H
haowang101779990 已提交
11529 11530
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11531

B
barrierye 已提交
11532 11533
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11534

11535
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11536
            data = fluid.data(
Y
Yibing Liu 已提交
11537 11538
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11551 11552 11553 11554 11555
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11556 11557 11558 11559 11560 11561 11562
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11563 11564


M
minqiyang 已提交
11565 11566
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11567
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11568 11569
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11570 11571

    Args:
Z
zhupengyang 已提交
11572 11573 11574 11575 11576 11577
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11578 11579

    Returns:
Z
zhupengyang 已提交
11580
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11581 11582

    Examples:
Z
zhupengyang 已提交
11583
        .. code-block:: python
H
haowang101779990 已提交
11584

11585
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11586
            import numpy as np
11587

Z
zhupengyang 已提交
11588
            place = fluid.core.CPUPlace()
11589

Z
zhupengyang 已提交
11590 11591
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11592

Z
zhupengyang 已提交
11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11610 11611
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11612 11613
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11614 11615 11616 11617 11618 11619 11620
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11621 11622


D
dengkaipeng 已提交
11623
@templatedoc()
11624 11625
def grid_sampler(x, grid, name=None):
    """
11626
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11627
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
11628 11629 11630
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
    (in width dimension) of input data x and y is indexng the 3rd
11631
    dimention (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
11632 11633
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
11634

H
haowang101779990 已提交
11635
    .. code-block:: text
11636

H
haowang101779990 已提交
11637 11638
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11639

K
Kaipeng Deng 已提交
11640 11641 11642 11643
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11644

H
haowang101779990 已提交
11645 11646 11647
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11648

H
haowang101779990 已提交
11649 11650 11651 11652 11653 11654 11655 11656 11657
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11658

H
haowang101779990 已提交
11659 11660 11661 11662
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11663

H
haowang101779990 已提交
11664 11665 11666 11667
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11668

H
haowang101779990 已提交
11669 11670 11671 11672
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11673

H
haowang101779990 已提交
11674 11675
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11676 11677

    Args:
K
Kaipeng Deng 已提交
11678 11679 11680 11681 11682 11683 11684 11685 11686
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
11687 11688

    Returns:
H
haowang101779990 已提交
11689
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
11690 11691
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
11692

H
haowang101779990 已提交
11693 11694 11695 11696
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11697 11698
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
11699 11700
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
11701 11702
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11703
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11704

D
dengkaipeng 已提交
11705 11706 11707 11708 11709 11710 11711 11712 11713
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11714
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11715 11716
    ipts = {'X': x, 'Grid': grid}

11717
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11718 11719 11720
    return out


G
gmcather 已提交
11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
11734
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
11735
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
11736 11737 11738 11739 11740 11741 11742
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
11743 11744 11745 11746 11747 11748 11749

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11750
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11751 11752
          label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
          prob = fluid.data(name='prob', shape=[-1, 10], dtype='float32')
G
gmcather 已提交
11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
11774 11775
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
11776

G
Guo Sheng 已提交
11777 11778
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11779

G
Guo Sheng 已提交
11780
    The formula is as follows:
G
gmcather 已提交
11781 11782

    .. math::
H
haowang101779990 已提交
11783 11784 11785
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11786 11787

    Where:
G
Guo Sheng 已提交
11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
11805 11806

    Returns:
G
Guo Sheng 已提交
11807
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
11808 11809 11810 11811

    Examples:
        .. code-block:: python

11812 11813
          import paddle.fluid as fluid

G
Guo Sheng 已提交
11814
          tensor = fluid.data(
11815
              name='tensor',
G
Guo Sheng 已提交
11816 11817
              shape=[None, 64, 512],
              dtype='float32')
11818 11819
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11820

G
gmcather 已提交
11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11837 11838 11839 11840 11841 11842 11843 11844 11845 11846


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
11847
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11848

Q
Qiao Longfei 已提交
11849
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11850 11851 11852
    For example:

    .. math::
H
haowang101779990 已提交
11853
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11854

Q
Qiao Longfei 已提交
11855
    In this formula:
11856 11857
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
11858
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
11859
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11860 11861 11862
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
11863 11864 11865 11866
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
11867
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
11868 11869 11870 11871 11872 11873 11874 11875 11876
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
11877
    Returns:
Y
Yibing Liu 已提交
11878
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
11879 11880 11881 11882

    Examples:
        .. code-block:: python

11883
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11884 11885
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
11886
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11887 11888
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11889
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11890 11891 11892 11893

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11894
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11912 11913 11914 11915 11916


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
11933 11934

    Args:
11935 11936 11937
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
11938 11939

    Returns:
11940
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
11941 11942 11943 11944 11945 11946 11947 11948

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11949 11950 11951 11952 11953 11954 11955 11956 11957 11958
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11959 11960


S
shippingwang 已提交
11961
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11962
    """
S
shippingwang 已提交
11963 11964 11965 11966 11967 11968
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11969
    
S
shippingwang 已提交
11970
    .. code-block:: text
11971

S
shippingwang 已提交
11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12000
    Args: 
S
shippingwang 已提交
12001 12002
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12003 12004

    Returns:
S
shippingwang 已提交
12005 12006
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12007 12008

    Raises:
S
shippingwang 已提交
12009
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12010 12011 12012

    Examples:
        .. code-block:: python
12013

12014
            import paddle.fluid as fluid
R
ruri 已提交
12015
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12016
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12017 12018 12019
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12020
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12021 12022 12023 12024 12025 12026 12027 12028 12029

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12030
    return out
S
Add  
shippingwang 已提交
12031 12032


12033
@templatedoc()
D
dengkaipeng 已提交
12034
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12035 12036 12037 12038 12039 12040 12041 12042
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12043
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12044 12045 12046
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12047 12048 12049

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12050
        same shape and same data type as the input.
12051 12052 12053 12054 12055 12056 12057

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12058
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12059
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12060
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12073 12074
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12075 12076 12077
    return out


S
sneaxiy 已提交
12078
class PyFuncRegistry(object):
S
sneaxiy 已提交
12079 12080 12081
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12082
        if func is None or not callable(func):
S
sneaxiy 已提交
12083 12084 12085
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12086
        # find named args using reflection
S
sneaxiy 已提交
12087 12088 12089 12090 12091 12092 12093
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12094 12095 12096
        '''
        Why record self here?

M
minqiyang 已提交
12097 12098
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12099
           to find the registered function corresponding
M
minqiyang 已提交
12100
           to :code:`idx`.
S
sneaxiy 已提交
12101

M
minqiyang 已提交
12102 12103
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12104
           whose reference count is 1 would cause
M
minqiyang 已提交
12105
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12106 12107
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12108
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12123 12124 12125 12126 12127 12128 12129 12130 12131
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12132

S
sneaxiy 已提交
12133 12134
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12135 12136

        ret = []
S
sneaxiy 已提交
12137 12138 12139
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12140 12141
                continue

S
sneaxiy 已提交
12142 12143
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12144

S
sneaxiy 已提交
12145 12146 12147
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12148

S
sneaxiy 已提交
12149
        return tuple(ret)
S
sneaxiy 已提交
12150 12151


S
sneaxiy 已提交
12152 12153 12154
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197
    This API is used to register customized OP to Fluid. The forward  function 
    of the registered OP is ``func`` and the backward function of that is 
    ``backward_func``. Paddle will call ``func`` at forward runtime  and call 
    ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
    the output of ``func``, whose type can be either LoDTensor or NumPy array.

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
            function and the forward input ``x``.
        x (Variable): The input of the forward function ``func``, its type can be 
            Variable | tuple[Variable] | list[Variale], in which Variable is LoDTensor.
        out (Variable): The output of the forward function ``func``, its type can be
            Variable | tuple[Variable] | list[Variale], in which Variable can be either 
            LoDTensor or NumPy array. Since Paddle cannot automatically infer the shape
            and data type of ``out``, ``out`` must be created in advance.
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
            variable list of ``backward_func``, and it can be single Variable, tuple[Variable]
            or list[Variable]. It must belong to either ``x`` or ``out``. The default 
            value is None, which means that no variables need to be removed from ``x`` 
            and ``out``. If it is not None, these variables will not be the input of 
            ``backward_func``. This parameter is only useful when ``backward_func`` is 
            not None.
    
    Returns: 
        Variable: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12198 12199

    Examples:
12200
        .. code-block:: python
M
minqiyang 已提交
12201

12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238
            import paddle.fluid as fluid
            import six

            def create_tmp_var(name, dtype, shape):
            return fluid.default_main_program().current_block().create_var(
            name=name, dtype=dtype, shape=shape)

            # Tanh activation function provided by Paddle C++ op
            # Here, tanh is used as an example to show how to use py_func
            def tanh(x):
                return np.tanh(x)

            # Skip forward input x
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))

            def debug_func(x):
                print(x)

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

                    # User-defined debugging layer, which can print out variable details
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
S
sneaxiy 已提交
12239
    """
S
sneaxiy 已提交
12240
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12241 12242 12243
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12244
        x = [x]
S
sneaxiy 已提交
12245 12246
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12247

S
sneaxiy 已提交
12248 12249 12250
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12251
        out_list = [out]
S
sneaxiy 已提交
12252
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12253
        out_list = out
S
sneaxiy 已提交
12254 12255 12256
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12257

S
sneaxiy 已提交
12258 12259
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12260
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12261 12262

    for each_out in out_list:
S
sneaxiy 已提交
12263 12264
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12265 12266
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12267

S
sneaxiy 已提交
12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12283 12284 12285 12286

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12287 12288
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12289 12290 12291
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12292
        })
S
sneaxiy 已提交
12293
    return out
S
sneaxiy 已提交
12294 12295 12296


# For debug usage
S
sneaxiy 已提交
12297 12298 12299 12300
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12312
    Parameters:
12313
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12314
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12315 12316 12317
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12318 12319
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12320
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12321 12322 12323 12324 12325
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12326 12327

    Returns:
S
SunGaofeng 已提交
12328 12329 12330 12331
        ${out_comment}.

    Return Type:
        Variable
12332 12333 12334 12335

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12336
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12337 12338
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12339
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
12401
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12424

M
minqiyang 已提交
12425

R
ruri 已提交
12426 12427 12428
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12429
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12430 12431 12432 12433 12434 12435 12436
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12437
    Parameters:
R
ruri 已提交
12438

R
ruri 已提交
12439 12440
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12441 12442

    Returns:
12443
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12444 12445 12446 12447 12448 12449 12450

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12486 12487 12488 12489 12490
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12491
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12503 12504 12505
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12506
                      The y_channel can be different with the x_channel of Input(X)
12507 12508
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12509 12510 12511 12512

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12513 12514
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12515 12516 12517 12518 12519

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12520
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12521
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12522 12523 12524 12525
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12526 12527 12528 12529 12530 12531 12532 12533
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12534 12535 12536 12537


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12538

H
heqiaozhi 已提交
12539
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12540

Z
zhoushiyu 已提交
12541
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
12542

Z
zhoushiyu 已提交
12543 12544 12545 12546 12547
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
    If :attr:`use_cvm` is True, it will caculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
12548

Z
zhoushiyu 已提交
12549 12550 12551 12552 12553 12554 12555
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
12556

H
heqiaozhi 已提交
12557
    Returns:
H
fix doc  
heqiaozhi 已提交
12558

Z
zhoushiyu 已提交
12559 12560
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
12561

H
heqiaozhi 已提交
12562
    Examples:
H
fix doc  
heqiaozhi 已提交
12563

H
heqiaozhi 已提交
12564
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12565

12566
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
12567 12568
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
12569 12570 12571 12572 12573 12574 12575 12576
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12577

H
heqiaozhi 已提交
12578 12579 12580 12581 12582 12583 12584 12585 12586
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12587
    return out
Z
zhoukunsheng 已提交
12588 12589 12590 12591 12592 12593 12594


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
12595
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
12596 12597

    Returns:
12598
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
12599 12600 12601 12602

    Examples:
        .. code-block:: python

12603
             import paddle.fluid as fluid
12604 12605 12606
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12607
             # condition is a tensor [True, False, True]
12608 12609 12610
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12611 12612

             # condition is a tensor [[True, False], [False, True]]
12613 12614 12615
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12616 12617

             # condition is a tensor [False, False, False]
12618 12619 12620 12621
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12622 12623 12624 12625 12626 12627 12628 12629 12630
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12631 12632 12633 12634


def sign(x):
    """
12635
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
12636 12637

    Args:
12638 12639
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
12640 12641

    Returns:
12642
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
12643 12644 12645 12646

    Examples:
        .. code-block:: python

12647 12648 12649
          import paddle.fluid as fluid
          import numpy as np

12650 12651
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
12652 12653 12654
    """

    helper = LayerHelper("sign", **locals())
12655 12656 12657 12658
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
12659 12660 12661 12662 12663
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12664 12665


Z
zhoukunsheng 已提交
12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12705 12706
def unique_with_counts(x, dtype='int32'):
    """
12707 12708
    This OP return a unique tensor for `x` , and count tensor that the count of unqiue result in raw input, \
    and an index tensor pointing to this unique tensor. 
12709

12710
    **NOTICE**: This op just be supported in device of CPU, and support the variable type of Tensor only.
12711 12712

    Args:
12713 12714
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
12715

12716 12717 12718 12719 12720 12721
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unqiue element in\
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
12722 12723 12724 12725 12726 12727 12728 12729 12730

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
12731
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
12774
                    modulated=True,
12775 12776
                    name=None):
    """
12777
    **Deformable Convolution op**
12778 12779 12780

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
12781 12782 12783
   
    
    Deformable Convolution v2: 
12784 12785 12786 12787
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
12788 12789

    Deformable Convolution v1:
12790
    
12791 12792 12793 12794 12795
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
12796
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
12797
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
12822 12823
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
12824
        offset (Variable): The input coordinate offset of deformable convolution layer.
12825
            A Tensor with type float32, float64.
12826 12827 12828
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
12829 12830
        num_filters(int): The number of filter. It is as same as the output
            image channel.
12831
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
12855
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
12856 12857 12858 12859 12860
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
12861
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
12862 12863 12864 12865
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
12866 12867
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
12868 12869
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
12870 12871
    Returns:
        Variable: The tensor variable storing the deformable convolution \
12872
                  result. A Tensor with type float32, float64.
12873 12874 12875 12876 12877 12878
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12879 12880
          #deformable conv v2:
         
12881
          import paddle.fluid as fluid
12882 12883
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
12884 12885 12886
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
12887
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
12888
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
12889 12890 12891 12892

          #deformable conv v1:

          import paddle.fluid as fluid
12893 12894
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
12895 12896
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
12897
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
12898
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
12976 12977 12978

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12979 12980 12981 12982 12983


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
12984
    This op returns a col buffer of sliding local blocks of input x, also known
12985 12986 12987 12988
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
12989
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13007 13008 13009
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13025 13026 13027
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13028 13029 13030

    
    Returns:
S
SunGaofeng 已提交
13031 13032 13033 13034 13035 13036 13037 13038
        The tensor variable corresponding to the sliding local blocks. 
        The output shape is [N, Cout, Lout] as decribled above. 
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13039 13040 13041 13042 13043 13044

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13045
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13116 13117 13118 13119 13120 13121 13122
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13123
    
13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
                          chanels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
                                   If value is True, input dimension shoule be output dimension * pooled_height * pooled_width. Default: False.
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13163 13164 13165 13166

    Examples:
      .. code-block:: python

13167 13168
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13191 13192
  
        # position_sensitive=False
13193
        import paddle.fluid as fluid
C
chengjuntao 已提交
13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13253 13254 13255 13256


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13257
    This operator recomputes the `input` indices according to the offset of the
13258 13259 13260 13261 13262
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13263
        
13264 13265
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13266

13267 13268
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13269 13270

    Examples:
13271
    ::
13272
    
13273
        Input:
13274 13275
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13276 13277 13278
          index_num = 20
          nshards = 2
          ignore_value = -1
13279
        
13280
        if shard_id == 0, we get:
13281 13282 13283
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13284
        if shard_id == 1, we get:
13285 13286 13287 13288
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13289 13290 13291 13292 13293
        - **input** (Variable): Input indices, last dimension must be 1.
        - **index_num** (scalar): An interger defining the range of the index.
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
        - **ignore_value** (scalar): An ingeter value out of sharded index range
13294 13295

    Returns:
13296
        Variable: The sharded index of input.
13297 13298 13299 13300 13301

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13302 13303
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13328 13329 13330 13331 13332


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13333 13334 13335
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13336

13337
    The formula is as follows:
H
huangjun12 已提交
13338

13339
    .. math::
H
huangjun12 已提交
13340

13341
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13342

13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13388 13389


G
Guo Sheng 已提交
13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13465 13466 13467
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13468 13469
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13481 13482
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13483 13484
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13485
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13486
                                                  Default: float32.
13487 13488
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13489 13490 13491 13492 13493
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13494 13495
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13496

13497
    Raises:
13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511
        TypeError: The shape type should be list or tupple or variable.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13512 13513
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13514 13515

            # example 3:
13516
            # attr shape is a Variable, the data type must be int64 or int32.
13517
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13518
            result_3 = fluid.layers.uniform_random(var_shape)
13519 13520 13521 13522
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13523 13524

    """
13525
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
13526 13527
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
13528
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
13529

13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
                    "Each dimension size given in shape must not be negtive "
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
13564
    attrs = {'seed': seed, 'min': min, 'max': max}
13565
    if in_dygraph_mode():
H
hong 已提交
13566
        attrs['shape'] = shape
13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)