framework.py 242.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
82
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
83
core._disable_eager_mode()
84 85 86


@signature_safe_contextmanager
87
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
88
    core._enable_eager_mode()
89
    _C_ops.switch_to_eager_ops()
90 91 92 93
    global _already_patch_eager_tensor
    if not _already_patch_eager_tensor:
        from .dygraph.varbase_patch_methods import monkey_patch_varbase
        monkey_patch_varbase()
94 95
        from .dygraph import monkey_patch_math_varbase
        monkey_patch_math_varbase()
96
        _already_patch_eager_tensor = True
97 98 99 100
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
101
    try:
J
Jiabin Yang 已提交
102
        yield
103
    finally:
J
Jiabin Yang 已提交
104
        core._disable_eager_mode()
105
        _C_ops.switch_to_core_ops()
106 107


J
jianghaicheng 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
274
def in_dygraph_mode():
L
lujun 已提交
275
    """
276

277 278 279 280 281 282 283
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
284 285

    Returns:
286
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
287 288 289 290

    Examples:
        .. code-block:: python

291 292 293 294 295 296 297 298
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
299 300

    """
L
lujun 已提交
301
    return _dygraph_tracer_ is not None
302 303


J
Jiabin Yang 已提交
304 305 306 307
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


308 309 310
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
311
        ), "We don't support %s in imperative mode" % func.__name__
312 313 314 315 316 317 318 319
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
320 321 322 323 324 325 326 327 328
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
329
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
330 331 332 333 334
        return func(*args, **kwargs)

    return __impl__


335 336 337 338 339
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


340 341 342 343 344 345
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
346
# same base class.
347 348 349
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
350 351 352 353 354
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
355 356 357 358

    return __impl__


T
tangwei12 已提交
359 360
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


378 379
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
380
static_only = wrap_decorator(_static_only_)
381
fake_interface_only = wrap_decorator(_fake_interface_only_)
382 383


L
lujun 已提交
384 385
def _dygraph_tracer():
    return _dygraph_tracer_
386

W
Wu Yi 已提交
387

388 389 390 391
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
392
def _current_expected_place():
393 394 395
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
396 397 398 399 400 401 402 403 404 405 406
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
407 408 409 410 411 412 413 414 415 416 417 418
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
419 420 421 422 423 424 425 426 427 428 429 430
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
446
    if _in_eager_mode():
447
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
448
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
449 450


L
Leo Chen 已提交
451 452 453 454
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
455

L
Leo Chen 已提交
456 457 458 459 460 461 462 463 464 465 466 467
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
468
def _cpu_num():
469
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
470 471 472 473 474 475 476 477
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
478
        os.environ['CPU_NUM'] = str(1)
479
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
480 481 482 483 484 485 486 487 488 489
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
490 491


492 493 494 495 496 497 498 499 500
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


501 502 503 504 505 506 507 508 509
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


510 511 512 513 514 515 516 517 518
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
589 590 591 592
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

593
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
594 595 596 597

    Examples:
        .. code-block:: python

598
            import paddle
599
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
600 601 602 603
    """
    return core.is_compiled_with_cuda()


604 605 606 607 608 609 610 611 612 613
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
614
            support_gpu = paddle.device.is_compiled_with_rocm()
615 616 617 618
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
619
def cuda_places(device_ids=None):
L
lujun 已提交
620
    """
621 622 623 624
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
625
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
626 627

    If :code:`device_ids` is None, environment variable of
628
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
629
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
630
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
631
    If :code:`FLAGS_selected_gpus` is not set, all visible
632
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
633 634

    If :code:`device_ids` is not None, it should be the device
635
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
636
    the returned list would be 
C
Chen Weihang 已提交
637
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
638

639
    Parameters:
640
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
641 642

    Returns:
C
Chen Weihang 已提交
643
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
644 645 646 647

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
648 649
            import paddle
            import paddle.static as static
T
tangwei12 已提交
650

651 652
            # required: gpu
            
C
Chen Weihang 已提交
653 654 655
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
656 657

    """
S
sneaxiy 已提交
658 659 660
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
661
        device_ids = _cuda_ids()
S
sneaxiy 已提交
662 663 664 665 666
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


667 668 669 670
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
671 672 673 674 675 676 677 678 679 680 681
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
682 683 684 685 686 687 688
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
689

690 691
            # required: xpu

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
748
def cpu_places(device_count=None):
L
lujun 已提交
749
    """
C
Chen Weihang 已提交
750
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
751

S
add doc  
sneaxiy 已提交
752 753
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
754 755
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
756 757
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
758

759 760
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
761 762

    Returns:
C
Chen Weihang 已提交
763
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
764 765 766 767

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
768 769
            import paddle
            import paddle.static as static
T
tangwei12 已提交
770

C
Chen Weihang 已提交
771 772 773
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
774 775
    """

S
sneaxiy 已提交
776 777 778 779 780 781
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
782
    """
783
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
784 785 786

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
787 788 789 790
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
791

792 793
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
794 795

    Returns:
796
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
797 798 799 800

    Examples:
        .. code-block:: python

801
            import paddle.fluid as fluid
L
lujun 已提交
802 803 804 805 806
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
807 808 809
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
810 811
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
812 813


814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
882
@signature_safe_contextmanager
883 884
def name_scope(prefix=None):
    """
885 886
    :api_attr: Static Graph

887
    Generate hierarchical name prefix for the operators in Static Graph.
888

T
Tao Luo 已提交
889 890 891
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
892
        Don't use it in dygraph, since it will cause memory leak.
893 894

    Args:
T
Tao Luo 已提交
895
        prefix(str, optional): prefix. Default is none.
896 897 898

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
899

900 901 902
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
903
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
904
             b = a + 1
905
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
906
                c = b * 1
907
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
908
                d = c / 1
909 910 911
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
912 913 914
                g = f - 1

          # Op are created in the default main program.  
915
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
931 932
    """
    # TODO(panyx0718): Only [0-9a-z].
933
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
934 935 936
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
937
        assert prefix, "namescope prefix can not be empty."
938 939
        global _name_scope
        _name_scope = _name_scope.child(prefix)
940 941 942 943
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
944 945 946 947 948 949 950 951 952 953 954 955


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
956 957 958
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
959 960 961 962


def grad_var_name(var_name):
    """
963 964
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
965 966 967
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
968

969
def convert_np_dtype_to_dtype_(np_dtype):
970 971
    """
    Convert the data type in numpy to the data type in Paddle
972

973
    Args:
974
        np_dtype(np.dtype): the data type in numpy.
975

976 977
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
978 979

    """
980 981
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
982
        return core.VarDesc.VarType.FP32
983
    elif dtype == np.float64:
984
        return core.VarDesc.VarType.FP64
985
    elif dtype == np.float16:
986
        return core.VarDesc.VarType.FP16
987
    elif dtype == np.int32:
988
        return core.VarDesc.VarType.INT32
989
    elif dtype == np.int16:
990
        return core.VarDesc.VarType.INT16
991
    elif dtype == np.int64:
992
        return core.VarDesc.VarType.INT64
993
    elif dtype == np.bool:
994
        return core.VarDesc.VarType.BOOL
995
    elif dtype == np.uint16:
996 997 998
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
999 1000
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1001 1002
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1003 1004 1005 1006
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1007
    else:
M
minqiyang 已提交
1008
        raise ValueError("Not supported numpy dtype %s" % dtype)
1009 1010 1011


def dtype_is_floating(dtype):
1012 1013 1014
    """
    Check the data type is floating or not.
    Args:
1015
        dtype(np.dtype|core.VarDesc.VarType): data type.
1016 1017 1018 1019 1020
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1021
    if not isinstance(dtype, core.VarDesc.VarType):
1022 1023
        dtype = convert_np_dtype_to_dtype_(dtype)

1024 1025 1026 1027
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1028 1029


Y
Yang Yang(Tony) 已提交
1030
def _debug_string_(proto, throw_on_error=True):
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1042
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1043
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1044 1045
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1046 1047 1048
    return proto.__str__()


1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1059 1060 1061 1062 1063 1064 1065 1066
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1078 1079
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1090 1091
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1092 1093 1094 1095 1096 1097
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1098
class Variable(object):
1099
    """
J
Jiabin Yang 已提交
1100
    **Notes**:
1101
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1102

1103 1104
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1105 1106 1107
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1108
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1109 1110
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1111

1112
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1113
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1114

T
tianshuo78520a 已提交
1115
    Most of a Variable's member variables can be set to be None. It mean
1116
    it is not available or will be specified later.
1117

1118
    Examples:
1119 1120
        In Static Graph Mode:

1121 1122
        .. code-block:: python

1123
            import paddle.fluid as fluid
1124
            cur_program = fluid.Program()
1125 1126 1127 1128
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1129

J
Jiabin Yang 已提交
1130
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1131 1132 1133 1134 1135 1136 1137 1138 1139

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1140 1141
    """

Y
Yu Yang 已提交
1142 1143
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1144
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1145 1146 1147 1148
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1149
                 capacity=None,
Q
QI JUN 已提交
1150
                 persistable=None,
F
fengjiayi 已提交
1151
                 error_clip=None,
Y
Yu Yang 已提交
1152
                 stop_gradient=False,
F
fengjiayi 已提交
1153
                 is_data=False,
H
Huihuang Zheng 已提交
1154
                 need_check_feed=False,
H
hong 已提交
1155
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1156
                 **kwargs):
Y
Yu Yang 已提交
1157 1158
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1159
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1160

Y
Yu Yang 已提交
1161
        if dtype is not None:
1162
            if not isinstance(dtype, core.VarDesc.VarType):
1163
                dtype = convert_np_dtype_to_dtype_(dtype)
1164

S
Steffy-zxf 已提交
1165 1166 1167 1168
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1169 1170
        self.belong_to_optimizer = belong_to_optimizer

1171 1172 1173 1174 1175
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1176

1177 1178 1179
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1180

1181 1182 1183
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1184 1185
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1186 1187
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1188

1189
        if shape is not None:
1190
            if is_new_var:
1191 1192 1193 1194 1195 1196
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1197 1198
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1199 1200 1201 1202 1203 1204 1205
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1206 1207
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1208 1209 1210 1211 1212 1213 1214 1215 1216
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1217 1218
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1219 1220 1221 1222 1223 1224 1225 1226 1227
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1228 1229
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1230 1231
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1232

1233 1234
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1235

1236 1237 1238 1239 1240 1241 1242
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1243

1244 1245
        self.block.vars[name] = self
        self.op = None
1246
        self.stop_gradient = stop_gradient
1247
        self.is_data = is_data
Y
Yu Yang 已提交
1248

1249 1250 1251
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1252 1253
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1254

1255
        Returns:
J
Jiabin Yang 已提交
1256
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1257 1258 1259 1260

        Examples:
            .. code-block:: python

1261
                import paddle
1262

1263 1264 1265 1266
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1267

1268 1269
                # create a detached Variable
                y = x.detach()
1270
        """
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1286

1287
    @fake_interface_only
1288
    def numpy(self):
1289
        """
J
Jiabin Yang 已提交
1290
        **Notes**:
T
tianshuo78520a 已提交
1291
            **This API is ONLY available in Dygraph mode**
1292

J
Jiabin Yang 已提交
1293
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1294 1295 1296 1297 1298

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1299
            ndarray: dtype is same as current Variable
1300 1301 1302 1303 1304 1305

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1306
                from paddle.fluid.dygraph import Linear
1307 1308 1309 1310
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1311
                    linear = Linear(32, 64)
1312
                    data = to_variable(data)
1313
                    x = linear(data)
1314 1315 1316
                    print(x.numpy())

        """
1317
        pass
1318

1319
    @fake_interface_only
1320
    def backward(self, retain_graph=False):
1321
        """
J
Jiabin Yang 已提交
1322
        **Notes**:
T
tianshuo78520a 已提交
1323
            **This API is ONLY available in Dygraph mode**
1324

1325
        Run backward of current Graph which starts from current Tensor.
1326

J
Jiabin Yang 已提交
1327
        Args:
1328 1329 1330 1331
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1332

J
Jiabin Yang 已提交
1333 1334
        Returns:
            NoneType: None
1335 1336 1337 1338 1339

        Examples:
            .. code-block:: python

                import numpy as np
1340 1341
                import paddle
                paddle.disable_static()
1342 1343

                x = np.ones([2, 2], np.float32)
1344 1345 1346 1347 1348 1349 1350
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1351 1352
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1353
                loss.backward()
1354 1355

        """
1356
        pass
1357

1358
    @fake_interface_only
1359
    def gradient(self):
1360
        """
J
Jiabin Yang 已提交
1361
        **Notes**:
T
tianshuo78520a 已提交
1362
            **This API is ONLY available in Dygraph mode**
1363 1364 1365

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1366
        Returns:
1367
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1368 1369 1370 1371 1372 1373 1374

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1375
                # example1: return ndarray
1376 1377 1378 1379 1380 1381 1382 1383 1384
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1385
                    loss2.backward()
1386 1387
                    print(loss2.gradient())

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1401
        """
1402
        pass
1403

1404
    @fake_interface_only
1405
    def clear_gradient(self):
1406
        """
J
Jiabin Yang 已提交
1407
        **Notes**:
T
tianshuo78520a 已提交
1408
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1409 1410

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1411

J
Jiabin Yang 已提交
1412
        Clear  (set to ``0`` ) the Gradient of Current Variable
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1431
                    loss2.backward()
1432 1433 1434 1435 1436
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1437
        pass
X
Xin Pan 已提交
1438

1439 1440 1441 1442
    @fake_interface_only
    def register_hook(self, hook):
        pass

1443
    def __str__(self):
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1460 1461
                import paddle
                import paddle.static as static
1462

1463 1464 1465
                paddle.enable_static()

                cur_program = static.Program()
1466 1467 1468 1469 1470 1471
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1472 1473
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1474
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1475 1476
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1477 1478
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1479
        else:
1480 1481
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1482

1483
        if self.is_parameter:
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1494
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1495
        dist_context = get_default_distributed_context()
1496 1497
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1498
            var_str += ", {name} = {value}".format(
1499
                name="dist_attr", value=dist_tensor)
1500

1501
        return var_str
Y
Yang Yang(Tony) 已提交
1502

F
update  
fengjiayi 已提交
1503
    def to_string(self, throw_on_error, with_details=False):
1504 1505 1506
        """
        Get debug string.

J
Jiabin Yang 已提交
1507 1508 1509 1510 1511
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1512

1513 1514
        Returns:
            str: The debug string.
1515 1516 1517 1518 1519

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1520
                import paddle
1521

1522
                paddle.enable_static()
1523 1524 1525 1526 1527
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1528
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1529
                print("=============with detail===============")
1530
                print(new_variable.to_string(True, True))
1531
        """
F
update  
fengjiayi 已提交
1532 1533
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1534
        protostr = self.desc.serialize_to_string()
1535
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1536 1537
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1538
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1539
            for attr_name in additional_attr:
1540 1541 1542
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1543
        return res_str
1544 1545 1546

    __repr__ = __str__

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1574
    @property
1575
    def stop_gradient(self):
J
Jiabin Yang 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1591 1592
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1593 1594 1595
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1596 1597
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1598 1599 1600 1601
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1602
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1603 1604
                assert (out1.gradient() == 0).all()
        """
1605
        return self.desc.stop_gradient()
1606

1607 1608
    @stop_gradient.setter
    def stop_gradient(self, s):
1609
        self.desc.set_stop_gradient(s)
1610

1611 1612
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1634
        return self.desc.persistable()
1635

Y
Yu Yang 已提交
1636 1637
    @persistable.setter
    def persistable(self, p):
1638
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1665 1666
    @property
    def name(self):
J
Jiabin Yang 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1683
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1684

1685 1686 1687 1688 1689 1690
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1691 1692
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1705 1706
    @name.setter
    def name(self, new_name):
1707
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1708

Y
Yu Yang 已提交
1709 1710
    @property
    def shape(self):
J
Jiabin Yang 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1728
        # convert to tuple, make it as same as numpy API.
1729
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1730 1731

    @property
F
fengjiayi 已提交
1732
    def dtype(self):
J
Jiabin Yang 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1749
        return self.desc.dtype()
Y
Yu Yang 已提交
1750 1751 1752

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1774 1775 1776
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1777
        return self.desc.lod_level()
Y
Yu Yang 已提交
1778

Y
Yu Yang 已提交
1779 1780
    @property
    def type(self):
J
Jiabin Yang 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1797
        return self.desc.type()
Y
Yu Yang 已提交
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1882
    def _set_error_clip(self, error_clip):
1883 1884 1885 1886 1887 1888 1889 1890 1891
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1892 1893
        self.error_clip = error_clip

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1934
            raise ValueError("slice step can not be zero")
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2010
    def _cloneVar(self, copy=False):
2011 2012
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2013 2014
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2015 2016 2017 2018
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2019
        new_var = self._cloneVar()
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2030
        new_var = self._cloneVar()
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2041
                return self._cloneVar(True)
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2060
                return self._cloneVar(True)
2061
            index = int(item)
2062
            if (index > 0 and index >= self.shape[axis]) \
2063 2064 2065 2066 2067 2068 2069
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2070
        return _getitem_impl_(self, item)
2071

2072
    def __setitem__(self, item, value):
2073
        return _setitem_impl_(self, item, value)
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2221 2222 2223 2224
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2225 2226 2227 2228
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2229 2230 2231 2232 2233 2234 2235
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2345

F
fengjiayi 已提交
2346 2347 2348
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2349

2350 2351
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2352 2353 2354 2355
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2356
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2357 2358 2359 2360 2361
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2362 2363 2364 2365
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2375
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2376 2377 2378 2379 2380 2381
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2382 2383 2384 2385 2386 2387 2388 2389
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2390 2391
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2392 2393
        return self.op_proto_map[type]

2394 2395
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2396
        custom_op_names = []
2397 2398 2399
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2400 2401 2402
                custom_op_names.append(proto.type)

        return custom_op_names
2403

2404 2405 2406 2407
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2408
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2409
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2410 2411
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2412 2413
        }

F
fengjiayi 已提交
2414

X
Xin Pan 已提交
2415
class Operator(object):
2416
    """
2417 2418 2419 2420 2421 2422 2423
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2424
        type(str): The type of operator. Default None.
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2445
        Block.append_op or Block._prepend_op instead.
2446 2447 2448 2449

    Examples:
        .. code-block:: python

2450
            import paddle.fluid as fluid
2451
            cur_program = fluid.Program()
2452 2453 2454 2455 2456
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2457
    """
2458
    OP_WITHOUT_KERNEL_SET = {
2459 2460
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2461
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2462 2463
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2464
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2465 2466
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2467
    }
2468

Y
Yu Yang 已提交
2469 2470
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2471
                 desc,
Y
Yu Yang 已提交
2472 2473 2474
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2475
                 attrs=None):
L
lujun 已提交
2476
        if in_dygraph_mode():
2477 2478
            if type is None:
                raise ValueError(
2479
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2480
            self._type = type
M
minqiyang 已提交
2481
            self.attrs = attrs if attrs else {}
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2496
                )] = self.block.program._op_role
2497 2498 2499

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2500 2501
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2502 2503 2504 2505 2506

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2507 2508 2509 2510 2511
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2512 2513 2514
                return
            if type is None:
                raise ValueError(
2515
                    "`type` to initialized an Operator can not be None.")
2516 2517
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2518 2519 2520 2521 2522 2523 2524
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2525 2526 2527 2528 2529 2530 2531

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2549 2550 2551 2552 2553
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2568
                        if not isinstance(in_args, (list, tuple)):
2569 2570 2571 2572 2573 2574
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2575
                        for index, arg in enumerate(in_args):
2576 2577 2578 2579
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2580
                            elif isinstance(arg, (Variable, core.VarBase)):
2581
                                in_arg_names.append(cpt.to_text(arg.name))
2582
                            else:
2583 2584 2585 2586
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2587 2588
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2613 2614 2615 2616
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2617
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2618
                        if not in_dygraph_mode():
2619 2620 2621 2622
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2645 2646 2647 2648 2649
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2650
    def _has_kernel(self, op_type):
2651 2652
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2653
    def to_string(self, throw_on_error):
2654
        """
2655 2656
        Get debug string.

2657
        Args:
2658 2659
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2660

2661 2662
        Returns:
            str: The debug string.
2663 2664

        """
2665
        protostr = self.desc.serialize_to_string()
2666
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2667 2668
        return _debug_string_(proto, throw_on_error)

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2701
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2754
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2755
        dist_context = get_default_distributed_context()
2756 2757
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2758
            attrs_str += ", {name} = {value}".format(
2759
                name="dist_attr", value=dist_op)
2760

2761 2762
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2763 2764
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2765 2766 2767 2768 2769
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2770
    def __str__(self):
2771
        return self._to_readable_code()
2772 2773 2774

    __repr__ = __str__

F
fengjiayi 已提交
2775 2776
    @property
    def type(self):
2777
        return self.desc.type()
F
fengjiayi 已提交
2778 2779

    def input(self, name):
2780
        r"""
2781
        Get the input arguments according to the input parameter name.
2782

2783 2784
        Args:
            name(str): The input parameter name.
2785

2786 2787 2788
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2789
        """
F
fengjiayi 已提交
2790 2791
        return self.desc.input(name)

W
Wu Yi 已提交
2792
    def _rename_input(self, old_name, new_name):
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2803
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2804

W
Wu Yi 已提交
2805
    def _rename_output(self, old_name, new_name):
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2816
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2817

F
fengjiayi 已提交
2818 2819 2820 2821
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2822 2823 2824 2825 2826 2827 2828 2829
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2830
    def output(self, name):
2831
        r"""
2832
        Get output arguments by the output parameter name.
2833

2834 2835
        Args:
            name(str): The output parameter name.
2836

2837 2838 2839
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2840
        """
F
fengjiayi 已提交
2841 2842 2843 2844 2845 2846
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2847 2848 2849 2850 2851 2852 2853 2854
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2855
    def has_attr(self, name):
2856
        """
2857 2858
        Whether this Operator has the attribute with name or not.

2859
        Args:
2860
            name(str): the attribute name.
2861

2862 2863
        Returns:
            bool: True if has this attribute.
2864 2865

        """
F
fengjiayi 已提交
2866 2867 2868
        return self.desc.has_attr(name)

    def attr_type(self, name):
2869
        """
2870
        Get the type of attribute by attribute's name.
2871

2872 2873
        Args:
            name(str): the attribute name.
2874

2875 2876
        Returns:
            core.AttrType: the attribute type.
2877
        """
F
fengjiayi 已提交
2878 2879
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2880
    def _set_attr(self, name, val):
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2891 2892
        self._update_desc_attr(name, val)

2893 2894 2895
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2907 2908
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2909 2910
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2911
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2912 2913 2914 2915
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2916
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2917

F
fengjiayi 已提交
2918 2919 2920 2921 2922
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2923
        """
2924 2925
        Get the attribute by name.

2926
        Args:
2927
            name(str): the attribute name.
2928

2929 2930
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2931 2932
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2933
        return self.desc.attr(name)
Y
Yu Yang 已提交
2934

W
Wu Yi 已提交
2935
    def _block_attr_id(self, name):
2936
        """
G
gongweibao 已提交
2937
        Get the block attribute's id by name.
2938

2939 2940
        Args:
            name(str): the attribute name.
2941

2942 2943
        Returns:
            int: the block index.
2944
        """
W
Wu Yi 已提交
2945
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2946

W
Wu Yi 已提交
2947
    def _block_attr(self, name):
G
gongweibao 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2958
        id = self._block_attr_id(name)
G
gongweibao 已提交
2959 2960 2961
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2962
    def _blocks_attr(self, name):
G
gongweibao 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2973
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2974 2975 2976 2977 2978
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2979
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2990
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2991

J
JiayiFeng 已提交
2992
    def all_attrs(self):
F
fengjiayi 已提交
2993
        """
2994 2995 2996
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2997
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2998 2999 3000 3001
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3002 3003
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3004
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3005 3006 3007
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3008
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3009 3010 3011 3012
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3013 3014
        return attr_map

3015 3016 3017
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3018 3019 3020 3021

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3022 3023 3024
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3025 3026 3027 3028 3029 3030 3031 3032

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3033 3034
            return False

3035 3036 3037 3038 3039 3040
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3066

Y
Yu Yang 已提交
3067
class Block(object):
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3082
        use `Program._create_block()` to create a block.
3083 3084 3085 3086

    Examples:
        .. code-block:: python

3087 3088 3089
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3090 3091 3092 3093 3094 3095 3096 3097 3098
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3099
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3100
        self.desc = program.desc.block(idx)
3101
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3102
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3103
        self.program = program
3104
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3105

3106
    def __str__(self):
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3141
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3153

F
fengjiayi 已提交
3154 3155
    def to_string(self, throw_on_error, with_details=False):
        """
3156 3157
        Get debug string.

F
fengjiayi 已提交
3158 3159
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3160
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3161
            with_details(bool): more details about variables and parameters
3162 3163
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3164

3165 3166
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3167 3168 3169 3170
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3171
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3172 3173
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3174
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3175
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3176
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3177
            for op in self.ops:
F
fengjiayi 已提交
3178 3179
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3180 3181 3182
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3183 3184
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3185 3186
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3187 3188 3189

    __repr__ = __str__

Y
Yu Yang 已提交
3190 3191
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3192
        return self.desc.parent
Y
Yu Yang 已提交
3193

Y
Yu Yang 已提交
3194 3195 3196 3197
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3198
    def _set_forward_block_idx(self, idx):
3199 3200 3201 3202 3203 3204 3205 3206 3207
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3208
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3209

3210 3211 3212 3213 3214 3215 3216 3217
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3218 3219
    @property
    def idx(self):
Y
Yu Yang 已提交
3220
        return self.desc.id
Y
Yu Yang 已提交
3221

Q
Qiao Longfei 已提交
3222
    def var(self, name):
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3236
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3237 3238 3239
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3240 3241
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3242
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3243
        return v
Q
Qiao Longfei 已提交
3244

X
Xin Pan 已提交
3245
    def _find_var_recursive(self, name):
3246 3247 3248 3249 3250 3251 3252
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3253
            Variable: the Variable with the giving name. Or None if not found.
3254
        """
Y
Yu Yang 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3279
        return None
Y
Yu Yang 已提交
3280

X
Xin Pan 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3300

Q
Qiao Longfei 已提交
3301
    def all_parameters(self):
3302
        return list(self.iter_parameters())
3303

3304
    def iter_parameters(self):
M
minqiyang 已提交
3305
        return (item[1] for item in six.iteritems(self.vars)
3306
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3307

Y
Yu Yang 已提交
3308
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3309 3310 3311
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3312 3313 3314
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3315
        return var
Y
Yu Yang 已提交
3316

Q
Qiao Longfei 已提交
3317 3318 3319
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3320
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3321 3322
        """
        Rename variable in vars and ops' inputs and outputs
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3335
        """
M
minqiyang 已提交
3336 3337
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3338

T
typhoonzero 已提交
3339
        if not self.has_var(name):
3340
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3341 3342
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3343
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3344 3345 3346 3347 3348 3349
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3350
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3351 3352 3353 3354
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3355
        orig_var_type = v.type
M
minqiyang 已提交
3356
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3357
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3358
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3359
        if var_type == "Parameter":
L
Leo Chen 已提交
3360 3361
            if in_dygraph_mode():
                var = ParamBase(
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3372 3373
                var = Parameter(
                    self,
3374 3375 3376 3377 3378 3379 3380 3381 3382
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3383
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3384 3385
            var = Variable(
                self,
T
typhoonzero 已提交
3386
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3387 3388 3389 3390
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3391
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3392 3393 3394
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3395
        self._sync_with_cpp()
3396
        return var
T
typhoonzero 已提交
3397

3398 3399 3400
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3401
        self.desc._remove_var(cpt.to_bytes(name))
3402 3403
        del self.vars[name]

Y
Yu Yang 已提交
3404 3405
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3406
        param = None
L
Leo Chen 已提交
3407
        if in_dygraph_mode():
3408 3409 3410 3411
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3412 3413
        else:
            param = Parameter(global_block, *args, **kwargs)
3414

3415
        if 'initializer' in kwargs:
3416 3417 3418 3419 3420

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3421
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3422
                        # are treated as initialization ops that cause error.
3423
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3424 3425 3426 3427 3428
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3429
                            continue
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3441
                # TODO already inited, do nothing, should log a warning
3442 3443 3444
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3445
        return param
Y
Yu Yang 已提交
3446

Y
Yu Yang 已提交
3447
    def append_op(self, *args, **kwargs):
3448 3449 3450 3451 3452 3453
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3454
        if in_dygraph_mode():
3455
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3456
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3457
            type = kwargs.get("type", None)
3458 3459 3460
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3461
                type=type,
M
minqiyang 已提交
3462 3463
                inputs=None,
                outputs=None,
3464
                attrs=attrs)
3465

M
minqiyang 已提交
3466 3467 3468
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3469
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3470 3471

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3472
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3473 3474
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3475 3476
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3477
        else:
3478 3479
            from paddle.fluid.dygraph.base import param_guard

3480
            op_desc = self.desc.append_op()
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3494

M
minqiyang 已提交
3495
            self.ops.append(op)
M
minqiyang 已提交
3496

3497 3498
        return op

W
Wu Yi 已提交
3499
    def _insert_op(self, index, *args, **kwargs):
3500 3501 3502 3503 3504 3505 3506 3507 3508
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3509
        self._sync_with_cpp()
F
fangshuixun007 已提交
3510
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3511

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3529 3530 3531 3532 3533 3534 3535 3536 3537
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3538 3539
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3540
        self.desc._remove_op(index, index + 1)
3541 3542
        del self.ops[index]

W
Wu Yi 已提交
3543
    def _slice_ops(self, start, end):
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3554
        return self.ops[start:end]
Y
Yancey1989 已提交
3555

W
Wu Yi 已提交
3556
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3557
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3558 3559
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3560
            op = Operator(
J
Jiabin Yang 已提交
3561
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3562

J
Jiabin Yang 已提交
3563
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3564
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3565 3566
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3567
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3568
        else:
3569 3570 3571 3572 3573 3574 3575 3576
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3577
            self.ops.insert(0, op)
3578

Y
Yu Yang 已提交
3579 3580
        return op

W
Wu Yi 已提交
3581
    def _sync_with_cpp(self):
3582
        """
3583 3584
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3585
        """
Q
Qiao Longfei 已提交
3586 3587 3588
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3606

3607
        # sync variables removed from c++ end
3608
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3609
            if not self.desc.find_var(cpt.to_bytes(var)):
3610 3611
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3612
        # sync operators from cpp
3613 3614 3615 3616
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3633 3634 3635 3636 3637

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3638
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3639 3640 3641 3642 3643 3644 3645

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3659 3660 3661 3662
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3663
    def _copy_param_info_from(self, other):
3664
        """
3665 3666
        Copy the information of parameters from the other block.

3667
        Args:
3668 3669 3670 3671 3672
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3673 3674 3675 3676 3677

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3678 3679
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3680
        for p in other.iter_parameters():
3681 3682 3683
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3684 3685
                # if the Parameter is pruned, v may be None
                continue
3686
            assert isinstance(v, Variable)
3687
            new_p = None
L
Leo Chen 已提交
3688 3689
            if in_dygraph_mode():
                new_p = ParamBase(
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3701 3702
                new_p = Parameter(
                    block=self,
3703 3704 3705
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3706 3707
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3708 3709 3710 3711 3712 3713
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3714 3715
            self.vars[new_p.name] = new_p

3716
    def _clone_variable(self, var, force_persistable=True):
3717 3718
        """
        Clone a variable into current block.
3719

3720 3721
        Args:
            var: the variable to be cloned.
3722 3723 3724
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3725 3726

        Returns:
3727
            Variable: the new  variable cloned from 'var' in current block.
3728 3729
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3730 3731 3732 3733 3734
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3735 3736
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3737
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3738 3739 3740 3741 3742 3743
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3744
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3745 3746
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3747 3748 3749 3750 3751 3752 3753
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3754
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3755 3756
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3757
        return ret_var
3758

Y
Yu Yang 已提交
3759

3760 3761 3762 3763 3764 3765
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3877
    def remove_input_by_id(self, node_id):
3878 3879 3880 3881 3882 3883
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3884
        self.node.remove_input(node_id)
3885

3886
    def remove_input(self, node):
3887 3888 3889 3890
        """
        Remove a node from inputs.

        Args:
3891
            node(IrNode): the node being removed.
3892
        """
3893
        self.node.remove_input(node.node)
3894

3895
    def append_input(self, node):
3896 3897 3898 3899
        """
        Append a node in inputs.

        Args:
3900
            node(IrNode): the node being appended.
3901
        """
3902
        self.node.append_input(node.node)
3903 3904 3905 3906 3907 3908 3909 3910

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3911
    def remove_output_by_id(self, node_id):
3912 3913 3914 3915 3916 3917
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3918
        self.node.remove_output(node_id)
3919

3920
    def remove_output(self, node):
3921 3922 3923 3924
        """
        Remove a node from outputs.

        Args:
3925
            node(IrNode): the node being removed.
3926
        """
3927
        self.node.remove_output(node.node)
3928

3929
    def append_output(self, node):
3930 3931 3932 3933
        """
        Append a node in outputs.

        Args:
3934
            node(IrNode): the node being appended.
3935
        """
3936
        self.node.append_output(node.node)
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3984
            "The node variable description can not be None."
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3995
            "The node variable description can not be None."
3996 3997
        return self.node.var().persistable()

3998 3999 4000 4001 4002 4003 4004 4005
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4006
            "The node variable description can not be None."
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4017
            "The node variable description can not be None."
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4028
            "The node variable description can not be None."
4029 4030
        return self.node.var().shape()

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4078
            "The node operator description can not be None."
4079 4080
        self.node.op()._rename_input(old_input_name, new_input_name)

4081 4082 4083 4084 4085 4086 4087 4088 4089
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4090
            "The node operator description can not be None."
4091 4092
        self.node.op()._rename_output(old_output_name, new_output_name)

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4104
            "The node operator description can not be None."
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4118
            "The node operator description can not be None."
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4129
            "The node operator description can not be None."
4130 4131
        return self.node.op().set_type(new_type)

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4147
            "The node operator description can not be None."
4148 4149 4150 4151
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4152
                all(isinstance(v, Block) for v in val):
4153 4154
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4155
                isinstance(val, core.ProgramDesc):
4156 4157 4158 4159
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4160 4161 4162 4163 4164 4165 4166 4167
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4168
            "The node operator description can not be None."
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4179
            "The node operator description can not be None."
4180 4181
        return self.node.op().output_arg_names()

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4203 4204
class IrGraph(object):
    """
4205
    Python IrGraph. Beneath it is a core.Graph, which is used for
4206
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4207 4208
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4209 4210 4211 4212
    """

    def __init__(self, graph, for_test=False):
        """
4213 4214
        Construct an IrGraph using core.Graph.

4215 4216 4217 4218 4219 4220 4221 4222 4223
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4224 4225 4226 4227
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4228 4229 4230
        Warns:
            The method only clones the graph structure, not its attributes.

4231 4232 4233
        Returns:
            IrGraph: A new and duplicated graph.
        """
4234
        g = self.graph.clone()
4235 4236
        return IrGraph(g, self._for_test)

4237
    def is_test(self):
4238 4239 4240
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4241 4242
        return self._for_test

W
WangZhen 已提交
4243
    def all_nodes(self):
4244 4245 4246
        """
        Return all nodes included in the graph as a set.
        """
4247
        return {IrNode(node) for node in self.graph.nodes()}
4248

4249
    def all_var_nodes(self):
4250 4251 4252
        """
        Return all variable nodes included in the graph as a set.
        """
4253
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4254

4255
    def all_persistable_nodes(self):
4256 4257 4258
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4259 4260 4261 4262 4263
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4264
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4265

4266
    def all_op_nodes(self):
4267 4268 4269
        """
        Return all operator nodes included in the graph as a set.
        """
4270
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4271

4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4289
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4301
            IrVarNode: the created persistable variable node.
4302
        """
4303 4304 4305 4306 4307
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4308
        return IrVarNode(self.graph.create_var_node(var_desc))
4309 4310

    def create_var_node(self, name, var_type, shape, var_dtype):
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4322
            IrVarNode: the created variable node.
4323 4324
        """

4325 4326 4327 4328
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4329
        return IrVarNode(self.graph.create_var_node(var_desc))
4330

4331 4332 4333 4334 4335 4336
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4337
    def create_var_node_from_desc(self, var_desc):
4338 4339 4340 4341 4342 4343 4344 4345
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4346
            IrVarNode: the created variable node.
4347
        """
4348
        return IrVarNode(self.graph.create_var_node(var_desc))
4349 4350

    def create_op_node(self, op_type, attrs, inputs, outputs):
4351 4352 4353 4354 4355 4356 4357
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4358
            outputs(dict): the outputs of the operator node.
4359 4360

        Returns:
4361
            IrOpNode: the created operator node.
4362
        """
4363 4364
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4365
        for attr, value in six.iteritems(attrs):
4366
            self._update_desc_attr(op_desc, attr, value)
4367
        for input_name, var_nodes in six.iteritems(inputs):
4368 4369 4370 4371
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4372
        for output_name, var_nodes in six.iteritems(outputs):
4373 4374 4375 4376
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4377
        return IrOpNode(self.graph.create_op_node(op_desc))
4378 4379

    def create_op_node_from_desc(self, op_desc):
4380 4381 4382 4383 4384 4385 4386
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4387
            IrOpNode: the created operator node.
4388
        """
4389
        return IrOpNode(self.graph.create_op_node(op_desc))
4390 4391

    def update_input_link(self, old_input_node, new_input_node, op_node):
4392 4393 4394 4395
        """
        Update the input's link of a operator node.

        Args:
4396 4397 4398
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4399
        """
4400
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4401
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4402
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4403 4404 4405 4406
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4407
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4408

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4419
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4420
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4421 4422 4423 4424 4425 4426
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4427
    def link_to(self, node_in, node_out):
4428 4429 4430 4431
        """
        Connect two nodes.

        Args:
4432 4433
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4434
        """
4435 4436 4437 4438
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4439 4440
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4441 4442

    def safe_remove_nodes(self, remove_nodes):
4443 4444 4445 4446 4447 4448 4449
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4450
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4451 4452 4453 4454
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4455 4456
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4457

Z
Zhen Wang 已提交
4458 4459 4460 4461 4462 4463 4464 4465
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4466
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4467 4468 4469 4470
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4471
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4472 4473 4474
                        ]
                    else:
                        var_nodes[each_var_name].append(
4475 4476
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4477 4478
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4479
    def has_circle(self):
4480 4481 4482 4483 4484 4485
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4486 4487 4488
        return core.has_circle(self.graph)

    def graph_num(self):
4489 4490 4491 4492 4493 4494
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4495 4496 4497
        return core.graph_num(self.graph)

    def topology_sort(self):
4498 4499 4500
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4501
        Notes: the `graph` can not contain a circle.
4502 4503

        Returns:
Z
Zhen Wang 已提交
4504
            list(IrNode): nodes in topology order.
4505
        """
4506
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4507
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4508 4509

    def build_adjacency_list(self):
4510 4511 4512 4513
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4514
            dict{IrNode: set(IrNode)}: the adjacency list.
4515
        """
4516 4517 4518 4519 4520
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4521

4522 4523 4524 4525 4526 4527 4528 4529
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4530
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4531 4532 4533 4534 4535
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4536 4537
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4538 4539 4540
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4541 4542 4543 4544 4545
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4546
        remove_ctr_vars = set()
4547
        if remove_ctr_var:
4548
            for node in self.all_var_nodes():
4549 4550 4551
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4552 4553
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4554 4555
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4556 4557 4558 4559 4560 4561
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4562 4563 4564 4565
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4566 4567
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4568 4569 4570 4571 4572 4573 4574
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4575 4576 4577
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4578
        WARN: When the graph includes backward operator nodes, the
4579 4580 4581 4582 4583 4584
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4585
        convert_pass = core.get_pass('graph_to_program_pass')
4586 4587
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4588 4589 4590 4591
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4592 4593 4594 4595 4596 4597 4598 4599
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4600 4601
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4602 4603
        return target_node

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4620
class Program(object):
D
dzhwinter 已提交
4621
    """
4622
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4623
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4624
    it will contain nested block.
4625

J
Jiabin Yang 已提交
4626 4627 4628
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4629

J
Jiabin Yang 已提交
4630
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4631
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4632 4633 4634 4635 4636 4637 4638
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4639
    **Notes**:
4640 4641 4642
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4643 4644

    Returns:
J
Jiabin Yang 已提交
4645
        Program: An empty Program.
D
dzhwinter 已提交
4646 4647

    Examples:
4648 4649
        .. code-block:: python

4650 4651 4652 4653
            import paddle
            import paddle.static as static

            paddle.enable_static()
4654

4655 4656 4657 4658 4659
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4660
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4661 4662 4663

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4664 4665 4666

    """

4667 4668
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4669 4670
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4671 4672
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4673
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4674
        self.__op_role_var = []
T
tangwei12 已提交
4675

4676 4677
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4678
        self._is_distributed = False
4679
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4680
        self._is_chief = False
4681 4682 4683
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4684
        self._endpoints = []
4685 4686 4687
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4688
        self._trainers_endpoints = []
4689
        # the distributed lookup table names
T
tangwei12 已提交
4690
        self._distributed_lookup_table = None
4691 4692 4693

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4694 4695
        self._use_lamb = False

4696 4697 4698
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4699

4700 4701 4702
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4703
        self._program_config = None
4704

H
hutuxian 已提交
4705 4706 4707
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4708 4709 4710
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4711 4712 4713
        # appending gradients times
        self._appending_grad_times = 0

4714 4715 4716 4717
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4718 4719
        # compiled program, i.e. Graph
        self._graph = None
4720 4721
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4722

4723
    def _find_var_class_kwargs(self, new_desc):
4724 4725 4726 4727 4728 4729 4730 4731
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4801
        assert block_num == self.desc.num_blocks()
4802 4803

        # clear old blocks and desc
4804 4805 4806 4807 4808 4809 4810 4811 4812
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4813

4814
        del desc
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4844 4845
                import paddle
                import paddle.static as static
4846

4847 4848 4849
                paddle.enable_static()

                prog = static.default_main_program()
4850 4851 4852 4853 4854
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4855
                prog1 = static.default_main_program()
4856 4857 4858 4859 4860 4861 4862 4863
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4864
    @property
4865
    def _op_role(self):
Y
yuyang18 已提交
4866 4867 4868 4869 4870 4871 4872 4873
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4874
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4875 4876 4877 4878
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4879 4880
        return self._current_role

4881 4882
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4883 4884 4885
        self._current_role = role

    @property
4886
    def _op_role_var(self):
Y
yuyang18 已提交
4887
        """
4888
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4889

4890
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4891 4892 4893

        Notes: This is a very low-level API. Users should not use it directly.
        """
4894
        return self.__op_role_var
Y
yuyang18 已提交
4895

4896
    @signature_safe_contextmanager
4897 4898 4899 4900 4901
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4902 4903 4904 4905
        try:
            yield
        finally:
            self._current_role = tmp_role
4906

S
rename  
sneaxiy 已提交
4907
    @signature_safe_contextmanager
W
Wu Yi 已提交
4908
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4909 4910 4911 4912 4913 4914 4915
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4916
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4917 4918 4919

        Examples:

4920
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4921
            >>> p, g = backward(...)
W
Wu Yi 已提交
4922
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4923 4924
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4925
        tmp_role = self._current_role
4926
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4927

Y
yuyang18 已提交
4928 4929
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4930
        self.__op_role_var = [
4931 4932 4933
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4934 4935 4936 4937 4938
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4939

S
rename  
sneaxiy 已提交
4940
    @signature_safe_contextmanager
X
Xin Pan 已提交
4941
    def _lr_schedule_guard(self, is_with_opt=False):
4942 4943 4944 4945 4946 4947 4948
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4949 4950 4951 4952
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4953 4954 4955

        Examples:

4956
            >>> import paddle.fluid as fluid
4957 4958 4959 4960
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4961 4962

        tmp_role = self._current_role
4963
        tmp_var = self.__op_role_var
4964

4965 4966
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4967 4968
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4969
        # TODO(typhoonzero): how to set target learning rate var
4970
        self.__op_role_var = []
4971 4972 4973 4974 4975
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4976

4977
    def __str__(self):
Y
yuyang18 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5007 5008
            import paddle
            import paddle.static as static
5009

5010 5011 5012
            paddle.enable_static()

            cur_program = static.Program()
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5024
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5025 5026 5027 5028
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5029
            program_str += '\n'
5030
        return program_str
Y
Yang Yang(Tony) 已提交
5031

F
fengjiayi 已提交
5032 5033 5034
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5035

J
Jiabin Yang 已提交
5036 5037 5038
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5039

J
Jiabin Yang 已提交
5040
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5041

H
haowang101779990 已提交
5042
        Returns:
J
Jiabin Yang 已提交
5043
            str: The debug string describe current Program.
Y
yuyang18 已提交
5044 5045

        Raises:
J
Jiabin Yang 已提交
5046
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5047

5048 5049 5050
        Examples:
            .. code-block:: python

5051 5052 5053 5054
                import paddle
                import paddle.static as static

                paddle.enable_static()
5055

5056 5057 5058
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5059
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5060
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5061
                print("program string without detail: {}".format(prog_string))
5062
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5063
        """
5064 5065 5066 5067 5068 5069 5070 5071 5072
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5073 5074 5075 5076 5077 5078
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5079 5080
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5081 5082
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5083

W
Wu Yi 已提交
5084
    def _get_desc(self):
Y
yuyang18 已提交
5085 5086 5087 5088 5089 5090 5091
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5092 5093
        return self.desc

X
version  
Xin Pan 已提交
5094 5095 5096
    def _version(self):
        return self.desc._version()

5097
    def clone(self, for_test=False):
Y
yuyang18 已提交
5098
        """
5099 5100 5101 5102
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5103

5104
        Create a new Program with forward content of original one when ``for_test=True``.
5105
        Create a new Program as same as the original one when ``for_test=False``.
5106

5107
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5108 5109 5110
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5111

5112 5113
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5114 5115
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5116
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5117

J
Jiabin Yang 已提交
5118
        For Example:
5119
          ::
L
Luo Tao 已提交
5120

5121 5122 5123 5124 5125 5126
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5127
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5128
            loss = paddle.mean(pred)
5129
            # Here we use clone before Momentum
5130 5131
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5132
            optimizer.minimize(loss)
5133

J
Jiabin Yang 已提交
5134
        Args:
5135

5136 5137
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5138

J
Jiabin Yang 已提交
5139
        Returns:
5140
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5141

Y
yuyang18 已提交
5142 5143 5144

        Examples:

5145 5146 5147 5148 5149 5150 5151
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5168
            1. To clone a test program, the sample code is:
5169 5170 5171
                .. code-block:: python

                    import six
5172 5173 5174 5175 5176 5177
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5190 5191
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5192 5193 5194

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5195 5196 5197
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5198
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5199 5200
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5201
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5202 5203
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5204
                            test_program = train_program.clone(for_test=True)
5205
                    print_prog(test_program)
J
Jiabin Yang 已提交
5206 5207 5208 5209

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5210
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5211 5212 5213 5214
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5215 5216 5217
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5218 5219 5220
                            sgd.minimize(avg_loss)


5221
            2. The clone method can be avoid if you create program for training and program for testing individually.
5222 5223 5224
                .. code-block:: python

                    import six
5225 5226 5227 5228 5229 5230
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5242

5243
                    def network():
5244
                        img = static.data(name='image', shape=[None, 784])
5245
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5246 5247
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5248
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5249 5250
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5251 5252
                        return avg_loss

5253 5254 5255 5256 5257
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5258
                            avg_loss = network()
5259
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5260
                            sgd.minimize(avg_loss)
5261
                    # the test startup program is not used.
5262 5263
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5264 5265
                            avg_loss = network()
                    print_prog(test_program_2)
5266

5267
            The two code snippets above will generate and print same programs.
5268
        """
5269

T
tangwei12 已提交
5270
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5271 5272 5273
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5274
        pruned_origin_block_id_map = None
5275
        if for_test:
5276 5277 5278 5279 5280 5281 5282 5283 5284
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5285
        else:
5286
            p = Program()
G
gongweibao 已提交
5287 5288
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5289
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5290 5291 5292
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5293 5294

            p._current_role = self._current_role
5295
            p.__op_role_var = self.__op_role_var
5296
            p._appending_grad_times = self._appending_grad_times
5297 5298
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5299

T
tangwei12 已提交
5300
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5301
            # its desc.
W
Wu Yi 已提交
5302
            p._sync_with_cpp()
5303

W
Wu Yi 已提交
5304
        p._copy_param_info_from(self)
5305
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5306
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5307
        return p
5308

5309
    def _prune(self, targets):
Y
yuyang18 已提交
5310 5311 5312 5313 5314 5315 5316 5317
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5318
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5319 5320 5321 5322
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5323
        """
5324
        return self._prune_with_input([], targets)
5325 5326

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5327
        """
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5338
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5339 5340 5341 5342 5343 5344
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5345
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5346 5347 5348
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5349 5350
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5351 5352
        if not isinstance(targets, list):
            targets = [targets]
5353 5354 5355

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5356 5357 5358
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5359

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5376 5377 5378 5379
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5380 5381 5382
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5383
                else:
5384 5385 5386
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5387 5388 5389 5390 5391 5392

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5393 5394 5395
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5396

5397 5398 5399 5400 5401 5402 5403 5404 5405
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5406
                        # Skip optimize op except for optimize op in targets,
5407 5408 5409 5410 5411
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5412

5413
                if target_op is not None:
5414 5415 5416
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5417

5418
        res = Program()
5419 5420 5421
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5422 5423 5424
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5425
        res._sync_with_cpp()
5426 5427 5428 5429 5430

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5431 5432
        return res

X
Xin Pan 已提交
5433
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5434
        """
F
fengjiayi 已提交
5435 5436 5437 5438 5439
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5440
        3. change the :code:`is_test`
Y
yuyang18 已提交
5441 5442 5443
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5444
        Args:
X
Xin Pan 已提交
5445 5446
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5447

Y
yuyang18 已提交
5448 5449 5450 5451 5452 5453
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5454
        res = Program()
5455
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5456 5457 5458 5459

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5460
        if prune_read_op:
5461 5462 5463 5464 5465 5466 5467 5468 5469
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5470
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5471 5472

        # change all `is_test` attributes to True
M
minqiyang 已提交
5473
        for i in six.moves.range(res.desc.num_blocks()):
5474
            block = res.desc.block(i)
M
minqiyang 已提交
5475
            for j in six.moves.range(block.op_size()):
5476 5477
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5478
                    op._set_attr('is_test', True)
5479 5480 5481
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5482 5483 5484
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5485
        res._sync_with_cpp()
5486 5487
        return res

5488
    def _remove_training_info(self, clip_extra=True):
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5578 5579
        return res

5580 5581
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5582
        """
5583 5584 5585
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5586

5587 5588
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5589

J
Jiabin Yang 已提交
5590
        Args:
Y
yuyang18 已提交
5591

J
Jiabin Yang 已提交
5592
            binary_str_type (str): the binary prootbuf string.
5593

J
Jiabin Yang 已提交
5594 5595
        Returns:
            Program: A deserialized Program.
5596 5597 5598 5599

        Examples:
            .. code-block:: python

5600 5601 5602 5603
                import paddle
                import paddle.static as static

                paddle.enable_static()
5604

5605 5606 5607 5608
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5609

5610
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5611

5612
                    z = paddle.matmul(x=x, y=y)
5613

5614 5615
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5616

5617
                    print(static.default_main_program())
5618
                    print(prog_restored)
Y
yuyang18 已提交
5619
        """
5620 5621
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5622
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5623
        p._sync_with_cpp()
5624
        return p
Y
Yu Yang 已提交
5625

5626
    @staticmethod
5627
    def _construct_from_desc(desc):
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5643 5644
    @property
    def random_seed(self):
Y
yuyang18 已提交
5645
        """
J
Jiabin Yang 已提交
5646
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5647 5648
        the random seed from random device.

5649 5650
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5651 5652 5653

        Returns:
            int64: Random seed in current Program
5654

5655 5656 5657 5658

        Examples:
            .. code-block:: python

5659 5660 5661
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5662

5663 5664 5665
                paddle.enable_static()

                prog = static.default_main_program()
5666
                random_seed = prog.random_seed
5667
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5668 5669 5670
                print(random_seed)
                ## 0
                ## the default random seed is 0
5671

5672
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5673
                prog.random_seed = 1
5674
                z_var = F.dropout(x_var, 0.7)
5675

5676
                print(prog.random_seed)
5677 5678
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5679
        """
D
dzhwinter 已提交
5680 5681
        return self._seed

Q
qiaolongfei 已提交
5682 5683
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5684
        """
5685 5686
        The number of :ref:`api_guide_Block_en`  in this Program.

5687 5688
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5689 5690 5691

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5692

5693 5694 5695 5696

        Examples:
            .. code-block:: python

5697 5698 5699 5700
                import paddle
                import paddle.static as static

                paddle.enable_static()
5701

5702
                prog = static.default_main_program()
5703 5704
                num_blocks = prog.num_blocks
                print(num_blocks)
5705

5706 5707
                # print result:
                # 1
Y
yuyang18 已提交
5708
        """
Q
qiaolongfei 已提交
5709 5710
        return self.desc.num_blocks()

D
dzhwinter 已提交
5711 5712 5713
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5714 5715 5716
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5717 5718
        self._seed = seed

Y
Yu Yang 已提交
5719
    def __repr__(self):
5720
        return self.__str__()
5721

Y
Yu Yang 已提交
5722
    def global_block(self):
Y
yuyang18 已提交
5723
        """
5724 5725
        .. note::
            This API has no effect in Dygraph mode.
5726 5727 5728

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5729 5730
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5731

5732 5733 5734 5735

        Examples:
            .. code-block:: python

5736 5737 5738 5739
                import paddle
                import paddle.static as static

                paddle.enable_static()
5740

5741
                prog = static.default_main_program()
5742 5743
                gb_block = prog.global_block()
                print(gb_block)
5744

Y
yuyang18 已提交
5745
        """
Y
Yu Yang 已提交
5746 5747
        return self.blocks[0]

Q
Qiao Longfei 已提交
5748
    def block(self, index):
Y
yuyang18 已提交
5749
        """
5750 5751
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5752

5753 5754
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5755 5756
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5757

J
Jiabin Yang 已提交
5758 5759
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5760 5761 5762 5763

        Examples:
            .. code-block:: python

5764 5765 5766 5767
                import paddle
                import paddle.static as static

                paddle.enable_static()
5768

5769
                prog = static.default_main_program()
5770 5771
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5772
        """
Q
Qiao Longfei 已提交
5773 5774
        return self.blocks[index]

Y
Yu Yang 已提交
5775
    def current_block(self):
Y
yuyang18 已提交
5776
        """
5777 5778
        .. note::
            This API has no effect in Dygraph mode.
5779

J
Jiabin Yang 已提交
5780 5781
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5782

J
Jiabin Yang 已提交
5783 5784
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5785

5786 5787 5788
        Examples:
            .. code-block:: python

5789 5790 5791 5792
                import paddle
                import paddle.static as static

                paddle.enable_static()
5793

5794
                prog = static.default_main_program()
5795 5796
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5797
        """
Y
Yu Yang 已提交
5798 5799
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5800
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5801 5802 5803 5804 5805
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5806

Y
yuyang18 已提交
5807 5808 5809 5810 5811
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5812
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5813 5814 5815
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5816 5817 5818 5819
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5820
    def _rollback(self):
Y
yuyang18 已提交
5821 5822 5823 5824 5825
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5826 5827
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5828
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5839 5840 5841
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5842
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5843

W
Wu Yi 已提交
5844
    def _copy_param_info_from(self, other):
5845
        """
5846
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5847

Y
yuyang18 已提交
5848 5849 5850
        Notes: This is a very low level API. Users should not invoke it
        directly.

5851 5852 5853 5854 5855 5856 5857
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5858 5859 5860
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5861

W
Wu Yi 已提交
5862
        self.global_block()._copy_param_info_from(other.global_block())
5863

5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5875 5876 5877
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5878 5879
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5880
        self._parameters_on_pservers = other._parameters_on_pservers
5881
        self._endpoints = other._endpoints
5882
        self._ps_endpoint = other._ps_endpoint
5883 5884
        self._distributed_lookup_table = other._distributed_lookup_table

5885
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5886 5887
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5888

Y
yuyang18 已提交
5889 5890 5891
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5892 5893
        Args:
            other(Program): Other program
5894 5895 5896 5897
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5898 5899 5900 5901 5902

        Returns:
            None
        """
        if not isinstance(other, Program):
5903 5904 5905
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5906

5907 5908 5909 5910 5911
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5912 5913 5914

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5915 5916
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5917
            for var in list(block.vars.values()):
5918 5919 5920 5921 5922 5923 5924
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5925

5926
    def list_vars(self):
Y
yuyang18 已提交
5927
        """
5928
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5929

J
Jiabin Yang 已提交
5930
        Returns:
5931
            iterable Tensors: The Generator will yield every Tensor in this program.
5932 5933 5934 5935

        Examples:
            .. code-block:: python

5936 5937
                import paddle
                import paddle.static as static
5938

5939 5940 5941 5942 5943
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5944 5945
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5946

5947 5948
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5949
        """
5950
        for each_block in self.blocks:
5951
            for each_var in list(each_block.vars.values()):
5952 5953
                yield each_var

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5964 5965 5966 5967
                import paddle
                import paddle.static as static

                paddle.enable_static()
5968

5969 5970
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5971
                hidden = static.nn.fc(x=data, size=10)
5972 5973
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5974 5975 5976 5977 5978 5979 5980

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5981 5982
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6160

6161
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6162
class Parameter(Variable):
6163
    """
6164
    Parameter is derived from Variable. A parameter is a persistable
6165
    Variable, and will be updated by optimizers after each iteration.
6166
    The training of a neural network is essentially the updating of
6167 6168
    its parameters.

6169
    Relative to a general Variable, a Parameter has several its own
6170 6171
    member variables:

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6182 6183
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6184 6185
    """

6186 6187 6188 6189 6190 6191
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6192 6193 6194 6195 6196
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6197
        if len(shape) == 0:
6198 6199
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6200 6201 6202

        for each in shape:
            if each < 0:
6203 6204 6205
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6206 6207

        Variable.__init__(
6208 6209 6210 6211 6212 6213 6214
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6215 6216 6217 6218
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6219 6220
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6221
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6222

6223 6224
        self.need_clip = kwargs.get('need_clip', True)

6225 6226
        self.is_distributed = False

6227 6228
        self.is_parameter = True

F
fengjiayi 已提交
6229
    def __str__(self):
6230
        return self._to_readable_code()
F
fengjiayi 已提交
6231

F
update  
fengjiayi 已提交
6232 6233 6234
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6235

F
update  
fengjiayi 已提交
6236 6237 6238 6239 6240 6241 6242 6243
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6244 6245 6246 6247 6248 6249 6250 6251 6252
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6253 6254 6255 6256 6257 6258
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6259
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6260
            for attr_name in additional_attr:
6261 6262
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6263 6264
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6265 6266 6267 6268
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6269

6270 6271
class ParamBase(core.VarBase):
    """
6272 6273 6274
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6275 6276 6277
    The training of a neural network is essentially the updating of
    its ParamBase.

6278
    Relative to a general Tensor, a ParamBase has several its own
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6291 6292
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6323 6324
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6325 6326 6327 6328 6329 6330 6331

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6332 6333
        self.need_clip = kwargs.get('need_clip', True)

6334
        self.is_distributed = kwargs.get('is_distributed', False)
6335
        # self.block = default_main_program().global_block()
6336

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6350
    def __str__(self):
6351
        """
6352
        Convert a ParamBase object to a readable string.
6353

6354
        Returns(str): A readable string.
6355 6356 6357 6358

        Examples:
            .. code-block:: python

6359
                import paddle
6360 6361 6362 6363 6364 6365 6366
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6367
        """
6368 6369
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6370

6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6382

6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6401 6402 6403 6404
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6552 6553
        return new_param

6554 6555 6556
    __repr__ = __str__


Y
Yu Yang 已提交
6557
# program is a global instance.
Y
Yu Yang 已提交
6558 6559
_main_program_ = Program()
_startup_program_ = Program()
6560
_startup_program_._is_start_up_program_ = True
6561

6562

6563
def default_startup_program():
Y
Yu Yang 已提交
6564
    """
Y
yuyang18 已提交
6565 6566
    Get default/global startup program.

6567 6568
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6569

6570 6571
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6572

6573 6574
    Returns:
        Program: current default startup program.
6575

6576
    Returns type: 
6577 6578 6579 6580

    Examples:
        .. code-block:: python

6581
            import paddle
6582

6583
            paddle.enable_static()
6584 6585 6586 6587
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6588
    """
Y
Yu Yang 已提交
6589
    return _startup_program_
6590

6591

6592
def default_main_program():
Y
Yu Yang 已提交
6593
    """
6594
    This API can be used to get ``default main program`` which store the 
6595
    descriptions of Ops and tensors.
T
tangwei12 已提交
6596

6597
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6598
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6599

6600 6601
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6602
    :code:`default_main_program` when the program is not specified.
6603

6604
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6605

Y
Yu Yang 已提交
6606
    Returns:
6607
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6608 6609 6610 6611

    Examples:
        ..  code-block:: python

6612
            import paddle
6613

6614
            paddle.enable_static()
6615
            # Sample Network:
6616 6617 6618
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6619

6620 6621 6622
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6623
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6624
    """
Y
Yu Yang 已提交
6625
    return _main_program_
Y
Yu Yang 已提交
6626 6627 6628 6629 6630


def switch_main_program(program):
    """
    Switch the main program to a new program.
6631

Y
Yu Yang 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6646
    Switch the startup program to a new program
Y
Yu Yang 已提交
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6659
@signature_safe_contextmanager
Y
Yu Yang 已提交
6660 6661
def program_guard(main_program, startup_program=None):
    """
6662 6663
    :api_attr: Static Graph

6664 6665 6666
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6667

G
guofei 已提交
6668
    Args:
6669 6670
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6671 6672 6673 6674
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6675
    Examples:
6676
       .. code-block:: python
T
tangwei12 已提交
6677

6678
          import paddle
Y
yuyang18 已提交
6679

6680 6681 6682 6683 6684
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6685
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6686 6687 6688

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6689

Y
Yu Yang 已提交
6690
    Examples:
6691
       .. code-block:: python
Y
yuyang18 已提交
6692

6693
          import paddle
6694

6695 6696 6697 6698 6699
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6700

Y
Yu Yang 已提交
6701
    """
6702
    from .data_feeder import check_type
6703 6704
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6705 6706
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6707
        check_type(startup_program, 'startup_program', Program,
6708
                   'paddle.static.program_guard')
6709 6710
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6711
        startup_program = switch_startup_program(startup_program)
6712 6713 6714 6715 6716 6717
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6718 6719


W
Wu Yi 已提交
6720
def _get_var(name, program=None):
X
xuwei06 已提交
6721
    """
Y
yuyang18 已提交
6722
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6723

X
xuwei06 已提交
6724 6725 6726
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6727
        If None, default_global_program() will be used.
X
xuwei06 已提交
6728 6729 6730 6731 6732 6733 6734

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6735
    assert isinstance(program, Program)
X
xuwei06 已提交
6736 6737

    return program.global_block().var(name)
6738 6739


S
rename  
sneaxiy 已提交
6740
@signature_safe_contextmanager
L
lujun 已提交
6741 6742
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6743
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6744
    _dygraph_tracer_ = tracer
6745
    core._switch_tracer(tracer)
M
minqiyang 已提交
6746

6747 6748 6749
    try:
        yield
    finally:
6750 6751
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6752 6753


S
rename  
sneaxiy 已提交
6754
@signature_safe_contextmanager
L
lujun 已提交
6755
def _dygraph_place_guard(place):
6756 6757 6758
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6759 6760
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6761 6762
    _set_dygraph_tracer_expected_place(place)

6763 6764 6765
    try:
        yield
    finally:
6766
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6767 6768 6769
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6770 6771


6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6788 6789
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6790 6791 6792 6793 6794 6795 6796 6797 6798
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6799
            import paddle
6800

Z
Zhang Ting 已提交
6801 6802 6803
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6804
            if support_gpu:
Z
Zhang Ting 已提交
6805
                place = paddle.CUDAPlace(0)
6806 6807

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6808 6809 6810
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6811

Z
Zhang Ting 已提交
6812
            with paddle.static.device_guard("cpu"):
6813
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6814 6815
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6816
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6817
                out = paddle.reshape(data1, shape=shape)
6818

Z
Zhang Ting 已提交
6819 6820
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6821 6822 6823
            result = exe.run(fetch_list=[out])
    """

6824 6825 6826 6827 6828
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6829
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6830
        raise ValueError(
6831
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6832
            "when there is no need to specify device. But received %s" % device)
6833 6834
    if index:
        device = ":".join([device, index])
6835
    pre_device = switch_device(device)
6836 6837 6838 6839
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6840 6841 6842 6843 6844


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6845
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6846 6847 6848 6849 6850 6851 6852

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6853 6854
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6855 6856 6857 6858
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6859 6860
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6861 6862 6863 6864 6865 6866 6867 6868
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6869
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6880
            import paddle
G
guofei 已提交
6881 6882

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6883
            res = paddle.get_flags(flags)
G
guofei 已提交
6884 6885 6886 6887 6888 6889
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6890 6891
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6892 6893 6894 6895 6896 6897 6898
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6899 6900
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6901 6902 6903 6904 6905 6906 6907 6908
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6909 6910 6911 6912 6913 6914 6915


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6916
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
J
jianghaicheng 已提交
6917
                          core.IPUPlace, core.MLUPlace)):
6918 6919 6920 6921 6922 6923 6924 6925 6926
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6927

6928 6929 6930
    if (place == "device"):
        return core.Place()

6931
    # GPU
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6947 6948

    # XPU
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

6996
    raise ValueError(
J
jianghaicheng 已提交
6997
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
6998
        format(place))
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret