nn.py 537.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
L
lujun 已提交
28
from ..dygraph import base
29
from ..dygraph import dygraph_utils
Y
yangyaming 已提交
30
from ..param_attr import ParamAttr
S
sneaxiy 已提交
31
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
32
from .tensor import concat, assign, fill_constant, zeros
33
from . import utils
F
fengjiayi 已提交
34
from .. import unique_name
35
from functools import reduce
36
from .. import core
L
lujun 已提交
37
from ..dygraph import layers
38
from ..data_feeder import convert_dtype, check_type_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
39 40

__all__ = [
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49 50 51
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
52 53
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
54
    'batch_norm',
L
lvmengsi 已提交
55
    'instance_norm',
H
heqiaozhi 已提交
56
    'data_norm',
X
Xin Pan 已提交
57 58 59 60 61 62 63
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
64 65
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
77
    'group_norm',
D
dengkaipeng 已提交
78
    'spectral_norm',
X
Xin Pan 已提交
79 80 81 82 83 84 85
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
86
    'lod_append',
X
Xin Pan 已提交
87 88 89 90 91
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
92
    'roi_align',
X
Xin Pan 已提交
93 94 95 96
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
97
    'resize_trilinear',
98
    'resize_nearest',
X
Xin Pan 已提交
99
    'gather',
100
    'gather_nd',
X
Xin Pan 已提交
101
    'scatter',
102 103
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
104 105 106
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
107
    'selu',
X
Xin Pan 已提交
108 109
    'log',
    'crop',
110
    'crop_tensor',
X
Xin Pan 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
125
    'unique',
126
    'unique_with_counts',
X
Xin Pan 已提交
127
    'expand',
128
    'expand_as',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
137 138
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
139 140 141 142 143 144
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
145
    'strided_slice',
X
Xin Pan 已提交
146
    'shape',
Z
zhoukunsheng 已提交
147
    'rank',
Z
zhoukunsheng 已提交
148
    'size',
X
Xin Pan 已提交
149 150 151 152 153 154 155 156 157
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
158
    'space_to_depth',
W
whs 已提交
159
    'affine_grid',
160
    'affine_channel',
B
barrierye 已提交
161
    'similarity_focus',
M
minqiyang 已提交
162
    'hash',
D
dengkaipeng 已提交
163
    'grid_sampler',
G
gmcather 已提交
164 165
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
166
    'bilinear_tensor_product',
C
chengduo 已提交
167 168
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
169
    'shuffle_channel',
170
    'temporal_shift',
S
sneaxiy 已提交
171
    'py_func',
172
    'psroi_pool',
173
    'prroi_pool',
R
ruri 已提交
174
    'pixel_shuffle',
175
    'fsp_matrix',
H
heqiaozhi 已提交
176
    'continuous_value_model',
Z
zhoukunsheng 已提交
177
    'where',
Z
zhoukunsheng 已提交
178
    'sign',
179
    'deformable_conv',
180
    'unfold',
C
cjt222 已提交
181
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
182
    'filter_by_instag',
183
    'shard_index',
H
huangjun12 已提交
184
    'hard_swish',
G
Guo Sheng 已提交
185
    'gather_tree',
186
    'uniform_random',
Y
Yu Yang 已提交
187 188 189
]


190 191 192 193 194 195 196 197 198 199 200
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    attrs = {'axis': axis, 'use_mkldnn': use_mkldnn}
    inputs = {'X': [x], 'Y': [y]}
    op = getattr(core.ops, op_name)
    outs = op(inputs, attrs)
201
    out = outs['Out'][0]
202

203 204
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
205 206


Y
Yu Yang 已提交
207 208 209 210 211 212
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
213
       name=None):
Y
Yu Yang 已提交
214
    """
215
    **Fully Connected Layer**
Y
Yu Yang 已提交
216

217 218 219
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
220
    which represents a fully connected weight matrix from each input unit to
221 222 223 224
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
225
    is not None, a bias variable will be created and added to the output.
226
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
227

228
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
229

230 231 232 233
    .. math::

        Out = Act({XW + b})

234
    When the input is a list of Tensor(or LoDTensor):
235 236 237

    .. math::

238
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
239 240 241

    In the above equation:

242 243 244
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
245
    * :math:`b`: The bias parameter created by this layer (if needed).
246
    * :math:`Act`: The activation function.
247
    * :math:`Out`: The output Tensor.
248 249 250

    .. code-block:: text

251 252 253 254 255 256 257 258 259 260 261 262 263 264
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
265 266 267 268 269 270 271 272 273 274 275 276 277
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
278
    Args:
279 280 281 282 283 284
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
        size(int): The number of output units in this layer, which also means the feature size of ouput
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
285
            two dimensions. If this happens, the multidimensional tensor will first be flattened
286 287
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
288
            dimensions will be flatten to form the first dimension of the final matrix (height of
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
304 305

    Raises:
306
        ValueError: If dimensions of the input Tensor is less than 2.
307 308 309 310

    Examples:
        .. code-block:: python

311
          import paddle.fluid as fluid
312
          # when input is single tensor
313
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
314
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
315 316

          # when input are multiple tensors
317 318
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
319
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
320
    """
C
caoying03 已提交
321
    helper = LayerHelper("fc", **locals())
322
    check_type(input, 'input', (list, tuple, Variable), 'fc')
323 324
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
325
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
326
    dtype = helper.input_dtype()
327
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
328
    mul_results = []
329 330
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
331 332 333
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
334

Y
Yu Yang 已提交
335
        w = helper.create_parameter(
336
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
        tmp = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
342
            outputs={"Out": tmp},
M
mozga-intel 已提交
343 344
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
345 346 347 348
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
349
    else:
X
Xin Pan 已提交
350
        pre_bias = helper.create_variable_for_type_inference(dtype)
351
        helper.append_op(
352 353 354
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
355
            attrs={"use_mkldnn": False})
356 357 358 359
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
360 361


362 363 364
def embedding(input,
              size,
              is_sparse=False,
365
              is_distributed=False,
366 367 368
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
369
    """
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
423 424

    Args:
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
452

453
    Returns:
454
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
455

456 457
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
458

B
bdzhuxiaoning 已提交
459
          import paddle.fluid as fluid
460 461 462 463 464 465 466 467 468 469 470 471 472 473
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

          # exampel 1
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
474 475 476
    """

    helper = LayerHelper('embedding', **locals())
477 478 479 480
    check_type_and_dtype(input, 'input', Variable, ['int64'],
                         'fluid.layers.embedding')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
481
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
482 483
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
484 485
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
486
    tmp = helper.create_variable_for_type_inference(dtype)
487 488
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
489 490 491 492 493
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
494 495 496
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
497
            'remote_prefetch': remote_prefetch,
498 499
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
500 501 502
    return tmp


H
hutuxian 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
551
@templatedoc()
552
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
553 554 555 556 557 558
    """
    Linear Chain CRF.

    ${comment}

    Args:
559
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
560
        label(${label_type}): ${label_comment}
561
        Length(${length_type}): ${length_comment}
562
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
563 564

    Returns:
D
dzhwinter 已提交
565 566
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
567
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
568

J
JesseyXujin 已提交
569 570 571
    Examples:
        .. code-block:: python

572 573 574 575 576 577 578
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
579 580
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
603 604 605
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
606 607 608 609 610 611
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
612
                     name='crfw',
613 614 615 616 617 618
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
619

620 621 622
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
623
            ll=np.array([[3],[3],[4],[2]])
624 625 626
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
627 628 629 630 631
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

632 633 634
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
635
            
Y
yuyang18 已提交
636
    """
Y
Yu Yang 已提交
637
    helper = LayerHelper('linear_chain_crf', **locals())
638
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
639 640 641 642
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
643 644 645 646 647 648 649 650
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
651 652 653 654 655 656
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
657
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
658 659
    helper.append_op(
        type='linear_chain_crf',
660
        inputs=this_inputs,
Y
Yu Yang 已提交
661 662 663 664 665 666 667 668 669 670
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
671
@templatedoc()
672
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
673 674
    """
    ${comment}
Y
yi.wu 已提交
675

W
wopeizl 已提交
676 677
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
678

Y
Yibing Liu 已提交
679 680 681
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
682

Y
Yibing Liu 已提交
683
        label(${label_type}, optional): ${label_comment}
684
        
Y
Yibing Liu 已提交
685
        length(${length_type}, optional): ${length_comment}
686

W
wopeizl 已提交
687 688
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
689

W
wopeizl 已提交
690 691
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
692

693
           import paddle.fluid as fluid
694 695 696

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
697 698
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
699 700 701
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
702
                     param_attr=fluid.ParamAttr(name="crfw"))
703
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
704
                     param_attr=fluid.ParamAttr(name="crfw"))
705 706 707

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
708 709 710
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
711 712 713 714 715 716 717
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
718 719 720 721 722
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
723 724 725
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
726 727
    helper.append_op(
        type='crf_decoding',
728
        inputs=inputs,
W
wopeizl 已提交
729
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
730

W
wopeizl 已提交
731
    return viterbi_path
Y
Yu Yang 已提交
732 733


Y
yi.wu 已提交
734
@templatedoc()
F
fengjiayi 已提交
735
def cos_sim(X, Y):
Y
Yu Yang 已提交
736
    """
Y
yi.wu 已提交
737 738 739
    ${comment}

    Args:
740 741
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
742

Y
yi.wu 已提交
743
    Returns:
L
lvmengsi 已提交
744
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
745 746 747 748

    Examples:
        .. code-block:: python

749
            import paddle.fluid as fluid
L
lvmengsi 已提交
750 751
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
752
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
753
    """
F
fengjiayi 已提交
754
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
755 756 757
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
758 759 760 761 762 763 764 765 766 767
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
768 769 770 771 772
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
773
            dropout_implementation="downgrade_in_infer"):
774 775 776 777 778
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
779
    training. The dropout operator randomly sets (according to the given dropout
780 781 782
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
783 784
    dropout op can be removed from the program to make the program more efficient.

785
    Args:
L
lvmengsi 已提交
786
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
787
        dropout_prob (float): Probability of setting units to zero.
788 789 790 791
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
792
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
793 794
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
795 796
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
797
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
798 799

                                           - train: out = input * mask
C
ceci3 已提交
800
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
801 802 803

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
804
                                        2. upscale_in_train, upscale the outcome at training time
805

H
haowang101779990 已提交
806 807
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
808

H
haowang101779990 已提交
809 810
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
811

M
minqiyang 已提交
812

813
    Returns:
L
lvmengsi 已提交
814
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
815 816

    Examples:
817

818 819
        .. code-block:: python

820
            import paddle.fluid as fluid
L
lvmengsi 已提交
821
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
822
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
823 824
    """

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
        attrs = get_attrs(default_main_program(), dropout_prob, is_test, seed)
        attrs['is_test'] = not _dygraph_tracer()._train_mode
        inputs = {'X': [x]}
        outs = core.ops.dropout(inputs, attrs)
        return outs['Out'][0]

F
fengjiayi 已提交
844
    helper = LayerHelper('dropout', **locals())
845 846
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'dropout')
847

X
Xin Pan 已提交
848 849
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
850
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
851

852
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
853

854 855 856 857 858
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
859
        attrs=attrs)
860 861 862
    return out


Y
yi.wu 已提交
863
@templatedoc()
Y
Yu Yang 已提交
864 865 866 867
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
868 869
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
870
    """
G
Guo Sheng 已提交
871 872
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
873

M
minqiyang 已提交
874
    For some basics of chunking, please refer to
H
haowang101779990 已提交
875
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
876

G
Guo Sheng 已提交
877 878
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
879 880

    .. code-block:: python
881

Y
yi.wu 已提交
882 883 884 885 886 887 888 889 890 891
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
892
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
893

G
Guo Sheng 已提交
894 895 896
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
897 898 899 900 901 902 903 904 905 906

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
907

Y
yi.wu 已提交
908 909 910 911 912 913
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
914 915
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
916 917 918 919 920 921 922 923 924 925 926

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
927 928
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
929

Y
yi.wu 已提交
930
    Args:
G
Guo Sheng 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
            It shoud have the same shape, lod and data type as ``input`` .
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
947

Y
yi.wu 已提交
948
    Returns:
G
Guo Sheng 已提交
949 950 951 952
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
953

Y
yi.wu 已提交
954 955 956
    Examples:
        .. code-block:: python

957 958 959 960
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
961 962 963
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
964 965 966 967
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
968
            crf = fluid.layers.linear_chain_crf(
969
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
970
            crf_decode = fluid.layers.crf_decoding(
971
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
972 973 974 975 976
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
977
    """
F
fengjiayi 已提交
978
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
979 980

    # prepare output
X
Xin Pan 已提交
981 982 983 984 985 986 987
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
988

989 990 991 992 993
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
994 995
    helper.append_op(
        type="chunk_eval",
996
        inputs=this_input,
Y
Yu Yang 已提交
997 998 999
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1000 1001 1002 1003
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1004 1005 1006
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1007 1008
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1009
        })
1010 1011
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1012 1013


1014
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1015
    """
1016
    This operator implements the softmax layer. The calculation process is as follows:
1017

1018
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1019
    
1020 1021 1022 1023 1024 1025 1026
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1027

1028 1029
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1030

1031 1032 1033 1034 1035
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1036

1037
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1038

1039
    .. math::
1040

1041
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1042

1043
    Example:
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1090
    Args:
1091 1092
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1093
            library is installed. To improve numerical stablity, set use_cudnn to \
1094 1095
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1096
            will be named automatically. Default: None.
1097
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1098
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1099
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1100 1101

    Returns:
1102
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1103 1104 1105 1106 1107

    Examples:

        .. code-block:: python

1108 1109
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1120
    """
1121
    helper = LayerHelper('softmax', **locals())
1122 1123
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'softmax')
1124

1125
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1126
    softmax_out = helper.create_variable_for_type_inference(dtype)
1127 1128 1129 1130
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1131 1132
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1133 1134 1135
    return softmax_out


Y
Yu Yang 已提交
1136 1137 1138
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1139 1140
           stride=1,
           padding=0,
1141
           dilation=1,
Y
Yu Yang 已提交
1142 1143 1144
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1145
           use_cudnn=True,
1146
           act=None,
L
liym27 已提交
1147 1148
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1149
    """
C
chengduoZH 已提交
1150
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1151
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1152
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1153
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1154 1155 1156 1157 1158 1159
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1160
    for more details.
1161 1162 1163
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1164

1165
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1166

C
chengduoZH 已提交
1167 1168
    .. math::

C
refine  
chengduoZH 已提交
1169
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1170

T
tensor-tang 已提交
1171
    Where:
C
chengduoZH 已提交
1172

L
liym27 已提交
1173
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1174 1175 1176 1177
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1178
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1179 1180 1181

    Example:

1182 1183
        - Input:

W
weixing02 已提交
1184
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1185

W
weixing02 已提交
1186
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1187

1188
        - Output:
T
tensor-tang 已提交
1189

W
weixing02 已提交
1190
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1191

C
chengduoZH 已提交
1192
        Where
1193 1194

        .. math::
C
chengduoZH 已提交
1195

W
weixing02 已提交
1196 1197
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1198 1199

    Args:
L
lvmengsi 已提交
1200 1201
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1202
        num_filters(int): The number of filter. It is as same as the output
1203
            image channel.
1204 1205
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1206 1207 1208 1209 1210 1211 1212
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimention.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1213 1214
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1215 1216 1217
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1218 1219 1220
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1221 1222 1223 1224
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1225 1226 1227 1228
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1229 1230 1231 1232 1233
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1234
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1235 1236 1237 1238 1239
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1240 1241
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1242 1243
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1244 1245 1246
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1247 1248
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1249 1250
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1251 1252

    Returns:
L
lvmengsi 已提交
1253 1254 1255 1256
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1271 1272 1273
    Examples:
        .. code-block:: python

1274
          import paddle.fluid as fluid
L
lvmengsi 已提交
1275
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1276
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1277 1278
    """

1279 1280
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'conv2d')
1281
    num_channels = input.shape[1]
L
liym27 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1297
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1298

1299
    l_type = 'conv2d'
X
xzl 已提交
1300 1301
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1302
        l_type = 'depthwise_conv2d'
1303 1304 1305 1306

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1307 1308 1309 1310
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1311
            raise ValueError(
1312 1313 1314
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1315
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1316

C
chengduoZH 已提交
1317 1318
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1319
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1320

L
liym27 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1344 1345 1346
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1361
            padding = [0, 0]
L
liym27 已提交
1362 1363
        elif padding == "SAME":
            padding_algorithm = "SAME"
1364
            padding = [0, 0]
L
liym27 已提交
1365 1366

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1367

M
minqiyang 已提交
1368
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1369 1370

    def _get_default_param_initializer():
C
chengduo 已提交
1371 1372
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1381
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1382 1383

    helper.append_op(
1384
        type=l_type,
Y
Yu Yang 已提交
1385 1386 1387 1388 1389
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1390 1391 1392
        attrs={
            'strides': stride,
            'paddings': padding,
1393
            'dilations': dilation,
C
chengduoZH 已提交
1394
            'groups': groups,
1395
            'use_cudnn': use_cudnn,
1396
            'use_mkldnn': False,
L
liym27 已提交
1397 1398 1399
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1400
        })
Y
Yu Yang 已提交
1401

1402 1403 1404 1405
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1406 1407 1408 1409

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1421 1422
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1423 1424 1425
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1426
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1427 1428 1429 1430 1431
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1441
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1442
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1443 1444 1445
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1446
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1468 1469
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1470
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1471
            image channel.
1472 1473 1474 1475
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1476 1477 1478 1479 1480
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimention. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1481 1482 1483 1484 1485 1486 1487 1488
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1489 1490 1491 1492
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1493 1494 1495 1496 1497
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1508 1509
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1510 1511
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1512 1513 1514
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1515 1516 1517 1518
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1519 1520

    Returns:
L
lvmengsi 已提交
1521 1522 1523 1524
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1539 1540 1541
    Examples:
        .. code-block:: python

1542
          import paddle.fluid as fluid
L
lvmengsi 已提交
1543
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1544
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1545 1546 1547
    """

    l_type = 'conv3d'
C
chengduo 已提交
1548
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1549 1550 1551
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1567 1568 1569 1570 1571

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1572 1573 1574 1575
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1576
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1577 1578 1579 1580 1581

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1604 1605
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1606 1607
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1608 1609
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1624
            padding = [0, 0, 0]
L
liym27 已提交
1625 1626
        elif padding == "SAME":
            padding_algorithm = "SAME"
1627
            padding = [0, 0, 0]
L
liym27 已提交
1628 1629

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1630 1631 1632 1633 1634

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1635 1636 1637
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1638 1639 1640 1641 1642 1643 1644 1645
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1646
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1661 1662 1663
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1664 1665
        })

1666 1667 1668 1669
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1670 1671 1672 1673

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1674
@templatedoc()
Y
Yu Yang 已提交
1675
def pool2d(input,
C
chengduoZH 已提交
1676 1677
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1678 1679
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1680
           global_pooling=False,
C
chengduoZH 已提交
1681
           use_cudnn=True,
1682
           ceil_mode=False,
1683
           name=None,
1684 1685
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1686
    """
F
fengjiayi 已提交
1687
    ${comment}
1688 1689

    Args:
K
Kaipeng Deng 已提交
1690 1691 1692 1693 1694
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1695
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1696 1697
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1698
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1699 1700 1701
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1702 1703 1704 1705 1706 1707 1708
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1709
            Otherwise, the pool padding size will be a square of an int.
1710 1711 1712
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1713 1714 1715
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1716
        exclusive (bool): Whether to exclude padding points in average pooling
1717 1718 1719 1720
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1721

1722
    Returns:
K
Kaipeng Deng 已提交
1723
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1724 1725

    Raises:
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1738 1739 1740 1741 1742

    Examples:

        .. code-block:: python

1743
          import paddle.fluid as fluid
1744

K
Kaipeng Deng 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1788 1789 1790
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1791
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1792
            str(pool_type))
C
chengduoZH 已提交
1793

C
chengduoZH 已提交
1794 1795
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1796 1797 1798 1799
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1800 1801
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1802 1803 1804 1805 1806

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1807

C
chengduoZH 已提交
1808 1809 1810
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1833

1834 1835
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1850
            pool_padding = [0, 0]
1851 1852 1853 1854 1855 1856
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1857
            pool_padding = [0, 0]
1858 1859 1860 1861 1862

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1863
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1864
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1865 1866

    helper.append_op(
1867
        type=op_type,
1868 1869 1870 1871 1872 1873 1874 1875
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
1876
            "padding_algorithm": padding_algorithm,
1877 1878
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1879 1880
            "use_mkldnn": False,
            "exclusive": exclusive,
1881
            "data_format": data_format,
1882 1883 1884 1885 1886
        })

    return pool_out


D
dengkaipeng 已提交
1887
@templatedoc()
1888 1889 1890 1891 1892 1893 1894 1895
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
1896
           name=None,
1897 1898
           exclusive=True,
           data_format="NCDHW"):
1899
    """
1900
    ${comment}
1901 1902

    Args:
K
Kaipeng Deng 已提交
1903 1904
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1905 1906 1907
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1908
                          of the feature.
D
dengkaipeng 已提交
1909 1910 1911 1912 1913
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1925 1926 1927
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1928 1929 1930
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1931
        exclusive (bool): Whether to exclude padding points in average pooling
1932 1933 1934 1935
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1936

1937
    Returns:
K
Kaipeng Deng 已提交
1938
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1953 1954 1955 1956
    Examples:

        .. code-block:: python

1957
          import paddle.fluid as fluid
1958

K
Kaipeng Deng 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2007 2008 2009
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2010
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2011
            str(pool_type))
C
chengduoZH 已提交
2012

C
chengduoZH 已提交
2013 2014
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2015 2016 2017 2018 2019
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2020 2021
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2022 2023 2024 2025 2026

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2027

2028 2029
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2053 2054
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2055 2056 2057

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2058 2059
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2074
            pool_padding = [0, 0, 0]
2075 2076 2077 2078 2079 2080
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2081
            pool_padding = [0, 0, 0]
2082 2083 2084 2085 2086

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2087
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2088
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2089 2090

    helper.append_op(
2091
        type=op_type,
Y
Yu Yang 已提交
2092 2093 2094 2095 2096 2097 2098
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2099
            "paddings": pool_padding,
2100
            "padding_algorithm": padding_algorithm,
2101
            "use_cudnn": use_cudnn,
2102
            "ceil_mode": ceil_mode,
2103 2104
            "use_mkldnn": False,
            "exclusive": exclusive,
2105
            "data_format": data_format,
Y
Yu Yang 已提交
2106 2107 2108 2109 2110
        })

    return pool_out


2111 2112 2113 2114 2115 2116 2117
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2118
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2119 2120 2121 2122
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2123
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2138 2139

    Args:
K
Kaipeng Deng 已提交
2140 2141 2142 2143 2144
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2145 2146 2147
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2148
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2149 2150 2151 2152
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2153 2154

    Returns:
K
Kaipeng Deng 已提交
2155 2156
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2157 2158 2159 2160 2161 2162 2163 2164 2165

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2166
          # average adaptive pool2d
M
minqiyang 已提交
2167
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2168
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2169
          # of input data into m * n grids averagely and performs poolings in each
2170 2171
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2172
          #
2173 2174 2175 2176 2177 2178 2179 2180
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2181
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2182
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2183
          pool_out = fluid.layers.adaptive_pool2d(
2184 2185
                            input=data,
                            pool_size=[3, 3],
2186
                            pool_type='avg')
K
Kaipeng Deng 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2219
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2245
    return (pool_out, mask) if require_index else pool_out
2246 2247 2248 2249 2250 2251 2252 2253 2254


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2255
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2256 2257 2258 2259
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2260 2261
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2280 2281

    Args:
K
Kaipeng Deng 已提交
2282 2283 2284
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2285
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2286
                          The data type is float32 or float64.
2287
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2288
            it must contain three integers, (Depth, Height, Width).
2289
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2290
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2291 2292 2293 2294
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2295 2296

    Returns:
K
Kaipeng Deng 已提交
2297
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2298 2299 2300 2301 2302 2303 2304 2305 2306

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2307
          # average adaptive pool3d
2308 2309
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2310
          # of input data into l * m * n grids averagely and performs poolings in each
2311 2312
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2313
          #
2314 2315 2316 2317 2318 2319 2320 2321 2322
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2323
          #                 output[:, :, i, j, k] =
2324 2325
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2326 2327 2328

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2329 2330
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2331
          pool_out = fluid.layers.adaptive_pool3d(
2332
                            input=data,
D
dengkaipeng 已提交
2333
                            pool_size=[3, 3, 3],
2334
                            pool_type='avg')
K
Kaipeng Deng 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2374
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2400
    return (pool_out, mask) if require_index else pool_out
2401 2402


Y
Yu Yang 已提交
2403 2404 2405 2406 2407 2408 2409
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2410
               data_layout='NCHW',
Y
Yang Yang 已提交
2411
               in_place=False,
2412 2413
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2414
               moving_variance_name=None,
2415
               do_model_average_for_mean_and_var=True,
2416
               use_global_stats=False):
Y
Yu Yang 已提交
2417
    """
Q
qiaolongfei 已提交
2418 2419
    **Batch Normalization Layer**

L
lvmengsi 已提交
2420
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2421
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2422

Q
qiaolongfei 已提交
2423
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2424

Q
qiaolongfei 已提交
2425 2426
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2427 2428 2429
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2442

L
lvmengsi 已提交
2443 2444 2445
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2446

L
lvmengsi 已提交
2447
    moving_mean is global mean and moving_var is global variance.
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2461 2462 2463 2464
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

2465
    Args:
2466
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2467
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2468
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2469 2470
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2471 2472 2473
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2474 2475 2476 2477 2478
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2479 2480
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2481 2482 2483
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2484 2485
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2486 2487 2488
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2489 2490 2491 2492
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2493
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2494 2495 2496
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2497 2498
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2499
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2500 2501
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2502 2503
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2504 2505 2506 2507 2508
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2509 2510

    Returns:
L
lvmengsi 已提交
2511 2512
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2513 2514 2515 2516 2517

    Examples:

        .. code-block:: python

2518
            import paddle.fluid as fluid
L
lvmengsi 已提交
2519
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2520 2521
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2549
    """
C
chengduo 已提交
2550
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2551 2552
    helper = LayerHelper('batch_norm', **locals())

2553 2554
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'batch_norm')
2555
    dtype = helper.input_dtype()
2556 2557 2558 2559 2560 2561 2562

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2563 2564 2565 2566
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2585
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2586

2587 2588
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2589 2590 2591
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2592
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2593
        shape=param_shape,
W
Wu Yi 已提交
2594
        dtype=dtype)
2595 2596 2597 2598 2599 2600
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2601
            trainable=False,
W
wanghaoshuang 已提交
2602
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2603
        shape=param_shape,
W
Wu Yi 已提交
2604
        dtype=dtype)
2605
    variance.stop_gradient = True
Y
Yu Yang 已提交
2606 2607 2608 2609 2610 2611

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2612 2613 2614 2615
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2616

2617 2618 2619 2620 2621
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

X
Xin Pan 已提交
2622 2623
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2655
    helper.append_op(
2656
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2657 2658 2659 2660

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2661 2662 2663 2664 2665 2666 2667 2668
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2669
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2683
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2684
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2685
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2686 2687 2688 2689
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2690 2691
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2692 2693

    Args:
L
lvmengsi 已提交
2694 2695
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2712 2713
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2714 2715 2716 2717 2718 2719

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2720
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2784
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2785 2786 2787
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2788 2789 2790
    """
    **Data Normalization Layer**

2791
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2815 2816 2817 2818
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2819 2820 2821 2822 2823
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2824 2825
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2826 2827 2828 2829 2830 2831 2832
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2833 2834 2835
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2836 2837 2838 2839 2840 2841 2842

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2843 2844
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2845

2846
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2847
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
2924 2925 2926 2927

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2928
@templatedoc()
G
guosheng 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
2939 2940 2941 2942
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2943 2944 2945

    The formula is as follows:

Y
yuyang18 已提交
2946
    ..  math::
G
guosheng 已提交
2947

2948
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2949

2950
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2951

2952
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2953

2954 2955 2956 2957 2958
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2959

G
guosheng 已提交
2960
    Args:
2961 2962 2963 2964 2965 2966
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2967
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2968 2969 2970 2971
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2972 2973
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2974
            a default :code:`ParamAttr` would be added as scale. The
2975 2976
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2977 2978
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2979
            a default :code:`ParamAttr` would be added as bias. The
2980 2981 2982 2983
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2984 2985

    Returns:
2986
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2987 2988 2989

    Examples:

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3002
    """
L
lujun 已提交
3003
    assert in_dygraph_mode(
L
lujun 已提交
3004
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3005 3006 3007 3008 3009 3010 3011 3012
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3013
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3014 3015 3016 3017 3018 3019
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3020 3021 3022
    else:
        if param_attr:
            warnings.warn("param_attr is only avaliable with scale is True.")
G
guosheng 已提交
3023
    if shift:
3024
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3025 3026 3027
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3028 3029 3030
    else:
        if bias_attr:
            warnings.warn("bias_attr is only avaliable with shift is True.")
G
guosheng 已提交
3031 3032

    # create output
X
Xin Pan 已提交
3033 3034 3035 3036 3037
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3065
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        act(str, optional): Activation to be applied to the output of group normalizaiton.
3082 3083 3084 3085
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3086 3087
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3088 3089

    Returns:
3090 3091 3092 3093
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3094 3095 3096 3097 3098 3099
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3100 3101

    Examples:
3102
       .. code-block:: python
D
Dun 已提交
3103

3104 3105 3106
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3107 3108 3109 3110 3111 3112 3113
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3114 3115 3116 3117 3118 3119
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3133 3134
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3145 3146 3147 3148 3149
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3150 3151 3152 3153 3154

    return helper.append_activation(group_norm_out)


@templatedoc()
3155
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3156 3157 3158
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3159
    This operation calculates the spectral normalization value of weight parameters of
3160
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3161 3162
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3163

D
dengkaipeng 已提交
3164 3165 3166
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3167
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3168 3169 3170

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
K
Kaipeng Deng 已提交
3171 3172
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3173 3174 3175 3176 3177 3178 3179 3180

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3181
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3182 3183 3184 3185

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3186

D
dengkaipeng 已提交
3187
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3188 3189
                

D
dengkaipeng 已提交
3190 3191 3192 3193
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3194 3195 3196
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3197 3198 3199
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3200 3201

    Returns:
D
dengkaipeng 已提交
3202
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3203
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3204 3205

    Examples:
K
Kaipeng Deng 已提交
3206
       .. code-block:: python
D
dengkaipeng 已提交
3207

K
Kaipeng Deng 已提交
3208 3209
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3210
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3211
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3212 3213
    """
    helper = LayerHelper('spectral_norm', **locals())
3214
    dtype = weight.dtype
D
dengkaipeng 已提交
3215 3216 3217

    # create intput and parameters
    inputs = {'Weight': weight}
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3236 3237

    # create output
3238
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3239 3240

    helper.append_op(
3241
        type="spectral_norm",
D
Dun 已提交
3242
        inputs=inputs,
3243 3244 3245 3246 3247 3248
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3249

3250
    return out
D
Dun 已提交
3251 3252


Y
Yu Yang 已提交
3253 3254 3255 3256
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3257 3258 3259
                     padding=0,
                     stride=1,
                     dilation=1,
3260
                     groups=None,
C
caoying03 已提交
3261
                     param_attr=None,
3262
                     bias_attr=None,
C
chengduoZH 已提交
3263
                     use_cudnn=True,
3264
                     act=None,
3265 3266
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3267
    """
3268 3269
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3270
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3271 3272 3273
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3274
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3275
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3276 3277 3278
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3279 3280 3281 3282 3283

    For each input :math:`X`, the equation is:

    .. math::

3284
        Out = \sigma (W \\ast X + b)
3285

3286
    Where:
3287

3288 3289
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3290
    * :math:`\\ast`: Convolution operation.
3291
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3292
    * :math:`\\sigma`: Activation function.
3293
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3294

3295 3296 3297 3298
    Example:

        - Input:

3299
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3300

3301
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3302 3303 3304

        - Output:

3305
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3306 3307

        Where
Y
Yu Yang 已提交
3308

3309 3310
        .. math::

3311 3312
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3313
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3314 3315
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3316
    Note:
L
lvmengsi 已提交
3317 3318 3319 3320
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3321 3322 3323 3324
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3325 3326

    Args:
3327 3328
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3329 3330
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3331
        output_size(int|tuple, optional): The output image size. If output size is a
3332
            tuple, it must contain two integers, (image_height, image_width). None if use
3333
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3334 3335 3336
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3337
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3338 3339
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3340 3341 3342 3343 3344 3345 3346
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3347 3348 3349 3350 3351 3352 3353 3354 3355
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3356 3357 3358 3359 3360 3361 3362
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3363
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3364 3365 3366 3367
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3368
            Default: groups = 1.
3369
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3370 3371 3372
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3373
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3374 3375 3376 3377
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3378
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3379
            library is installed. Default: True.
3380
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3381
            Default: None.
L
lvmengsi 已提交
3382 3383 3384
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3385 3386 3387 3388
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3389 3390

    Returns:
L
lvmengsi 已提交
3391 3392 3393 3394 3395 3396
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3397 3398

    Raises:
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3410 3411 3412 3413

    Examples:
       .. code-block:: python

3414
          import paddle.fluid as fluid
L
lvmengsi 已提交
3415
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3416
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3417
    """
C
chengduo 已提交
3418
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3419 3420 3421 3422
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3423

3424
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3425 3426 3427 3428 3429 3430
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3431 3432 3433
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3434 3435
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3436

C
chengduoZH 已提交
3437 3438
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3483 3484 3485 3486 3487
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3488

3489 3490
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3491

3492 3493 3494 3495
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3496
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3497 3498 3499
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3500

3501 3502 3503
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3504 3505 3506 3507 3508 3509
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3510
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3511
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3512

Y
Yu Yang 已提交
3513 3514 3515
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3516
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3517
    helper.append_op(
3518
        type=op_type,
Y
Yu Yang 已提交
3519 3520
        inputs={'Input': [input],
                'Filter': [img_filter]},
3521
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3522
        attrs={
3523
            'output_size': output_size,
3524 3525
            'strides': stride,
            'paddings': padding,
3526
            'padding_algorithm': padding_algorithm,
3527 3528
            'dilations': dilation,
            'groups': groups,
3529 3530
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3531 3532
        })

3533 3534 3535 3536
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3537 3538
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3539 3540


3541
def conv3d_transpose(input,
Y
Yu Yang 已提交
3542 3543 3544
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3545 3546 3547
                     padding=0,
                     stride=1,
                     dilation=1,
3548
                     groups=None,
C
caoying03 已提交
3549
                     param_attr=None,
3550
                     bias_attr=None,
C
chengduoZH 已提交
3551
                     use_cudnn=True,
3552
                     act=None,
3553 3554
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3555
    """
3556
    The convolution3D transpose layer calculates the output based on the input,
3557
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3558
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3559 3560 3561 3562
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3563
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3564 3565 3566
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3567 3568 3569 3570 3571

    For each input :math:`X`, the equation is:

    .. math::

3572
        Out = \sigma (W \\ast X + b)
3573 3574 3575

    In the above equation:

3576 3577
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3578
    * :math:`\\ast`: Convolution operation.
3579
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3580 3581
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3582

3583 3584 3585 3586
    Example:

        - Input:

3587
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3588

3589
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3590 3591 3592

        - Output:

3593
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3594 3595

        Where
Y
Yu Yang 已提交
3596

3597 3598
        .. math::

L
lvmengsi 已提交
3599 3600 3601 3602 3603 3604
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3605

L
lvmengsi 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3621 3622
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3623
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3624 3625 3626 3627
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3628
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3629
            it must contain three integers, (filter_size_depth, filter_size_height,
3630 3631
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3632 3633 3634 3635
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3636 3637 3638 3639 3640 3641 3642 3643
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3644 3645 3646 3647 3648 3649 3650 3651
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3652
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3653 3654 3655 3656 3657
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3658
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3659 3660 3661
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3662
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3663 3664 3665 3666
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3667
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3668
            library is installed. Default: True
3669
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3670
            Default: None.
L
lvmengsi 已提交
3671 3672 3673
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3674 3675 3676 3677
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3678 3679

    Returns:
L
lvmengsi 已提交
3680 3681 3682 3683 3684
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3685 3686

    Raises:
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3698 3699 3700 3701

    Examples:
       .. code-block:: python

3702
          import paddle.fluid as fluid
L
lvmengsi 已提交
3703
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3704
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3705
    """
C
chengduo 已提交
3706
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3707 3708 3709 3710
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3711 3712
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3713
    if not isinstance(input, Variable):
3714
        raise TypeError("Input of conv3d_transpose must be Variable")
3715 3716
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3717

3718 3719
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3720

C
chengduoZH 已提交
3721 3722 3723
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3738 3739 3740 3741 3742 3743 3744 3745
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3746

3747 3748
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3749

3750 3751 3752 3753 3754 3755 3756
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3757

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3771

3772
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3773

3774 3775 3776 3777 3778
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3779

3780 3781 3782
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3794

3795 3796
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3797

3798 3799 3800 3801
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3802

3803 3804 3805 3806
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3807

3808
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3809
    helper.append_op(
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3823

3824 3825 3826 3827 3828 3829
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3830 3831


C
caoying03 已提交
3832
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3833
    """
Y
yangyaming 已提交
3834
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3835 3836

    Args:
3837 3838 3839
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3840 3841
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3842 3843
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3844
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3845
            output Tensor. The result tensor will have one fewer dimension
3846 3847 3848 3849
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3850 3851

    Returns:
3852 3853
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3854

3855 3856 3857
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3858 3859 3860
    Examples:
        .. code-block:: python

3861
            import paddle.fluid as fluid
G
guosheng 已提交
3862 3863 3864
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3865
            # Each example is followed by the corresponding output tensor.
3866
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3867 3868 3869 3870
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3871

3872
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3873 3874
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3875
            # Each example is followed by the corresponding output tensor.
3876
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3877 3878
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3879

G
guosheng 已提交
3880
    """
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
        'dim': dim if dim != None else [0],
        'keep_dim': keep_dim,
        'reduce_all': True if dim == None else False
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_sum(inputs, attrs)
        return outs['Out'][0]

3894 3895
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
3896
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3897
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3898 3899 3900 3901
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
3902
        attrs=attrs)
G
guosheng 已提交
3903
    return out
G
guosheng 已提交
3904 3905


C
caoying03 已提交
3906
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3907
    """
Y
Yibing Liu 已提交
3908
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3909 3910

    Args:
3911 3912 3913
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3914 3915
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3916
            must be in the range :math:`[-rank(input), rank(input))`. If
3917
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3918
            :math:`rank(input) + dim[i]`.
3919
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3920
            output Tensor. The result tensor will have one fewer dimension
3921 3922 3923 3924 3925
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
3926
    Returns:
3927 3928 3929 3930 3931 3932
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3933 3934 3935
    Examples:
        .. code-block:: python

3936
            import paddle.fluid as fluid
G
guosheng 已提交
3937 3938 3939 3940
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
3941
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3942 3943 3944
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3945
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3946

3947
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3948 3949 3950
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
3951
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3952 3953
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3954
    """
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
        'dim': dim if dim != None else [0],
        'keep_dim': keep_dim,
        'reduce_all': True if dim == None else False
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_mean(inputs, attrs)
        return outs['Out'][0]

3969 3970 3971
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'reduce_mean')
3972
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3973
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3974 3975 3976 3977
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
3978
        attrs=attrs)
G
guosheng 已提交
3979
    return out
3980 3981


C
caoying03 已提交
3982
def reduce_max(input, dim=None, keep_dim=False, name=None):
3983
    """
Y
yangyaming 已提交
3984
    Computes the maximum of tensor elements over the given dimension.
3985 3986

    Args:
3987 3988 3989
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3990 3991 3992
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3993
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3994
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3995
            output Tensor. The result tensor will have one fewer dimension
3996 3997 3998 3999
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4000 4001

    Returns:
4002 4003
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4004

4005 4006 4007
    Examples:
        .. code-block:: python

4008
            import paddle.fluid as fluid
4009 4010 4011 4012
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4013
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4014 4015 4016 4017
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4018

4019
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4020 4021 4022
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4023
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4024 4025
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4026 4027
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4028
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4029 4030
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4031 4032 4033 4034 4035
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4036
            'dim': dim if dim != None else [0],
4037 4038 4039 4040 4041 4042
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4043
def reduce_min(input, dim=None, keep_dim=False, name=None):
4044
    """
Y
yangyaming 已提交
4045
    Computes the minimum of tensor elements over the given dimension.
4046 4047

    Args:
4048 4049 4050
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4051 4052 4053
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4054
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4055
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4056
            output Tensor. The result tensor will have one fewer dimension
4057 4058 4059 4060
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4061 4062

    Returns:
4063 4064
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4065

4066 4067 4068
    Examples:
        .. code-block:: python

4069
            import paddle.fluid as fluid
4070 4071 4072 4073
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4074
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4075 4076 4077 4078
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4079

4080
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4081 4082 4083
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4084
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4085 4086
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4087 4088
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4089
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4090 4091
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4092 4093 4094 4095 4096
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4097
            'dim': dim if dim != None else [0],
4098 4099 4100 4101
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4102 4103


4104 4105 4106 4107 4108
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4109 4110 4111
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
4112 4113
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4114 4115
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4116
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4117
            output Tensor. The result tensor will have one fewer dimension
4118 4119 4120 4121
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4122 4123

    Returns:
4124 4125 4126
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4127 4128 4129
    Examples:
        .. code-block:: python

4130
            import paddle.fluid as fluid
4131 4132 4133 4134
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4135
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4136 4137 4138
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4139
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4140
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4141

4142
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4143 4144 4145
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4146
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4147 4148
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4149 4150
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4151
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4152 4153
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4154 4155 4156 4157 4158
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4159
            'dim': dim if dim != None else [0],
4160 4161 4162 4163 4164 4165
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4166 4167
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4168
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4169 4170

    Args:
4171 4172
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4173 4174 4175
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4176
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4177 4178
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4179
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4180
        name(str|None): A name for this layer(optional). If set None, the layer
4181
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4182

4183 4184
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4185 4186 4187

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4188
        
4189
            import paddle.fluid as fluid
4190 4191 4192
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4193 4194 4195
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4196 4197 4198 4199 4200 4201
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4202 4203
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4204
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4205
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4226
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4227 4228

    Args:
4229 4230 4231
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4232 4233
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4234
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4235 4236
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4237
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4238 4239
        name(str|None): A name for this layer(optional). If set None, the layer

4240 4241
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4242 4243 4244

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4245

4246
            import paddle.fluid as fluid
4247 4248 4249
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4250 4251 4252
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4253 4254 4255 4256 4257 4258
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4259 4260
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4261
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4262
                                     keep_dim=True)  # [[True], [False]]
4263
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4277 4278 4279 4280 4281
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4282
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4283
    """
4284
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4285 4286

    Args:
4287
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4288
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4289 4290
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4291 4292 4293 4294 4295
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4296
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4297 4298

    Returns:
4299
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4300

4301 4302 4303 4304
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4305
    Example:
G
guosheng 已提交
4306 4307
        .. code-block:: python

4308 4309
            import paddle.fluid as fluid

4310 4311
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4312 4313
                 name="input", shape=[3, 9, 5], dtype="float32")

4314 4315 4316 4317
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4328
    """
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
    if in_dygraph_mode():
        inputs = {'X': [input]}
        attrs = {}
        if isinstance(dim, int):
            dim = (len(input.shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim
        else:
            dim.stop_gradient = True
            inputs['AxisTensor'] = [dim]

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs['num'] = num_or_sections
            res = core.ops.split(inputs, attrs, {}, {'Out': num})
            return res['Out']
        elif isinstance(num_or_sections, list):
            num = len(num_or_sections)
            attrs['sections'] = list(
                map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                    num_or_sections))
            contain_var = not all(not isinstance(ele, Variable)
                                  for ele in num_or_sections)
            if contain_var:
                raise TypeError(
                    "The type of 'num_or_sections' in split must be int or list[int] in Dygraph mode, but "
                    "received %s." % ('list[Variable]'))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))

4360 4361 4362 4363 4364 4365 4366 4367 4368
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4369 4370
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4402 4403
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4404 4405 4406 4407 4408
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4409 4410
        num = num_or_sections
    else:
4411 4412 4413
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4414
        num = len(num_or_sections)
4415 4416 4417 4418 4419 4420 4421 4422 4423
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
        contain_var = not all(not isinstance(ele, Variable)
                              for ele in num_or_sections)
        if contain_var:
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4424
    outs = [
X
Xin Pan 已提交
4425
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4426 4427 4428
        for i in range(num)
    ]
    helper.append_op(
4429
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4430
    return outs
C
caoying03 已提交
4431 4432 4433 4434


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4435
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4436 4437
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4438
    .. math::
4439 4440

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4441 4442 4443 4444 4445

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4446
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4447
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4448 4449
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4450
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4451
            the default value is 1e-12.
R
ruri 已提交
4452 4453
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4454
    Returns:
R
ruri 已提交
4455
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4456 4457

    Examples:
4458

C
caoying03 已提交
4459
        .. code-block:: python
R
ruri 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4472

R
ruri 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4497 4498
    """

F
fengjiayi 已提交
4499 4500
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4501 4502
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4503 4504
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4505
    helper.append_op(
4506 4507 4508 4509
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4510
        attrs={
4511 4512
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4513 4514
        })
    return out
4515 4516


S
sneaxiy 已提交
4517
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4518
    """
Y
ying 已提交
4519 4520 4521 4522
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4523

C
chengduoZH 已提交
4524
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4525
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4526

4527 4528 4529 4530 4531
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4532
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4533

C
chengduoZH 已提交
4534
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4535
      performs in the following way.
G
guosheng 已提交
4536

4537
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4538
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4539
        last two dimensions and a batched matrix multiply supporting broadcast
4540
        applies on the two tensors.
G
guosheng 已提交
4541

Y
ying 已提交
4542 4543
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4544
    removed after matrix multiplication.
G
guosheng 已提交
4545 4546 4547

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4548 4549 4550
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4551
        alpha (float): The scale of output. Default 1.0.
4552
        name(str|None): A name for this layer(optional). If set None, the layer
4553
            will be named automatically.
G
guosheng 已提交
4554 4555

    Returns:
石晓伟 已提交
4556
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4557

G
guosheng 已提交
4558 4559 4560
    Examples:
        .. code-block:: python

4561
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4562
            # x: [B, ..., M, K], y: [B, ..., K, N]
4563
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4564

4565
            # x: [B, M, K], y: [B, K, N]
4566
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4567

4568
            # x: [B, M, K], y: [K, N]
4569
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4570

4571
            # x: [M, K], y: [K, N]
4572
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4573 4574

            # x: [B, M, K], y: [K]
4575
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4576

4577
            # x: [K], y: [K]
4578
            # fluid.layers.matmul(x, y)  # out: [1]
4579

Y
ying 已提交
4580
            # x: [M], y: [N]
4581 4582
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4583
            import paddle.fluid as fluid
4584 4585 4586
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4587
    """
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
        inputs = {'X': [x], 'Y': [y]}
        outs = core.ops.matmul(inputs, attrs)
        return outs['Out'][0]
Y
ying 已提交
4598 4599

    def __check_input(x, y):
4600 4601
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4602 4603
            check_type_and_dtype(val, name, Variable,
                                 ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4604 4605 4606 4607 4608
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4609
            y_shape = y_shape + [1]
Y
ying 已提交
4610 4611 4612 4613 4614 4615 4616

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4617 4618 4619 4620 4621
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4622

C
chengduo 已提交
4623
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4624
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4625 4626 4627
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4628
                if dim_x != y_shape[i]:
4629 4630 4631 4632 4633
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4634 4635 4636

    __check_input(x, y)

4637
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4638
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4639
    helper.append_op(
4640 4641 4642 4643
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
4644
        attrs=attrs)
4645
    return out
4646 4647


4648
def topk(input, k, name=None):
Q
qingqing01 已提交
4649
    """
4650
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4651 4652
    for the last dimension.

4653 4654
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4655 4656 4657 4658

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4659 4660
    .. code-block:: text

4661 4662 4663 4664 4665
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4666 4667 4668 4669
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4670
          Output:
F
fengjiayi 已提交
4671
            The first output:
4672 4673
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4674 4675 4676 4677
                      [10, 25],
                      [6, 10]]

            The second output:
4678 4679
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4680 4681 4682
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4683
    Args:
4684 4685 4686 4687
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4688 4689

    Returns:
4690 4691
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4692

F
fengjiayi 已提交
4693
    Raises:
4694
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4695 4696 4697 4698

    Examples:
        .. code-block:: python

4699
            import paddle.fluid as fluid
4700
            import paddle.fluid.layers as layers
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4714
    """
W
whs 已提交
4715
    inputs = {"X": [input]}
4716
    attrs = {}
W
whs 已提交
4717
    if isinstance(k, Variable):
4718
        inputs['K'] = [k]
W
whs 已提交
4719 4720
    else:
        attrs = {'k': k}
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

    if in_dygraph_mode():
        outs = core.ops.top_k(inputs, attrs)
        outs['Out'][0].stop_gradient = True
        outs['Indices'][0].stop_gradient = True
        return outs['Out'][0], outs['Indices'][0]

    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
4732 4733
    helper.append_op(
        type="top_k",
W
whs 已提交
4734
        inputs=inputs,
Q
qingqing01 已提交
4735 4736
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4737
        attrs=attrs)
Q
qingqing01 已提交
4738 4739 4740 4741 4742
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4743 4744 4745 4746 4747
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4748
    """
S
SunGaofeng 已提交
4749
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4750

S
SunGaofeng 已提交
4751
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4752 4753 4754
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4755

S
SunGaofeng 已提交
4756 4757 4758 4759
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4760 4761 4762 4763 4764
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4765
        (1) for lod mode:
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4777
        input.lod = [[4, 4]]
M
minqiyang 已提交
4778

W
whs 已提交
4779
        Computation:
4780

W
whs 已提交
4781 4782 4783 4784 4785 4786
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4787 4788 4789 4790 4791

        output.data = [[2],
                       [1],
                       [3]]

4792
        output.lod = [[2, 1]]
4793

S
SunGaofeng 已提交
4794
        (2) for padding mode:
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4821
    Parameters:
4822

S
SunGaofeng 已提交
4823 4824
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4825
                         where Lp is the sum of all input sequences' length and
4826 4827
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4828
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4829
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4830
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4831
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4832 4833
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4834
        padding_value(int): padding value.
S
SunGaofeng 已提交
4835 4836 4837
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4838 4839

    Returns:
S
SunGaofeng 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

        For padding mode, returns a tuple of (output, output_length), which was describled as below: 

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4857 4858 4859 4860

    Examples:
        .. code-block:: python

4861
            # for lod mode
S
SunGaofeng 已提交
4862
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4863
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4864
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4865 4866

            # for padding mode
S
SunGaofeng 已提交
4867 4868
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4869 4870 4871
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4872
    """
4873
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4874
    _, topk_indices = topk(input, k=1)
4875 4876

    # ctc align op
X
Xin Pan 已提交
4877
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
4903 4904


Y
fix ci.  
ying 已提交
4905
def transpose(x, perm, name=None):
Y
ying 已提交
4906
    """
4907
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
4908 4909 4910 4911 4912

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4913 4914
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
        perm (list): Permute the input accoring to the data of perm.
4915
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4916 4917

    Returns:
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
4942 4943

    Examples:
4944

Y
ying 已提交
4945 4946
        .. code-block:: python

4947
            # use append_batch_size=False to avoid prepending extra
4948
            # batch size in shape
4949
            import paddle.fluid as fluid
4950
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
4951
                            dtype='float32', append_batch_size=False)
4952
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
4953 4954
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
4955

4956
    """
4957 4958 4959 4960 4961 4962
    if in_dygraph_mode():
        attrs = {'axis': perm}
        inputs = {'X': [x]}
        outs = core.ops.transpose2(inputs, attrs)
        return outs['Out'][0]

4963 4964 4965 4966
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'transpose')
    check_type(perm, 'perm', list, 'transpose')
4967

Y
fix ci.  
ying 已提交
4968
    if len(perm) != len(x.shape):
Y
ying 已提交
4969
        raise ValueError(
4970 4971 4972 4973
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
4974 4975 4976
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
4977 4978 4979
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4980 4981

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4982 4983
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4984
    helper.append_op(
4985
        type='transpose2',
Y
fix ci.  
ying 已提交
4986
        inputs={'X': [x]},
4987 4988
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4989 4990
        attrs={'axis': perm})
    return out
4991 4992


4993 4994 4995 4996 4997 4998 4999
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5000
    """
5001
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5002 5003 5004
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5005 5006
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5007 5008 5009

    .. math::

L
Liufang Sang 已提交
5010 5011 5012 5013
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5014

L
Liufang Sang 已提交
5015
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5016

L
Liufang Sang 已提交
5017 5018
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5019

L
Liufang Sang 已提交
5020 5021 5022
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5023

L
Liufang Sang 已提交
5024 5025
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5026

L
Liufang Sang 已提交
5027 5028 5029 5030 5031 5032 5033
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5034

L
Liufang Sang 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
            If out_stride is List,  it must contain two intergers,
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5078 5079 5080
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5093
            output.dims = {8, 8}
5094

5095
            output.lod = [[4, 4]]
5096

T
Tink_Y 已提交
5097
    Examples:
5098 5099 5100

        .. code-block:: python

B
Bai Yifan 已提交
5101
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5102
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5103
                                     dtype='float32')
5104
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5105 5106
                input=data, stride=[1, 1], filter_size=[2, 2])

5107 5108

    """
L
lujun 已提交
5109
    assert not in_dygraph_mode(), (
5110
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5121
    inputs = {"X": input}
5122
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5123 5124 5125 5126 5127
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5128
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5129
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5130
    helper.append_op(
5131
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5132
    return out
5133 5134


Y
yuyang18 已提交
5135
@templatedoc()
5136
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5137 5138
    """
    ${comment}
5139 5140

    Args:
Y
yuyang18 已提交
5141
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5142 5143
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5144 5145 5146 5147 5148
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5149
        ${out_comment}.
5150 5151

    Examples:
D
Double_V 已提交
5152
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5153
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5154
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5155 5156
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5157 5158 5159
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5160 5161 5162 5163 5164 5165
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5166
    out = helper.create_variable_for_type_inference(dtype)
5167 5168 5169 5170 5171
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5172
    return helper.append_activation(out)
5173 5174


Y
yuyang18 已提交
5175
@templatedoc()
5176 5177
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5178

5179
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5180

5181
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5182

5183
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5184

5185
    For Example:
L
lujun 已提交
5186

5187
            .. code-block:: text
L
lujun 已提交
5188

5189
                Given:
L
lujun 已提交
5190

5191 5192 5193 5194
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5195

5196
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5197

5198 5199 5200 5201
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5202 5203


5204 5205 5206
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5207

5208
    Returns:
5209
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5210 5211

    Examples:
5212

X
xuezhong 已提交
5213 5214
        .. code-block:: python

5215
            import paddle.fluid as fluid
5216
            import numpy as np
5217

5218 5219 5220 5221
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5222

5223 5224 5225 5226 5227 5228 5229 5230 5231
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5232

5233 5234 5235 5236 5237 5238 5239 5240
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5241
    helper.append_op(
5242 5243 5244 5245 5246
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5247 5248


5249 5250
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5251 5252
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5253
    For each instance, it computes the smooth L1 loss element by element first
5254
    and then sums all the losses. So the shape of ouput Variable is
5255
    [batch_size, 1].
5256

5257 5258
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5259
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5260
            A LoDTensor or Tensor with type float32.
5261
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5262
            L1 loss op with same shape as :attr:`x`.
5263
            A LoDTensor or Tensor with type float32.
5264
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5265 5266
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5267
            by this tensor element by element.
5268
            A Tensor with type float32.
5269
        outside_weight (Variable|None): A tensor with rank at least 2. This
5270 5271
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5272
            element by element.
5273
            A Tensor with type float32.
5274
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5275 5276
           scalar with default value 1.0.

5277
    Returns:
5278
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5279 5280 5281 5282

    Examples:
        .. code-block:: python

5283
            import paddle.fluid as fluid
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5301
    """
5302

5303
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5304 5305
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5316
        attrs={'sigma': sigma if sigma is not None else 1.0})
5317
    return loss
5318 5319


5320
def one_hot(input, depth, allow_out_of_range=False):
5321
    """
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5376 5377

    Args:
5378 5379 5380 5381 5382
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5383
        allow_out_of_range(bool): A bool value indicating whether the input
5384 5385 5386 5387
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5388 5389

    Returns:
5390
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5391 5392

    Examples:
C
caoying03 已提交
5393
        .. code-block:: python
5394

5395
            import paddle.fluid as fluid
5396 5397 5398
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5399 5400
    """
    helper = LayerHelper("one_hot", **locals())
5401

X
Xin Pan 已提交
5402
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5403 5404 5405

    if in_dygraph_mode():
        inputs = {'X': input}
Y
Yi Liu 已提交
5406
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5407 5408
    else:
        if not isinstance(depth, Variable):
G
Guo Sheng 已提交
5409
            # user attribute
5410
            inputs = {'X': input}
Y
Yi Liu 已提交
5411
            attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5412
        else:
H
Hongyu Liu 已提交
5413
            depth.stop_gradient = True
5414
            inputs = {'X': input, 'depth_tensor': depth}
Y
Yi Liu 已提交
5415
            attrs = {'allow_out_of_range': allow_out_of_range}
5416 5417
    helper.append_op(
        type="one_hot",
5418 5419
        inputs=inputs,
        attrs=attrs,
5420 5421
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5422
    return one_hot_out
Y
Yu Yang 已提交
5423 5424


Y
Yu Yang 已提交
5425
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5426
    """
Y
Yibing Liu 已提交
5427 5428 5429
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5430 5431

    Args:
Y
Yibing Liu 已提交
5432 5433 5434
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5435

5436
    Returns:
Y
Yibing Liu 已提交
5437
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5438 5439 5440 5441

    Examples:
        .. code-block:: python

5442
           import paddle.fluid as fluid
Y
yi.wu 已提交
5443
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5444
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5445 5446
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5447 5448
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5449
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5450 5451 5452 5453 5454
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5455 5456 5457
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5458
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5459
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5460 5461
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5462
            outputs={'Out': [counter]},
5463
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5464 5465 5466
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5467 5468


5469
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5470
    """
5471
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5472

5473 5474 5475 5476
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
5477
    gurantee shape inference in compile-time.
C
caoying03 已提交
5478

5479
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5480

5481 5482 5483 5484
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5485
    2. 0 means the actual dimension value is going to be copied from the
5486
    corresponding dimension of x. The indice of 0s in shape can not exceed
5487
    the dimension of x.
5488 5489

    Here are some examples to explain it.
C
caoying03 已提交
5490 5491

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5492
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5493
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5494

5495
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5496 5497
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5498 5499
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5500
    dimensions.
C
caoying03 已提交
5501

5502
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5503 5504 5505 5506
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5507

5508 5509
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5510

C
caoying03 已提交
5511
    Args:
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5529

5530
    Returns:
5531
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5532

X
Xin Pan 已提交
5533
    Raises:
5534 5535 5536 5537
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5538

C
caoying03 已提交
5539 5540
    Examples:
        .. code-block:: python
G
guosheng 已提交
5541

5542
            import paddle.fluid as fluid
5543 5544 5545

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5546 5547
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5548
            reshaped_1 = fluid.layers.reshape(
5549 5550
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5551 5552 5553 5554 5555 5556

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5557
            # the shape of reshaped_2 is [5,10].
C
caoying03 已提交
5558
    """
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
    if in_dygraph_mode():
        #TODO(zhiqiu): open inplace if we can.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
            contain_var = not all(not isinstance(ele, Variable)
                                  for ele in shape)
            if contain_var:
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        inputs = {'X': [x]}
        outs = core.ops.reshape2(inputs, attrs)
5581 5582
        out = outs['Out'][0]
        return dygraph_utils._append_activation_in_dygraph(out, act)
5583

5584 5585 5586 5587 5588
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5589

5590
    helper = LayerHelper("reshape2", **locals())
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5621 5622
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5623 5624 5625
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5626 5627 5628 5629
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5630 5631
                else:
                    assert dim_size > 0, (
5632 5633 5634 5635
                        "Each dimension value of 'shape' in reshape must not "
                        "be negtive except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5636 5637
        return attrs_shape

5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if contain_var(shape):
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5655
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5656
    helper.append_op(
5657
        type="reshape2",
X
Xin Pan 已提交
5658
        inputs=inputs,
5659
        attrs=attrs,
5660 5661
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5662

D
dzhwinter 已提交
5663
    return helper.append_activation(out)
5664

5665

5666
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5667
    """
5668 5669 5670
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5671

H
haowang101779990 已提交
5672

5673
    .. code-block:: text 
H
haowang101779990 已提交
5674

5675
        Case1:
H
haowang101779990 已提交
5676

5677
          Input:
H
haowang101779990 已提交
5678 5679
            X.shape = (1, 3, 1, 5)
            axes = [0]
5680
          Output:
H
haowang101779990 已提交
5681 5682
            Out.shape = (3, 1, 5)

5683
        Case2:
H
haowang101779990 已提交
5684

5685
          Input:
H
haowang101779990 已提交
5686 5687
            X.shape = (1, 3, 1, 5)
            axes = []
5688
          Output:
H
haowang101779990 已提交
5689
            Out.shape = (3, 5)
M
minqiyang 已提交
5690

5691 5692 5693 5694 5695 5696 5697 5698
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5699
    Args:
5700 5701 5702 5703 5704
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5705 5706

    Returns:
5707
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5708 5709 5710 5711

    Examples:
        .. code-block:: python

5712
            import paddle.fluid as fluid
5713
            import paddle.fluid.layers as layers
5714 5715 5716 5717
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5718 5719
    """
    helper = LayerHelper("squeeze", **locals())
5720 5721 5722 5723
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int8', 'int32', 'int64'],
                         'squeeze')
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5724 5725
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5726
    helper.append_op(
5727
        type="squeeze2",
5728
        inputs={"X": input},
Y
Yibing Liu 已提交
5729
        attrs={"axes": axes},
5730 5731
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5732

5733 5734 5735
    return out


5736
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5737
    """
5738
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5739 5740
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5741

M
minqiyang 已提交
5742
    For example:
H
haowang101779990 已提交
5743 5744 5745

    .. code-block:: text

M
minqiyang 已提交
5746
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5747
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5748

Y
Yibing Liu 已提交
5749
    Args:
5750
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5751
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5752
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5753 5754

    Returns:
5755
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5756 5757 5758 5759

    Examples:
        .. code-block:: python

5760 5761 5762
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5763

Y
Yibing Liu 已提交
5764
    """
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        contain_var = not all(not isinstance(ele, Variable) for ele in axes)
        if contain_var:
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5798 5799
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5800
    helper.append_op(
5801
        type="unsqueeze2",
5802 5803
        inputs=inputs,
        attrs=attrs,
5804 5805
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5806

5807 5808
    return out

5809

Y
yangyaming 已提交
5810
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5811
    """
Y
Yibing Liu 已提交
5812
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5813 5814 5815 5816
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5817
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5818 5819 5820 5821 5822 5823

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5824
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5825 5826 5827
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5828
            target_lod: [4, 2]
Y
yangyaming 已提交
5829 5830

            then we get a 1-level LoDTensor:
5831
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5832 5833 5834 5835 5836 5837
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5838
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5839 5840 5841 5842
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5843
                y.data = [[2, 4]]
Y
yangyaming 已提交
5844 5845 5846
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5847
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5848 5849 5850 5851 5852 5853
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5854
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5855 5856 5857 5858
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5859
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5860 5861 5862 5863
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5864
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5865 5866 5867 5868
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
5869
        x (Variable): Input variable which could be a Tensor or LoDTensor.
5870
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5871
                           from :attr:`y`.
Y
yangyaming 已提交
5872
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5873
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5874 5875

    Returns:
Y
Yibing Liu 已提交
5876
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5877 5878

    Raises:
Y
Yibing Liu 已提交
5879
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5880 5881 5882 5883

    Examples:
        .. code-block:: python

5884
            import paddle.fluid as fluid
5885 5886 5887
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
5888 5889
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5890
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
5928
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
5929 5930 5931 5932 5933 5934

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
5935

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
5946 5947 5948
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

5949 5950
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5951 5952 5953 5954 5955 5956 5957 5958

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
5959
    helper.append_op(
5960
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
5961
    return out
D
dragonwarrior 已提交
5962 5963


5964 5965
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
5966
    """
5967 5968 5969
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
5970 5971 5972 5973 5974

    The formula is as follows:

    .. math::

5975
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5976 5977 5978

    In the above equation:

5979 5980 5981 5982
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
5983 5984 5985


    Args:
5986 5987 5988
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
5989 5990 5991 5992
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
5993 5994
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
5995 5996 5997 5998 5999
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6000
    Returns:
6001 6002
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6003 6004 6005

    Examples:

6006 6007 6008 6009 6010 6011 6012 6013
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6014 6015 6016 6017 6018 6019 6020 6021
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6022
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6023
            (dims))
6024 6025 6026 6027
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6028

X
Xin Pan 已提交
6029 6030 6031
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6032 6033 6034 6035 6036 6037 6038
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6039 6040 6041 6042 6043 6044 6045
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6046 6047

    return lrn_out
G
guosheng 已提交
6048 6049 6050 6051


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6052 6053
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6054

S
SunGaofeng 已提交
6055 6056 6057 6058
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6078
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6079
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6080 6081
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6082 6083
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6084 6085 6086
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6087 6088

    Returns:
S
SunGaofeng 已提交
6089 6090 6091 6092
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6093 6094 6095

    Examples:
        .. code-block:: python
G
guosheng 已提交
6096

S
SunGaofeng 已提交
6097 6098
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6099
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6100
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6101 6102 6103 6104 6105
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6106
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6107 6108 6109 6110 6111 6112 6113
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6114 6115


C
chengduo 已提交
6116 6117
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6118
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6119
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6120 6121
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6146 6147
		And
            pad_value = -1,
C
chengduo 已提交
6148

T
Tink_Y 已提交
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6163 6164

    Args:
S
SunGaofeng 已提交
6165 6166 6167
        x (Variable): Tensor, its shape spicifies the shape of output.
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6168
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6169 6170 6171
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6172 6173

    Returns:
S
SunGaofeng 已提交
6174 6175 6176 6177
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6178 6179 6180 6181 6182 6183

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6184
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6185 6186
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6187 6188 6189 6190 6191
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6192
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6202 6203 6204 6205 6206 6207
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6208 6209
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6210

6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6228
    Parameters:
6229
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6245 6246 6247 6248 6249 6250

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6251
            
6252
            import paddle.fluid as fluid
6253
            import paddle.fluid.layers as layers
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6264
    smooth_label = helper.create_variable_for_type_inference(dtype)
6265 6266 6267 6268 6269 6270 6271
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6272 6273


W
wopeizl 已提交
6274 6275 6276
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6288
    Args:
6289 6290 6291 6292 6293 6294
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6295
    Returns:
6296 6297 6298
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6299
    Examples:
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6318 6319
                input=x,
                rois=rois,
6320 6321
                pooled_height=1,
                pooled_width=1,
6322
                spatial_scale=1.0)
6323 6324 6325 6326 6327
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6345 6346


J
jerrywgz 已提交
6347 6348 6349 6350 6351 6352
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6353 6354
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6355 6356 6357 6358 6359
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6360
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6372 6373

    Returns:
W
wangguanzhong 已提交
6374 6375 6376 6377 6378
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6379 6380 6381
    Examples:
        .. code-block:: python

6382
            import paddle.fluid as fluid
6383 6384 6385 6386
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6387 6388 6389
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6390 6391 6392 6393 6394 6395
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6396
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6411
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6412
    """
S
SunGaofeng 已提交
6413 6414 6415 6416
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6417 6418 6419 6420 6421 6422 6423 6424

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6425 6426 6427 6428 6429 6430
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6431 6432 6433
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6434 6435 6436
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6437 6438

    Returns:
S
SunGaofeng 已提交
6439 6440 6441
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6442

S
SunGaofeng 已提交
6443
    Example:
6444 6445
        .. code-block:: python

S
SunGaofeng 已提交
6446
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6447 6448 6449
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6450
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6451 6452
    """
    label = one_hot(label, depth=input.shape[-1])
6453
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6454 6455 6456 6457 6458 6459
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6460 6461


6462 6463 6464 6465
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6466
                 resample='BILINEAR',
6467 6468
                 actual_shape=None,
                 align_corners=True,
6469 6470
                 align_mode=1,
                 data_format='NCHW'):
6471
    """
R
ruri 已提交
6472
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6473

6474 6475 6476 6477
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
6478

6479
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6480 6481
    future and only use :attr:`out_shape` instead.

6482
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6483

6484
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6485

K
Kaipeng Deng 已提交
6486 6487
        'TRILINEAR' : Trilinear interpolation

6488
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6489

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6500 6501 6502 6503 6504
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
6505
    Align_corners and align_mode are optinal parameters,the calculation method 
6506 6507 6508 6509
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6510
    .. code-block:: text
6511

T
Tink_Y 已提交
6512
        For scale:
6513
          
T
Tink_Y 已提交
6514
            if align_corners = True && out_size > 1 :
6515

T
Tink_Y 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6527

T
Tink_Y 已提交
6528 6529
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6530

T
Tink_Y 已提交
6531 6532
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6533

T
Tink_Y 已提交
6534 6535
          else:
              align_corners = True
6536

T
Tink_Y 已提交
6537 6538
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6539

T
Tink_Y 已提交
6540 6541
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6542

T
Tink_Y 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6553

T
Tink_Y 已提交
6554 6555 6556 6557
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6558

T
Tink_Y 已提交
6559 6560
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6561

K
Kaipeng Deng 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6584 6585 6586 6587 6588 6589
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6590 6591 6592
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6593 6594


R
ruri 已提交
6595
    Parameters:
6596 6597
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6598
        out_shape(list|tuple|Variable|None): Output shape of image resize
6599 6600 6601 6602
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6603 6604 6605
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6606
             Default: None.
6607 6608
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6609 6610
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6611 6612 6613
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6614
                                :attr:`out_shape` and :attr:`scale` specifying
6615 6616
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6617 6618 6619 6620 6621 6622
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
6623
                                Default: None
6624 6625 6626 6627
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6628
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6629
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6630
                            src_idx = scale*dst_index.
6631 6632 6633 6634 6635
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6636 6637

    Returns:
6638 6639
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6640

6641 6642 6643
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6644 6645 6646 6647
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6648
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6649 6650
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6651
        ValueError: scale should be greater than zero.
6652 6653
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6654
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6655

6656 6657
    Examples:
        .. code-block:: python
R
ruri 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6690

R
ruri 已提交
6691 6692 6693 6694 6695 6696
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6697

R
ruri 已提交
6698 6699 6700 6701 6702 6703 6704 6705
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6706

R
ruri 已提交
6707 6708
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6709

R
ruri 已提交
6710 6711 6712 6713
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6714

R
ruri 已提交
6715
		# [2L, 3L, 12L, 12L]
6716

6717
    """
6718 6719
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6720
        'TRILINEAR': 'trilinear',
6721 6722
        'NEAREST': 'nearest',
    }
6723 6724
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6725 6726
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6727
    resample_type = resample_methods[resample]
6728

K
Kaipeng Deng 已提交
6729 6730 6731 6732 6733
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6734 6735 6736 6737 6738
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6739
    if out_shape is None and scale is None:
6740
        raise ValueError("One of out_shape and scale must not be None.")
6741
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6742
    dtype = helper.input_dtype()
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6753 6754 6755
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6756 6757 6758 6759 6760
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6761
    inputs = {"X": input}
D
dengkaipeng 已提交
6762
    attrs = {
6763 6764 6765
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6766 6767
        "interp_method": resample_type,
        "align_corners": align_corners,
6768 6769
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6770 6771
    }

6772
    if out_shape is not None:
6773
        if isinstance(out_shape, Variable):
6774
            out_shape.stop_gradient = True
6775
            inputs['OutSize'] = out_shape
6776 6777
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6778 6779
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6808 6809 6810 6811
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6812 6813 6814 6815 6816 6817 6818
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6819 6820 6821 6822
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6823 6824 6825 6826 6827 6828 6829 6830 6831
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6832

6833
    else:
6834 6835 6836
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6837
        elif isinstance(scale, float) or isinstance(scale, int):
6838
            if scale <= 0:
6839
                raise ValueError("Attr(scale) should be greater than zero.")
6840
            attrs['scale'] = float(scale)
6841 6842 6843
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6844

6845
    if isinstance(actual_shape, Variable):
6846 6847 6848 6849 6850
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
6851 6852 6853 6854
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6855
    out = helper.create_variable_for_type_inference(dtype)
6856
    helper.append_op(
6857
        type='{}_interp'.format(resample_type),
6858
        inputs=inputs,
6859
        outputs={"Out": out},
D
dengkaipeng 已提交
6860
        attrs=attrs)
6861
    return out
F
stash  
fengjiayi 已提交
6862 6863


6864
@templatedoc(op_type="bilinear_interp")
6865 6866 6867 6868
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6869 6870
                    actual_shape=None,
                    align_corners=True,
6871 6872
                    align_mode=1,
                    data_format='NCHW'):
6873
    """
R
ruri 已提交
6874
    This op resizes the input by performing bilinear interpolation based on given
6875
    output shape which specified by actual_shape, out_shape and scale
6876 6877
    in priority order.

6878 6879 6880
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

6881 6882 6883 6884
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6885 6886
    again in the other direction.

6887
    For details of bilinear interpolation, please refer to Wikipedia:
6888
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6889

T
tink2123 已提交
6890
    Align_corners and align_mode are optinal parameters,the calculation 
6891 6892 6893 6894
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6895
    .. code-block:: text
6896

T
Tink_Y 已提交
6897
        For scale:
6898
          
T
Tink_Y 已提交
6899
            if align_corners = True && out_size > 1 :
6900

T
Tink_Y 已提交
6901 6902 6903 6904
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
6905
              scale_factor = float(in_size/out_size)
6906

T
Tink_Y 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6917

T
Tink_Y 已提交
6918
          else:
T
tink2123 已提交
6919

T
Tink_Y 已提交
6920 6921 6922 6923
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6924

R
ruri 已提交
6925 6926
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
6927
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
6928
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
6929
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
6930 6931
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
6932
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
6933
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
6934
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
6935
             Default: None.
6936 6937 6938
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6939
                                :attr:`out_shape` and :attr:`scale` specifying
6940 6941
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6942 6943 6944 6945 6946 6947
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
6948
                                Default: None
6949 6950
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6951 6952 6953 6954
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
6955
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
6956 6957

    Returns:
R
ruri 已提交
6958 6959
	Variable: 4-D tensor(NCHW or NHWC).
    
6960 6961
    Examples:
        .. code-block:: python
R
ruri 已提交
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6994

R
ruri 已提交
6995 6996 6997 6998 6999 7000
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7001

R
ruri 已提交
7002 7003 7004 7005 7006 7007 7008 7009
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7010

R
ruri 已提交
7011 7012
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7013

R
ruri 已提交
7014 7015 7016 7017
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7018

R
ruri 已提交
7019
		# [2L, 3L, 12L, 12L]
7020

7021 7022
    """

7023
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7024
                        align_corners, align_mode, data_format)
7025 7026


K
Kaipeng Deng 已提交
7027 7028 7029 7030 7031 7032 7033
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7034 7035
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7036
    """
R
ruri 已提交
7037
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7038 7039 7040
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7041 7042 7043
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7072

K
Kaipeng Deng 已提交
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7091
    Parameters:
7092 7093
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7094
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7095
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7096 7097 7098
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7099
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7100 7101 7102 7103 7104 7105
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7106 7107 7108 7109 7110 7111
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
7112 7113 7114
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7115 7116 7117 7118
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7119 7120

    Returns:
R
ruri 已提交
7121
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7122 7123 7124

    Examples:
        .. code-block:: python
R
ruri 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7157

R
ruri 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7176

R
ruri 已提交
7177 7178 7179 7180
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7181

R
ruri 已提交
7182
		# [2L, 3L, 12L, 12L, 12L]
7183 7184 7185



K
Kaipeng Deng 已提交
7186 7187 7188
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7189
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7190 7191


7192
@templatedoc(op_type="nearest_interp")
7193 7194 7195 7196
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7197
                   actual_shape=None,
7198 7199
                   align_corners=True,
                   data_format='NCHW'):
7200
    """
R
ruri 已提交
7201
    This op resizes the input by performing nearest neighbor interpolation in both the
7202 7203
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7204

7205 7206 7207
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7208 7209
    Example:

T
Tink_Y 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7222
          
T
Tink_Y 已提交
7223 7224
          if:
              align_corners = False
7225

T
Tink_Y 已提交
7226 7227
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7228

T
Tink_Y 已提交
7229 7230
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7231

T
Tink_Y 已提交
7232 7233
          else:
              align_corners = True
7234

T
Tink_Y 已提交
7235 7236
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7237

T
Tink_Y 已提交
7238 7239
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7240 7241


7242
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7243
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7244

R
ruri 已提交
7245
    Parameters:
7246 7247
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7248
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7249
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7250
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7251
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7252 7253 7254
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7255 7256
                                dynamically. If provided, image resize
                                according to this given shape rather than
7257
                                :attr:`out_shape` and :attr:`scale` specifying
7258 7259
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7260 7261 7262 7263 7264 7265
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
7266
                                Default: None
7267
        align_corners(bool): ${align_corners_comment}
7268 7269 7270 7271
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7272 7273

    Returns:
R
ruri 已提交
7274
	Variable: 4-D tensor(NCHW or NHWC).
7275 7276 7277

    Examples:
        .. code-block:: python
R
ruri 已提交
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7310

R
ruri 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7326

R
ruri 已提交
7327 7328
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7329

R
ruri 已提交
7330 7331 7332 7333 7334 7335
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7336 7337 7338



7339 7340
    """

7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7351 7352 7353 7354


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7355
    This op resizes a batch of images. The short edge of input images will be
7356 7357
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7358 7359
    constant.

R
ruri 已提交
7360 7361
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7362
        out_short_len(int): The length of output images' short edge.
7363
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7364

7365
    Returns:
R
ruri 已提交
7366
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7367 7368 7369 7370

    Examples:
        .. code-block:: python

7371
            import paddle.fluid as fluid
R
ruri 已提交
7372
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7373
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7384 7385 7386
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7387 7388 7389
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7390
def gather(input, index, overwrite=True):
W
whs 已提交
7391
    """
Q
qiaolongfei 已提交
7392 7393
    **Gather Layer**

7394
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7395 7396 7397 7398
    of X indexed by `index` and concatenate them together.

    .. math::

7399
        Out = X[Index]
W
whs 已提交
7400 7401 7402 7403 7404 7405 7406


    .. code-block:: text


                Given:

7407 7408
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7419 7420 7421 7422 7423
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7424 7425 7426 7427 7428
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7429 7430 7431 7432 7433

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7434

W
whs 已提交
7435 7436
        .. code-block:: python

7437
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7438 7439
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7440 7441 7442 7443
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7444
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7445 7446 7447 7448
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7449 7450
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7451 7452 7453
    return out


7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7506 7507 7508
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7509
        name (str|None): A name for this layer(optional). If set None, the
7510
                         layer will be named automatically.
7511 7512 7513 7514 7515 7516 7517 7518 7519

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7520 7521
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7540
def scatter(input, index, updates, name=None, overwrite=True):
7541 7542 7543
    """
    **Scatter Layer**

7544
    Output is obtained by updating the input on selected indices based on updates.
7545

7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7570 7571

    Args:
7572 7573 7574 7575 7576
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 shoule be the same as input.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7577 7578
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7579
	    Default value is True.
7580 7581

    Returns:
7582
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7583 7584 7585 7586 7587

    Examples:

        .. code-block:: python

7588
            import numpy as np
7589 7590
            import paddle.fluid as fluid

7591 7592 7593
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7594

7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7609 7610 7611
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7612
    out = helper.create_variable_for_type_inference(dtype)
7613 7614 7615 7616 7617
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7618
        attrs={'overwrite': overwrite},
7619 7620 7621 7622
        outputs={"Out": out})
    return out


7623 7624 7625 7626 7627
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7628 7629 7630
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7631 7632 7633 7634
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7635

7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
7667
        ref (Variable): The ref input. Its dtype should be int32, int64, float32, float64.
7668 7669
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7670 7671 7672
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7673 7674

    Returns:
7675
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7676 7677 7678 7679 7680 7681 7682

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7683 7684 7685
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7686 7687 7688 7689 7690 7691 7692

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7693
    dtype = helper.input_dtype(input_param_name='ref')
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
7724
        updates (Variable): The updated value of scatter_nd op. Its dtype should be int32, int64, float32, float64.
7725 7726
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7727
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7738 7739
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7740 7741 7742 7743 7744 7745 7746
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7760

7761
    Examples:
Q
qingqing01 已提交
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7775
    """
F
stash  
fengjiayi 已提交
7776
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7777
    dtype = x.dtype
X
Xin Pan 已提交
7778
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7779
    if seed is None:
7780
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7781
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7782
    if isinstance(seed, int):
F
fengjiayi 已提交
7783 7784 7785 7786 7787
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7788 7789 7790 7791
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7792
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7793 7794
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7795 7796
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7797
    return out
W
whs 已提交
7798 7799


7800
def log(x, name=None):
W
wanghaoshuang 已提交
7801 7802 7803 7804 7805
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7806
        Out = \\ln(x)
W
wanghaoshuang 已提交
7807 7808

    Args:
W
Wilber 已提交
7809 7810 7811
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7812 7813

    Returns:
W
Wilber 已提交
7814
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7815 7816 7817 7818 7819

    Examples:

        .. code-block:: python

7820
            import paddle.fluid as fluid
W
Wilber 已提交
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7834 7835
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7836
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7837
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7838
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7839 7840 7841
    return out


Z
zhupengyang 已提交
7842
@templatedoc()
7843
def relu(x, name=None):
W
wanghaoshuang 已提交
7844
    """
Z
zhupengyang 已提交
7845
    ${comment}
W
wanghaoshuang 已提交
7846 7847

    Args:
Z
zhupengyang 已提交
7848 7849 7850 7851
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
7852 7853

    Returns:
Z
zhupengyang 已提交
7854
        Variable: ${out_comment}
W
wanghaoshuang 已提交
7855 7856 7857 7858 7859

    Examples:

        .. code-block:: python

7860
            import paddle.fluid as fluid
Z
zhupengyang 已提交
7861 7862 7863 7864 7865 7866 7867 7868 7869
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
W
wanghaoshuang 已提交
7870
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7871
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7872
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7873 7874
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7875
    return out
7876 7877


C
chengduo 已提交
7878 7879
def selu(x, scale=None, alpha=None, name=None):
    """
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
7894 7895

    Args:
7896 7897
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
7898 7899 7900
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7901
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
7902 7903 7904
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7905 7906
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
7907 7908

    Returns:
7909
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
7910 7911 7912 7913

    Examples:

        .. code-block:: python
7914 7915
             
            import paddle.fluid as fluid
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7943 7944 7945
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7946 7947 7948 7949
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7950
    .. math::
7951

H
haowang101779990 已提交
7952
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7953

7954
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7955 7956 7957
    is then calculated from it.


L
Liufang Sang 已提交
7958 7959
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
7960
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7961
                           Its shape should be the same as input.
L
Liufang Sang 已提交
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
7974 7975 7976
    Examples:

        .. code-block:: python
7977

B
Bai Yifan 已提交
7978
            import paddle.fluid as fluid
L
Liufang Sang 已提交
7979
            iou_shape = [None, 32, 32]
7980
            num_classes = 5
L
Liufang Sang 已提交
7981 7982 7983
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
7984
                                                          num_classes)
W
whs 已提交
7985 7986 7987
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7988 7989 7990
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7991 7992
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7993 7994
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7995
        outputs={
W
whs 已提交
7996 7997 7998
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7999 8000 8001
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8002 8003 8004 8005 8006 8007


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8008 8009
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8010

8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8039 8040 8041 8042 8043 8044
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8045
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8046
            iteration. If it is a list/tuple of integers, it's length must be the same
8047
            as the rank of `x`
S
SunGaofeng 已提交
8048 8049 8050
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8051
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8052 8053 8054 8055 8056
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8057 8058

    Returns:
S
SunGaofeng 已提交
8059 8060 8061 8062
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8063 8064 8065 8066 8067 8068 8069 8070

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8071
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8072 8073
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8074 8075 8076
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8077 8078
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8079 8080 8081 8082 8083

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8084
            isinstance(shape, Variable)):
8085 8086 8087 8088 8089
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8090
    out = helper.create_variable_for_type_inference(x.dtype)
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8108 8109


8110 8111 8112 8113 8114 8115
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8116 8117
        * Case 1 (input is a 2-D Tensor):
            Input:
8118
                X.shape = [3, 5]
8119 8120 8121 8122 8123 8124 8125
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8126 8127 8128
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8139
                shape = [2, 2, -1]
8140 8141
                offsets = [0, 0, 1]
            Output:
8142 8143 8144 8145 8146
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8147 8148

    Parameters:
8149
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8150 8151 8152 8153
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Variable, it shoule be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8154 8155
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8156 8157 8158 8159 8160 8161 8162 8163
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Variable, it shoule be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8164 8165

    Returns:
8166
        Variable: The cropped Tensor has same data type with `x`.
8167 8168

    Raises:
8169 8170 8171 8172 8173 8174
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8175 8176 8177 8178 8179 8180

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8181
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8182 8183
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8184 8185
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8186 8187 8188 8189
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8190
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8191 8192
            # crop1.shape = [-1, 2, 3]

8193 8194 8195 8196 8197
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8198

8199 8200
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8201 8202 8203
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8204 8205
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8206 8207 8208 8209 8210
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8211 8212 8213 8214 8215 8216
    check_type_and_dtype(x, 'x', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8217 8218 8219 8220 8221 8222 8223 8224

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8225
    def _contain_var(input_list):
8226 8227 8228 8229 8230
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8255 8256 8257
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8258 8259
        attrs['offsets'] = [-1] * len(x.shape)
    elif _contain_var(offsets):
8260
        new_offsets_tensor = []
8261
        offsets_attr = []
8262 8263 8264 8265
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8266
                offsets_attr.append(-1)
8267
            else:
8268
                _attr_offsets_check(dim)
8269 8270 8271
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8272
                offsets_attr.append(dim)
8273
        ipts['OffsetsTensor'] = new_offsets_tensor
8274
        attrs['offsets'] = offsets_attr
8275
    else:
8276 8277
        for offset in offsets:
            _attr_offsets_check(offset)
8278 8279 8280 8281 8282
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
8283
    elif _contain_var(shape):
8284 8285
        new_shape_tensor = []
        shape_attr = []
8286
        for dim_size in shape:
8287 8288 8289
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8290
                shape_attr.append(0)
8291
            else:
8292
                _attr_shape_check(dim_size)
8293 8294 8295 8296 8297 8298 8299 8300
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8301 8302
        for dim_size in shape:
            _attr_shape_check(dim_size)
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8313 8314 8315 8316 8317 8318 8319 8320
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8321 8322 8323 8324 8325 8326
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8327 8328

    Returns:
8329
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8330 8331 8332 8333 8334 8335 8336

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8337

S
SunGaofeng 已提交
8338
            import paddle.fluid as fluid
8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8353 8354 8355 8356
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8357
            isinstance(out_shape, Variable)):
W
whs 已提交
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

    Returns: a 4-D Tensor padded accordding to paddings and mode and data type is same as input.

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8414
        .. code-block:: text
W
whs 已提交
8415

T
Tink_Y 已提交
8416
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8417

T
Tink_Y 已提交
8418 8419
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8420

T
Tink_Y 已提交
8421
	      Case 0:
M
minqiyang 已提交
8422

T
Tink_Y 已提交
8423 8424 8425
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8426

T
Tink_Y 已提交
8427 8428 8429
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8430

T
Tink_Y 已提交
8431
	      Case 1:
M
minqiyang 已提交
8432

T
Tink_Y 已提交
8433 8434
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8435

T
Tink_Y 已提交
8436 8437 8438
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8439

T
Tink_Y 已提交
8440
	      Case 2:
M
minqiyang 已提交
8441

T
Tink_Y 已提交
8442 8443
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8444

T
Tink_Y 已提交
8445 8446 8447
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8448

L
Liufang Sang 已提交
8449
    Code Examples:
W
whs 已提交
8450 8451
        .. code-block:: python

B
Bai Yifan 已提交
8452
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8453
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8454 8455 8456
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8457 8458 8459
    """

    helper = LayerHelper('pad2d', **locals())
8460 8461 8462 8463

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8464
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8465
    out = helper.create_variable_for_type_inference(dtype)
8466 8467 8468 8469 8470 8471 8472 8473 8474
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8475
    helper.append_op(
8476
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8477 8478 8479 8480

    return out


8481 8482 8483 8484 8485 8486 8487
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8488 8489
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8490
    Returns:
8491
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8492 8493 8494 8495 8496

    Examples:

        .. code-block:: python

8497
            import paddle.fluid as fluid
8498 8499 8500 8501 8502 8503 8504 8505 8506
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8507 8508
    """
    helper = LayerHelper('elu', **locals())
8509 8510
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'elu')
X
Xin Pan 已提交
8511
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8524

8525 8526
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8527 8528 8529 8530
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8531 8532 8533

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8534 8535 8536 8537 8538

    Examples:

        .. code-block:: python

8539
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8540 8541 8542 8543 8544 8545 8546 8547
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8548 8549
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8550
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8562 8563 8564 8565
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8566
    Args:
8567 8568 8569
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8570 8571

    Returns:
8572
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8573 8574 8575 8576 8577

    Examples:

        .. code-block:: python

8578
            import paddle.fluid as fluid
8579

8580
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8581 8582 8583

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8584
            # y_1 is x^{2.0}
8585 8586 8587 8588

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8589
            # y_2 is x^{3.0}
8590 8591
    """
    helper = LayerHelper('pow', **locals())
8592 8593 8594 8595 8596 8597 8598 8599
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8600
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8601
    helper.append_op(
8602
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8603 8604 8605 8606
    return out


@templatedoc()
8607
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8618
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8619 8620 8621 8622 8623

    Examples:

        .. code-block:: python

8624
            import paddle.fluid as fluid
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8640 8641
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8642
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8656 8657 8658 8659 8660 8661 8662
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8663 8664

    Returns:
8665
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8666 8667 8668 8669 8670

    Examples:

        .. code-block:: python

8671
            import paddle.fluid as fluid
8672 8673
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8674 8675
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8676
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8689 8690 8691 8692 8693 8694 8695
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8696
    Args:
8697 8698 8699 8700 8701
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8702 8703

    Returns:
8704 8705

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8706 8707 8708 8709

    Examples:

        .. code-block:: python
8710 8711 8712 8713 8714 8715
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8716
            y = fluid.layers.swish(x, beta=2.0)
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8754 8755
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8757 8758 8759 8760 8761 8762 8763 8764
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8765 8766 8767 8768
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8769 8770
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8771

J
jerrywgz 已提交
8772 8773 8774 8775 8776 8777 8778 8779
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8780
    Args:
W
wangguanzhong 已提交
8781 8782
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8783
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8784 8785 8786 8787 8788
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8789 8790

    Returns:
W
wangguanzhong 已提交
8791 8792 8793 8794
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8795 8796 8797 8798 8799

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8800 8801
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8802
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8803
            mode = 'channel'
J
jerrywgz 已提交
8804 8805 8806
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8807 8808 8809 8810 8811 8812 8813 8814
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8815
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
8816 8817
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8818
        attr=helper.param_attr,
J
jerrywgz 已提交
8819 8820 8821
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8822
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8823
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8824 8825 8826 8827 8828 8829 8830 8831 8832
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8833 8834 8835 8836 8837 8838 8839 8840
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8841 8842
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8843
    Returns:
8844
        ${out_type}: ${out_comment}
8845 8846 8847

    Examples:

8848
    .. code-block:: python
8849

8850
            import paddle.fluid as fluid
8851 8852 8853 8854 8855 8856 8857 8858 8859
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
8860 8861
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8862
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
8879 8880
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

8881
    Returns:
8882
        output(${out_type}): ${out_comment}
8883 8884 8885 8886 8887

    Examples:

        .. code-block:: python

8888
            import paddle.fluid as fluid
W
Wilber 已提交
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
8902 8903
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8904
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
8915 8916 8917 8918
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

8919
    Args:
8920 8921 8922 8923
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

8924
    Returns:
8925
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
8926 8927 8928

    Examples:

8929 8930 8931
        .. code-block:: python 
 
            import paddle.fluid as fluid
8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
8944 8945
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8947 8948 8949 8950 8951 8952 8953 8954
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8955 8956
def flatten(x, axis=1, name=None):
    """
8957 8958 8959
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
8960

H
haowang101779990 已提交
8961
    For Example:
M
minqiyang 已提交
8962

H
haowang101779990 已提交
8963
    .. code-block:: text
8964

H
haowang101779990 已提交
8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8986 8987

    Args:
8988 8989
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
8990 8991
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8992
                    The value for axis must be in the range [0, R], where R
8993 8994 8995
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
8996 8997

    Returns:
H
haowang101779990 已提交
8998 8999 9000
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9001
                  inner dimension of the output. A Tensor with type same as input x.
9002 9003 9004

    Raises:
        ValueError: If x is not a variable.
9005
        ValueError: If axis is not in range [0, rank(x)].
9006 9007 9008 9009 9010

    Examples:

        .. code-block:: python

9011
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9012
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9013
            # x shape is [4, 4, 3]
9014
            out = fluid.layers.flatten(x=x, axis=2)
9015
            # out shape is [16, 3]
9016 9017 9018 9019 9020 9021 9022 9023 9024
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9025 9026
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9027
    helper.append_op(
9028
        type='flatten2',
9029
        inputs={"X": x},
9030 9031
        outputs={'Out': out,
                 'XShape': x_shape},
9032 9033
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9034 9035 9036


def stack(x, axis=0):
S
sneaxiy 已提交
9037
    """
9038

9039
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9040

C
chengduozh 已提交
9041 9042 9043
    .. code-block:: text

        Case 1:
9044

C
chengduozh 已提交
9045
          Input:
9046
            x[0].shape = [1, 2]
C
chengduozh 已提交
9047
            x[0].data = [ [1.0 , 2.0 ] ]
9048
            x[1].shape = [1, 2]
C
chengduozh 已提交
9049
            x[1].data = [ [3.0 , 4.0 ] ]
9050
            x[2].shape = [1, 2]
C
chengduozh 已提交
9051 9052 9053 9054 9055 9056
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9057
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9058 9059 9060
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9061

C
chengduozh 已提交
9062 9063

        Case 2:
9064 9065 9066 9067


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9068
            x[0].data = [ [1.0 , 2.0 ] ]
9069
            x[1].shape = [1, 2]
C
chengduozh 已提交
9070
            x[1].data = [ [3.0 , 4.0 ] ]
9071
            x[2].shape = [1, 2]
C
chengduozh 已提交
9072
            x[2].data = [ [5.0 , 6.0 ] ]
9073

C
chengduozh 已提交
9074 9075 9076 9077 9078

          Attrs:
            axis = 1 or axis = -2

          Output:
9079
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9080 9081 9082
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9083

C
chengduozh 已提交
9084

S
sneaxiy 已提交
9085
    Args:
9086 9087 9088 9089 9090 9091 9092 9093 9094
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9095

S
sneaxiy 已提交
9096
    Returns:
9097
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9098

9099 9100 9101
    Examples:
        .. code-block:: python

9102
            import paddle.fluid as fluid
9103
            import paddle.fluid.layers as layers
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9114

S
sneaxiy 已提交
9115 9116
    """

X
Xin Pan 已提交
9117 9118 9119 9120 9121 9122
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9123
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9124
    helper.append_op(
S
sneaxiy 已提交
9125 9126
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9127

X
Xin Pan 已提交
9128
    return out
D
dzhwinter 已提交
9129 9130


J
Jiawei Wang 已提交
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9201 9202 9203 9204
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9205
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9206

D
dzhwinter 已提交
9207 9208 9209
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9210
    raised.
D
dzhwinter 已提交
9211 9212

    Args:
9213
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9214 9215
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9216

D
dzhwinter 已提交
9217
    Returns:
9218 9219 9220 9221
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9222

9223 9224 9225 9226
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9227 9228
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9229

9230
    """
D
dzhwinter 已提交
9231 9232 9233 9234 9235 9236 9237 9238
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9239
    for _ in range(num):
X
Xin Pan 已提交
9240
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9241 9242 9243 9244 9245 9246 9247 9248

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9249 9250 9251


def expand(x, expand_times, name=None):
9252 9253 9254 9255
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9256 9257 9258 9259 9260 9261
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9262

W
whs 已提交
9263 9264 9265 9266
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9267

W
whs 已提交
9268
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9269

W
whs 已提交
9270
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9271

W
whs 已提交
9272 9273 9274 9275
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9276

W
whs 已提交
9277
    Args:
9278 9279 9280 9281 9282
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9283 9284

    Returns:
9285
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9286

9287 9288 9289
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9290 9291 9292

    Examples:
        .. code-block:: python
L
liym27 已提交
9293

W
wangchaochaohu 已提交
9294
            import paddle.fluid as fluid
L
liym27 已提交
9295 9296 9297 9298

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9299
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9300 9301 9302 9303 9304

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9305
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9306
    """
9307 9308 9309 9310
    check_type_and_dtype(x, 'x', Variable,
                         ['bool', 'float32', 'float64', 'int32', 'int64'],
                         'expand')
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9311 9312 9313
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9314

W
whs 已提交
9315
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9348 9349 9350 9351 9352

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
9353 9354 9355 9356 9357 9358 9359 9360
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
9361

L
liym27 已提交
9362 9363
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9364
    helper.append_op(
9365
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9366
    return out
S
sneaxiy 已提交
9367 9368


9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9439 9440 9441
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9442
@templatedoc()
G
fix  
gongweibao 已提交
9443 9444 9445 9446 9447 9448 9449 9450 9451
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9452 9453 9454 9455 9456 9457
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9458

9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9485
    Args:
9486 9487 9488 9489 9490 9491 9492 9493
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9494
    Returns:
9495
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9496

9497 9498 9499
    Examples:
        .. code-block:: python

9500
            import paddle.fluid as fluid
9501 9502 9503 9504
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9505

9506 9507 9508 9509
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9510 9511 9512
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9513
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9530 9531


G
gongweibao 已提交
9532
@templatedoc()
X
Xin Pan 已提交
9533
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9534
    """
9535
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9536 9537

    Args:
9538 9539 9540 9541 9542 9543 9544 9545 9546
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9547 9548

    Returns:
9549
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9550

9551
    Examples:
9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9567

9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9586 9587 9588
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9589
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9600
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9601 9602 9603 9604 9605
        })

    return out


G
gongweibao 已提交
9606
@templatedoc()
G
fix  
gongweibao 已提交
9607
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9608
    """
R
ruri 已提交
9609
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9610

R
ruri 已提交
9611 9612 9613 9614 9615
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9616
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9617 9618

    Returns:
R
ruri 已提交
9619
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9620

9621 9622 9623
    Examples:
        .. code-block:: python

9624
            import paddle.fluid as fluid
R
ruri 已提交
9625
            x = fluid.data(
9626 9627
                name="X",
                shape=[13, 11],
R
ruri 已提交
9628
                dtype='float32')
9629

Y
Yibing Liu 已提交
9630
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9631 9632 9633
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9634
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9646
@templatedoc()
G
fix  
gongweibao 已提交
9647 9648 9649 9650 9651 9652 9653 9654 9655
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9656
    ${comment}
G
fix  
gongweibao 已提交
9657 9658

    Args:
G
gongweibao 已提交
9659 9660
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9661 9662 9663 9664 9665 9666
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9667 9668

    Returns:
G
gongweibao 已提交
9669
        out (Variable): ${out_comment}
9670 9671 9672 9673

    Examples:
        .. code-block:: python

9674
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9675
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9676

Y
Yibing Liu 已提交
9677
            out = fluid.layers.gaussian_random_batch_size_like(
9678
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9679 9680 9681
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9682
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9701
@templatedoc()
X
Xin Pan 已提交
9702
def sum(x):
G
fix  
gongweibao 已提交
9703
    """
G
gongweibao 已提交
9704
    ${comment}
9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9735 9736

    Args:
9737
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9738 9739

    Returns:
9740
        Variable: ${out_comment}
9741 9742 9743 9744

    Examples:
        .. code-block:: python

9745
            import paddle.fluid as fluid
9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9768 9769 9770
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9771 9772
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9773 9774 9775 9776
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9777
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9778 9779 9780 9781

    return out


G
gongweibao 已提交
9782
@templatedoc()
G
fix  
gongweibao 已提交
9783 9784
def slice(input, axes, starts, ends):
    """
9785
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9786
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9787 9788 9789 9790 9791 9792 9793
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9794
    For slicing to the end of a dimension with unknown size, it is recommended
9795
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9796 9797 9798
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9799

9800 9801 9802 9803 9804 9805 9806 9807
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9808

9809 9810 9811 9812 9813
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9814
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9815
            Then:
9816
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9817
    Args:
9818 9819 9820 9821 9822 9823 9824 9825 9826
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
9827 9828

    Returns:
9829 9830 9831 9832 9833
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
9834

9835 9836 9837
    Examples:
        .. code-block:: python

9838
            import paddle.fluid as fluid
9839

9840 9841
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
9842

9843 9844 9845 9846 9847 9848
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
9849
            # sliced_1 is input[0:3, 0:2, 2:4].
9850 9851 9852 9853 9854

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
9855
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
9856 9857
    """

9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        inputs = {'Input': [input]}

        if isinstance(starts, (list, tuple)):
            if contain_var(starts):
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
            if contain_var(ends):
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
        outs = core.ops.slice(inputs, attrs)
        return outs['Out'][0]

9897 9898 9899 9900 9901 9902 9903
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
9904
    helper = LayerHelper('slice', **locals())
9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if not contain_var(starts):
            attrs['starts'] = starts
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if not contain_var(ends):
            attrs['ends'] = ends
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
9960 9961
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9962
    helper.append_op(
9963
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
9964 9965 9966 9967

    return out


W
wangchaochaohu 已提交
9968 9969 9970
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
9984 9985 9986 9987 9988 9989 9990 9991 9992

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
9993
                strides = [1, 1]
W
wangchaochaohu 已提交
9994
            Then:
9995
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
9996 9997 9998 9999 10000
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10001
                starts = [0, 1]
W
wangchaochaohu 已提交
10002 10003 10004 10005 10006 10007 10008 10009 10010
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10011
                starts = [0, 1]
10012 10013
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10014
            Then:
10015 10016
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10029 10030

    Returns:
W
wangchaochaohu 已提交
10031 10032 10033 10034 10035 10036
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10037

W
wangchaochaohu 已提交
10038 10039 10040 10041 10042
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10043
            input = fluid.data(
W
wangchaochaohu 已提交
10044 10045
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10046 10047 10048 10049 10050
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10051 10052 10053 10054 10055
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10056 10057 10058 10059

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10060 10061
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10062
    """
10063 10064 10065 10066 10067 10068 10069 10070 10071 10072
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10073 10074
    helper = LayerHelper('strided_slice', **locals())

10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10101 10102 10103
            'axes': axes,
            'starts': starts,
            'ends': ends,
10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if not contain_var(strides):
                attrs['strides'] = strides
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10162 10163 10164 10165

    return out


G
fix  
gongweibao 已提交
10166 10167
def shape(input):
    """
C
chengduozh 已提交
10168 10169
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10170
    Get the shape of the input.
G
fix  
gongweibao 已提交
10171 10172

    Args:
10173
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10174 10175

    Returns:
10176
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10177

10178 10179 10180
    Examples:
        .. code-block:: python

10181
            import paddle.fluid as fluid
10182
            import numpy as np
10183

10184 10185 10186 10187 10188 10189 10190 10191 10192 10193
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10194 10195 10196
    """

    helper = LayerHelper('shape', **locals())
10197
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10198
    helper.append_op(
G
fix  
gongweibao 已提交
10199
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10200 10201

    return out
G
merge  
gongweibao 已提交
10202 10203


Z
zhoukunsheng 已提交
10204 10205
def rank(input):
    """
10206
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10207 10208

    Args:
10209
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10210 10211

    Returns:
10212
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10213 10214 10215 10216

    Examples:
        .. code-block:: python

10217 10218
            import paddle.fluid as fluid

10219 10220
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10221 10222 10223 10224 10225 10226 10227 10228
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10258 10259 10260 10261
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10262
    if in_dygraph_mode():
X
Xin Pan 已提交
10263 10264 10265
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10266 10267
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10268 10269 10270 10271 10272 10273
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
    check_type_and_dtype(y, 'y', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
10274

S
sneaxiy 已提交
10275 10276
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10277 10278
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10279
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10280 10281 10282
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10283

S
sneaxiy 已提交
10284 10285 10286 10287 10288 10289 10290 10291 10292 10293
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10294
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10295
    """
10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10309 10310

    Args:
10311
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10312
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10313 10314 10315 10316
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10317 10318

    Returns:
10319
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10320 10321 10322 10323 10324

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10325 10326 10327 10328 10329 10330 10331 10332 10333
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10334

10335 10336
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10337 10338 10339 10340 10341 10342 10343 10344

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10345
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10358 10359 10360
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10361
    if name is None:
X
Xin Pan 已提交
10362
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10363 10364 10365
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10366

10367 10368 10369 10370 10371 10372 10373 10374 10375 10376
    inputs = {'X': x}
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
        inputs['ScaleTensor'] = scale
    else:
        attrs['scale'] = float(scale)

S
sneaxiy 已提交
10377
    helper.append_op(
10378
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10379
    return helper.append_activation(out)
S
sneaxiy 已提交
10380 10381


X
Xin Pan 已提交
10382
def elementwise_add(x, y, axis=-1, act=None, name=None):
10383 10384 10385 10386 10387 10388 10389 10390 10391 10392
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10393 10394
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10395 10396
            }

10397 10398
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419
        z = fluid.layers.elementwise_add(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3., 8., 6.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10420 10421
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443
        z = fluid.layers.elementwise_add(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10444 10445
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10446 10447 10448 10449 10450 10451 10452 10453 10454 10455
        z = fluid.layers.elementwise_add(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10456 10457 10458 10459
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10460 10461 10462
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10463
def elementwise_div(x, y, axis=-1, act=None, name=None):
10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10474 10475
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10476 10477
            }

10478 10479
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500
        z = fluid.layers.elementwise_div(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 0.6, 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10501 10502
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524
        z = fluid.layers.elementwise_div(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10525 10526
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10527 10528 10529 10530 10531 10532 10533 10534 10535 10536
        z = fluid.layers.elementwise_div(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10537 10538 10539 10540
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10541 10542 10543
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10544
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10545 10546 10547 10548 10549 10550 10551 10552 10553 10554
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10555 10556
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10557 10558
            }

10559 10560
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581
        z = fluid.layers.elementwise_sub(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1., -2., 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10582 10583
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605
        z = fluid.layers.elementwise_sub(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10606 10607
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617
        z = fluid.layers.elementwise_sub(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10618 10619 10620 10621
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10622 10623 10624
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10625
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10626 10627 10628 10629 10630 10631 10632 10633 10634 10635
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10636 10637
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10638 10639
            }

10640 10641
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662
        z = fluid.layers.elementwise_mul(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 15., 8.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10663 10664
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686
        z = fluid.layers.elementwise_mul(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10687 10688
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10689 10690 10691 10692 10693 10694 10695 10696 10697 10698
        z = fluid.layers.elementwise_mul(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
10699 10700 10701 10702
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
10703 10704 10705
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10706
def elementwise_max(x, y, axis=-1, act=None, name=None):
10707 10708 10709 10710 10711 10712 10713 10714 10715 10716
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10717 10718
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10719 10720
            }

10721 10722
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10744 10745
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
10757 10758 10759 10760
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
10761 10762 10763
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10764
def elementwise_min(x, y, axis=-1, act=None, name=None):
10765 10766 10767 10768 10769 10770 10771 10772 10773 10774
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10775 10776
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10777 10778
            }

10779 10780
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10801 10802
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """

S
sneaxiy 已提交
10814 10815 10816
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10817
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10818 10819 10820 10821 10822 10823 10824 10825 10826 10827
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10828 10829
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10830 10831
            }

10832 10833
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10834 10835 10836 10837 10838 10839 10840 10841 10842
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
10843 10844 10845
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
10846 10847 10848
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10849
def elementwise_mod(x, y, axis=-1, act=None, name=None):
10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
10875 10876 10877 10878
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

10879 10880 10881 10882
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
10908 10909 10910 10911
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

10912 10913 10914
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10915
for func in [
10916 10917 10918 10919
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
10920 10921
        elementwise_max,
        elementwise_pow,
10922
        elementwise_min,
10923 10924
        elementwise_mod,
        elementwise_floordiv,
10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

10942
for func in []:
S
sneaxiy 已提交
10943 10944 10945 10946
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10947 10948
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10949
        ])
10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10987 10988


10989
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10990 10991
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10992 10993
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10994 10995 10996

    if out is None:
        if name is None:
X
Xin Pan 已提交
10997
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11013
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11014
    """
W
Wilber 已提交
11015 11016 11017 11018 11019 11020 11021 11022
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11023 11024 11025 11026

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11027 11028
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11029 11030

    Returns:
W
Wilber 已提交
11031
        ${out_type}: ${out_comment}
11032 11033 11034 11035

    Examples:
        .. code-block:: python

11036
            import paddle.fluid as fluid
W
Wilber 已提交
11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11055 11056 11057 11058 11059 11060 11061
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11062
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11063
    """
W
Wilber 已提交
11064 11065 11066 11067 11068 11069 11070 11071
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11072 11073 11074 11075

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11076 11077
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11078 11079

    Returns:
W
Wilber 已提交
11080
        ${out_type}: ${out_comment}
11081 11082 11083 11084

    Examples:
        .. code-block:: python

11085
            import paddle.fluid as fluid
W
Wilber 已提交
11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11104 11105 11106 11107 11108 11109 11110
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11111
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11112
    """
W
Wilber 已提交
11113 11114 11115 11116 11117 11118 11119 11120
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11121 11122 11123 11124

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11125 11126
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11127 11128

    Returns:
W
Wilber 已提交
11129
        ${out_type}: ${out_comment}
11130 11131 11132 11133

    Examples:
        .. code-block:: python

11134
            import paddle.fluid as fluid
W
Wilber 已提交
11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11153 11154 11155 11156 11157 11158 11159
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11160
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11161
    """
W
Wilber 已提交
11162 11163 11164 11165 11166 11167 11168 11169
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11170 11171 11172

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11173 11174
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11175 11176

    Returns:
W
Wilber 已提交
11177
        ${out_type}: ${out_comment}
11178 11179 11180 11181

    Examples:
        .. code-block:: python

11182
            import paddle.fluid as fluid
W
Wilber 已提交
11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
            # The comment lists another availble method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11199 11200 11201 11202
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11203 11204 11205 11206 11207 11208 11209 11210 11211


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11212 11213 11214 11215 11216
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11217 11218

    Returns:
S
SunGaofeng 已提交
11219 11220 11221 11222
        ${out_comment}

    Return Type:
        ${out_type}
11223 11224 11225 11226

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11227
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11228
            input = fluid.data(
11229 11230
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11231 11232 11233 11234 11235
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11236 11237
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11238 11239 11240

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11260 11261 11262
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11263 11264

    Returns:
W
wangguanzhong 已提交
11265 11266
        Variable:

11267
        out(${out_type}): ${out_comment}
11268

W
wangguanzhong 已提交
11269

11270 11271 11272
    Examples:
        .. code-block:: python

11273
            import paddle.fluid as fluid
11274 11275
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11276
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11277 11278 11279 11280 11281
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11282 11283
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11284 11285 11286

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11287 11288 11289 11290 11291 11292 11293 11294

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11308 11309 11310 11311

    Examples:
        .. code-block:: python

11312
            import paddle.fluid as fluid
11313 11314 11315
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11316
    """
11317 11318 11319 11320
    if in_dygraph_mode():
        inputs = {"X": [x]}
        outs = core.ops.mean(inputs)
        return outs['Out'][0]
X
Xin Pan 已提交
11321 11322

    helper = LayerHelper("mean", **locals())
11323 11324
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mean')
X
Xin Pan 已提交
11325
    if name is None:
X
Xin Pan 已提交
11326
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11327 11328 11329 11330 11331 11332 11333 11334 11335 11336
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11348 11349 11350 11351

    Examples:
        .. code-block:: python

11352
            import paddle.fluid as fluid
11353 11354 11355 11356 11357
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11370 11371
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11372 11373 11374 11375 11376 11377 11378 11379
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11380 11381

    Args:
L
liu zhengxi 已提交
11382 11383 11384 11385 11386
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11387 11388

    Returns:
L
liu zhengxi 已提交
11389
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11390 11391

    Examples:
L
liu zhengxi 已提交
11392
        ..  code-block:: python
11393 11394 11395 11396 11397 11398 11399 11400 11401
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11402 11403 11404
    """

    helper = LayerHelper("mul", **locals())
11405 11406 11407 11408
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mul')
    check_type_and_dtype(y, 'y', Variable, ['float16', 'float32', 'float64'],
                         'mul')
X
Xin Pan 已提交
11409
    if name is None:
X
Xin Pan 已提交
11410
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11411 11412 11413 11414 11415 11416 11417 11418 11419
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11420 11421
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11422 11423 11424 11425 11426 11427
        },
        outputs={"Out": out})
    return out


@templatedoc()
11428
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11429 11430 11431 11432 11433
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11434 11435
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11436 11437 11438
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11439 11440

    Returns:
11441
        Variable: ${out_comment}
J
jerrywgz 已提交
11442

11443 11444
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11445
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11446

J
jerrywgz 已提交
11447 11448 11449
    Examples:
        .. code-block:: python

11450
            import paddle.fluid as fluid
11451
            input = fluid.data(
J
jerrywgz 已提交
11452
                name='data', 
11453
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11454 11455
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11456 11457
    """
    helper = LayerHelper("maxout", **locals())
11458 11459 11460 11461 11462 11463
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11464 11465

    if name is None:
X
Xin Pan 已提交
11466
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11467 11468 11469 11470 11471 11472 11473
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11474 11475
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11476 11477
        outputs={"Out": out})
    return out
11478 11479


J
JiabinYang 已提交
11480
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11481
    """
J
JiabinYang 已提交
11482
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11483

11484 11485 11486
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11487
    The attr blocksize indicates the input block size.
11488

11489 11490 11491
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] \
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11492

J
JiabinYang 已提交
11493 11494 11495 11496 11497
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11515

J
JiabinYang 已提交
11516
    Args:
11517 11518 11519 11520 11521 11522
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11523

11524 11525 11526 11527
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11528 11529

    Raises:
11530
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11531 11532 11533

    Examples:
        .. code-block:: python
11534
    
11535 11536
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11537

11538 11539
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11540
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11541
                x=data, blocksize=2)
11542

11543
            exe = fluid.Executor(fluid.CPUPlace())
11544
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11545 11546 11547 11548 11549 11550 11551

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11552
            out_main = exe.run(fluid.default_main_program(),
11553 11554 11555 11556 11557 11558 11559 11560
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11561

J
JiabinYang 已提交
11562 11563
    """

J
JiabinYang 已提交
11564
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11565

J
JiabinYang 已提交
11566 11567
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11568 11569

    if name is None:
J
JiabinYang 已提交
11570 11571
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11572 11573 11574 11575 11576
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11577
        type="space_to_depth",
J
JiabinYang 已提交
11578
        inputs={"X": x},
J
JiabinYang 已提交
11579
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11580
        outputs={"Out": out})
J
JiabinYang 已提交
11581 11582
    return out

J
JiabinYang 已提交
11583

11584 11585 11586 11587 11588 11589
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11590 11591 11592 11593 11594
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11595

11596 11597 11598
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11599
            is applied in the second dimension.The data type is float32 or float64.
11600 11601
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11602
            the input.The data type is float32 or float64.
11603 11604
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11605
            The data type is float32 or float64.
11606 11607 11608 11609 11610
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11611 11612
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11613
        act (str, default None): Activation to be applied to the output of this layer.
11614 11615

    Returns:
L
LielinJiang 已提交
11616
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11617 11618 11619

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11620 11621

            import numpy as np
B
Bai Yifan 已提交
11622
            import paddle.fluid as fluid
L
LielinJiang 已提交
11623 11624 11625 11626 11627 11628 11629 11630 11631 11632

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11633
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11634 11635 11636 11637 11638 11639 11640 11641 11642 11643
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11644

11645 11646 11647 11648
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11649
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11661
    return helper.append_activation(out)
11662 11663


B
barrierye 已提交
11664
def similarity_focus(input, axis, indexes, name=None):
11665
    """
B
barrierye 已提交
11666
    SimilarityFocus Operator
B
barrierye 已提交
11667 11668

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11669

11670 11671 11672
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11673
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11674 11675 11676 11677 11678 11679 11680
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11681
       each index.
B
barrierye 已提交
11682 11683 11684 11685
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11735
    Args:
11736
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11737 11738
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11739
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11740
            1, 2 or 3.
B
barrierye 已提交
11741
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11742 11743

    Returns:
H
haowang101779990 已提交
11744 11745
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11746

B
barrierye 已提交
11747 11748
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11749

11750
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11751
            data = fluid.data(
Y
Yibing Liu 已提交
11752 11753
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11766 11767 11768 11769 11770
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11771 11772 11773 11774 11775 11776 11777
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11778 11779


M
minqiyang 已提交
11780 11781
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11782
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11783 11784
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11785 11786

    Args:
Z
zhupengyang 已提交
11787 11788 11789 11790 11791 11792
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11793 11794

    Returns:
Z
zhupengyang 已提交
11795
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11796 11797

    Examples:
Z
zhupengyang 已提交
11798
        .. code-block:: python
H
haowang101779990 已提交
11799

11800
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11801
            import numpy as np
11802

Z
zhupengyang 已提交
11803
            place = fluid.core.CPUPlace()
11804

Z
zhupengyang 已提交
11805 11806
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11807

Z
zhupengyang 已提交
11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11825 11826
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11827 11828
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11829 11830 11831 11832 11833 11834 11835
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11836 11837


D
dengkaipeng 已提交
11838
@templatedoc()
11839 11840
def grid_sampler(x, grid, name=None):
    """
11841
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11842
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
11843 11844 11845
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
    (in width dimension) of input data x and y is indexng the 3rd
11846
    dimention (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
11847 11848
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
11849

H
haowang101779990 已提交
11850
    .. code-block:: text
11851

H
haowang101779990 已提交
11852 11853
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11854

K
Kaipeng Deng 已提交
11855 11856 11857 11858
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11859

H
haowang101779990 已提交
11860 11861 11862
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11863

H
haowang101779990 已提交
11864 11865 11866 11867 11868 11869 11870 11871 11872
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11873

H
haowang101779990 已提交
11874 11875 11876 11877
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11878

H
haowang101779990 已提交
11879 11880 11881 11882
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11883

H
haowang101779990 已提交
11884 11885 11886 11887
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11888

H
haowang101779990 已提交
11889 11890
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11891 11892

    Args:
K
Kaipeng Deng 已提交
11893 11894 11895 11896 11897 11898 11899 11900 11901
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
11902 11903

    Returns:
H
haowang101779990 已提交
11904
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
11905 11906
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
11907

H
haowang101779990 已提交
11908 11909 11910 11911
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11912 11913
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
11914 11915
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
11916 11917
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11918
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11919

D
dengkaipeng 已提交
11920 11921 11922 11923 11924 11925 11926 11927 11928
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11929
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11930 11931
    ipts = {'X': x, 'Grid': grid}

11932
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11933 11934 11935
    return out


G
gmcather 已提交
11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
11949
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
11950
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
11951 11952 11953 11954 11955 11956 11957
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
11958 11959 11960 11961 11962 11963 11964

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11965
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11966 11967
          label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
          prob = fluid.data(name='prob', shape=[-1, 10], dtype='float32')
G
gmcather 已提交
11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
11989 11990
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
11991

G
Guo Sheng 已提交
11992 11993
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11994

G
Guo Sheng 已提交
11995
    The formula is as follows:
G
gmcather 已提交
11996 11997

    .. math::
H
haowang101779990 已提交
11998 11999 12000
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12001 12002

    Where:
G
Guo Sheng 已提交
12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12020 12021

    Returns:
G
Guo Sheng 已提交
12022
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12023 12024 12025 12026

    Examples:
        .. code-block:: python

12027 12028
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12029
          tensor = fluid.data(
12030
              name='tensor',
G
Guo Sheng 已提交
12031 12032
              shape=[None, 64, 512],
              dtype='float32')
12033 12034
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12035

G
gmcather 已提交
12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12052 12053 12054 12055 12056 12057 12058 12059 12060 12061


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12062
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12063

Q
Qiao Longfei 已提交
12064
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12065 12066 12067
    For example:

    .. math::
H
haowang101779990 已提交
12068
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12069

Q
Qiao Longfei 已提交
12070
    In this formula:
12071 12072
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12073
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12074
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12075 12076 12077
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12078 12079 12080 12081
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12082
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12083 12084 12085 12086 12087 12088 12089 12090 12091
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12092
    Returns:
Y
Yibing Liu 已提交
12093
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12094 12095 12096 12097

    Examples:
        .. code-block:: python

12098
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12099 12100
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12101
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12102 12103
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12104
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12105 12106 12107 12108

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12109
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12127 12128 12129 12130 12131


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12148 12149

    Args:
12150 12151 12152
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12153 12154

    Returns:
12155
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12156 12157 12158 12159 12160 12161 12162 12163

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12164 12165 12166 12167 12168 12169 12170 12171 12172 12173
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12174 12175


S
shippingwang 已提交
12176
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12177
    """
S
shippingwang 已提交
12178 12179 12180 12181 12182 12183
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12184
    
S
shippingwang 已提交
12185
    .. code-block:: text
12186

S
shippingwang 已提交
12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12215
    Args: 
S
shippingwang 已提交
12216 12217
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12218 12219

    Returns:
S
shippingwang 已提交
12220 12221
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12222 12223

    Raises:
S
shippingwang 已提交
12224
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12225 12226 12227

    Examples:
        .. code-block:: python
12228

12229
            import paddle.fluid as fluid
R
ruri 已提交
12230
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12231
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12232 12233 12234
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12235
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12236 12237 12238 12239 12240 12241 12242 12243 12244

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12245
    return out
S
Add  
shippingwang 已提交
12246 12247


12248
@templatedoc()
D
dengkaipeng 已提交
12249
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12250 12251 12252 12253 12254 12255 12256 12257
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12258
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12259 12260 12261
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12262 12263 12264

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12265
        same shape and same data type as the input.
12266 12267 12268 12269 12270 12271 12272

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12273
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12274
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12275
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12288 12289
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12290 12291 12292
    return out


S
sneaxiy 已提交
12293
class PyFuncRegistry(object):
S
sneaxiy 已提交
12294 12295 12296
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12297
        if func is None or not callable(func):
S
sneaxiy 已提交
12298 12299 12300
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12301
        # find named args using reflection
S
sneaxiy 已提交
12302 12303 12304 12305 12306 12307 12308
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12309 12310 12311
        '''
        Why record self here?

M
minqiyang 已提交
12312 12313
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12314
           to find the registered function corresponding
M
minqiyang 已提交
12315
           to :code:`idx`.
S
sneaxiy 已提交
12316

M
minqiyang 已提交
12317 12318
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12319
           whose reference count is 1 would cause
M
minqiyang 已提交
12320
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12321 12322
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12323
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12338 12339 12340 12341 12342 12343 12344 12345 12346
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12347

S
sneaxiy 已提交
12348 12349
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12350 12351

        ret = []
S
sneaxiy 已提交
12352 12353 12354
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12355 12356
                continue

S
sneaxiy 已提交
12357 12358
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12359

S
sneaxiy 已提交
12360 12361 12362
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12363

S
sneaxiy 已提交
12364
        return tuple(ret)
S
sneaxiy 已提交
12365 12366


S
sneaxiy 已提交
12367 12368 12369
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12370 12371 12372 12373 12374 12375 12376
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12377
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12378
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12406 12407 12408 12409 12410
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12411 12412 12413 12414 12415
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12416 12417
    
    Returns: 
12418
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12419 12420

    Examples:
12421
        .. code-block:: python
12422 12423
	    
            # example 1:
12424 12425 12426
            import paddle.fluid as fluid
            import six

12427 12428
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12429 12430 12431
            def tanh(x):
                return np.tanh(x)

12432 12433 12434
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12435 12436
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12437 12438
            
            # Creates a forward function for debugging running networks(print value)
12439 12440
            def debug_func(x):
                print(x)
12441 12442 12443 12444
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12458
                    # User-defined debug functions that print out the input LodTensor
12459 12460 12461 12462 12463
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12521
    """
S
sneaxiy 已提交
12522
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12523 12524 12525
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12526
        x = [x]
12527 12528 12529
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12530
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12531

S
sneaxiy 已提交
12532 12533 12534
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12535
        out_list = [out]
12536 12537 12538
    elif isinstance(out, tuple):
        out_list = list(out)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12539 12540
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12541

S
sneaxiy 已提交
12542 12543
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12544
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12545 12546

    for each_out in out_list:
S
sneaxiy 已提交
12547 12548
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12549 12550
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12551

S
sneaxiy 已提交
12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12567 12568 12569 12570

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12571 12572
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12573 12574 12575
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12576
        })
S
sneaxiy 已提交
12577
    return out
S
sneaxiy 已提交
12578 12579 12580


# For debug usage
S
sneaxiy 已提交
12581 12582 12583 12584
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12596
    Parameters:
12597
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12598
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12599 12600 12601
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12602 12603
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12604
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12605 12606 12607 12608 12609
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12610 12611

    Returns:
S
SunGaofeng 已提交
12612 12613 12614 12615
        ${out_comment}.

    Return Type:
        Variable
12616 12617 12618 12619

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12620
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12621 12622
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12623
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
12685
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12708

M
minqiyang 已提交
12709

R
ruri 已提交
12710 12711 12712
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12713
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12714 12715 12716 12717 12718 12719 12720
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12721
    Parameters:
R
ruri 已提交
12722

R
ruri 已提交
12723 12724
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12725 12726

    Returns:
12727
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12728 12729 12730 12731 12732 12733 12734

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12770 12771 12772 12773 12774
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12775
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12787 12788 12789
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12790
                      The y_channel can be different with the x_channel of Input(X)
12791 12792
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12793 12794 12795 12796

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12797 12798
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12799 12800 12801 12802 12803

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12804
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12805
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12806 12807 12808 12809
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12810 12811 12812 12813 12814 12815 12816 12817
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12818 12819 12820 12821


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12822

H
heqiaozhi 已提交
12823
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12824

Z
zhoushiyu 已提交
12825
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
12826

Z
zhoushiyu 已提交
12827 12828 12829 12830 12831
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
    If :attr:`use_cvm` is True, it will caculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
12832

Z
zhoushiyu 已提交
12833 12834 12835 12836 12837 12838 12839
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
12840

H
heqiaozhi 已提交
12841
    Returns:
H
fix doc  
heqiaozhi 已提交
12842

Z
zhoushiyu 已提交
12843 12844
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
12845

H
heqiaozhi 已提交
12846
    Examples:
H
fix doc  
heqiaozhi 已提交
12847

H
heqiaozhi 已提交
12848
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12849

12850
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
12851 12852
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
12853 12854 12855 12856 12857 12858 12859 12860
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12861

H
heqiaozhi 已提交
12862 12863 12864 12865 12866 12867 12868 12869 12870
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12871
    return out
Z
zhoukunsheng 已提交
12872 12873 12874 12875 12876 12877 12878


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
12879
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
12880 12881

    Returns:
12882
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
12883 12884 12885 12886

    Examples:
        .. code-block:: python

12887
             import paddle.fluid as fluid
12888 12889 12890
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12891
             # condition is a tensor [True, False, True]
12892 12893 12894
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12895 12896

             # condition is a tensor [[True, False], [False, True]]
12897 12898 12899
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12900 12901

             # condition is a tensor [False, False, False]
12902 12903 12904 12905
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12906 12907 12908 12909 12910 12911 12912 12913 12914
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12915 12916 12917 12918


def sign(x):
    """
12919
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
12920 12921

    Args:
12922 12923
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
12924 12925

    Returns:
12926
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
12927 12928 12929 12930

    Examples:
        .. code-block:: python

12931 12932 12933
          import paddle.fluid as fluid
          import numpy as np

12934 12935
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
12936 12937 12938
    """

    helper = LayerHelper("sign", **locals())
12939 12940 12941 12942
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
12943 12944 12945 12946 12947
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12948 12949


Z
zhoukunsheng 已提交
12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12989 12990
def unique_with_counts(x, dtype='int32'):
    """
12991 12992
    This OP return a unique tensor for `x` , and count tensor that the count of unqiue result in raw input, \
    and an index tensor pointing to this unique tensor. 
12993

12994
    **NOTICE**: This op support the variable type of Tensor only.
12995 12996

    Args:
12997 12998
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
12999

13000 13001 13002 13003 13004 13005
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unqiue element in\
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13006 13007 13008 13009 13010 13011 13012 13013 13014

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13015
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13058
                    modulated=True,
13059 13060
                    name=None):
    """
13061
    **Deformable Convolution op**
13062 13063 13064

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13065 13066 13067
   
    
    Deformable Convolution v2: 
13068 13069 13070 13071
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13072 13073

    Deformable Convolution v1:
13074
    
13075 13076 13077 13078 13079
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13080
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13081
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13106 13107
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13108
        offset (Variable): The input coordinate offset of deformable convolution layer.
13109
            A Tensor with type float32, float64.
13110 13111 13112
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13113 13114
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13115
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13139
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13140 13141 13142 13143 13144
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13145
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13146 13147 13148 13149
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13150 13151
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13152 13153
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13154 13155
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13156
                  result. A Tensor with type float32, float64.
13157 13158 13159 13160 13161 13162
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13163 13164
          #deformable conv v2:
         
13165
          import paddle.fluid as fluid
13166 13167
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13168 13169 13170
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13171
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13172
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13173 13174 13175 13176

          #deformable conv v1:

          import paddle.fluid as fluid
13177 13178
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13179 13180
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13181
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13182
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13260 13261 13262

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13263 13264 13265 13266 13267


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13268
    This op returns a col buffer of sliding local blocks of input x, also known
13269 13270 13271 13272
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13273
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13291 13292 13293
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13309 13310 13311
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13312 13313 13314

    
    Returns:
S
SunGaofeng 已提交
13315 13316 13317 13318 13319 13320 13321 13322
        The tensor variable corresponding to the sliding local blocks. 
        The output shape is [N, Cout, Lout] as decribled above. 
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13323 13324 13325 13326 13327 13328

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13329
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13400 13401 13402 13403 13404 13405 13406
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13407
    
13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
                          chanels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
                                   If value is True, input dimension shoule be output dimension * pooled_height * pooled_width. Default: False.
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13447 13448 13449 13450

    Examples:
      .. code-block:: python

13451 13452
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13475 13476
  
        # position_sensitive=False
13477
        import paddle.fluid as fluid
C
chengjuntao 已提交
13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13537 13538 13539 13540


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13541
    This operator recomputes the `input` indices according to the offset of the
13542 13543 13544 13545 13546
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13547
        
13548 13549
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13550

13551 13552
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13553 13554

    Examples:
13555
    ::
13556
    
13557
        Input:
13558 13559
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13560 13561 13562
          index_num = 20
          nshards = 2
          ignore_value = -1
13563
        
13564
        if shard_id == 0, we get:
13565 13566 13567
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13568
        if shard_id == 1, we get:
13569 13570 13571 13572
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13573 13574 13575 13576 13577
        - **input** (Variable): Input indices, last dimension must be 1.
        - **index_num** (scalar): An interger defining the range of the index.
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
        - **ignore_value** (scalar): An ingeter value out of sharded index range
13578 13579

    Returns:
13580
        Variable: The sharded index of input.
13581 13582 13583 13584 13585

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13586 13587
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13612 13613 13614 13615 13616


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13617 13618 13619
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13620

13621
    The formula is as follows:
H
huangjun12 已提交
13622

13623
    .. math::
H
huangjun12 已提交
13624

13625
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13626

13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13672 13673


G
Guo Sheng 已提交
13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13749 13750 13751
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13752 13753
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13765 13766
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13767 13768
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13769
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13770
                                                  Default: float32.
13771 13772
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13773 13774 13775 13776 13777
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13778 13779
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13780

13781
    Raises:
13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795
        TypeError: The shape type should be list or tupple or variable.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13796 13797
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13798 13799

            # example 3:
13800
            # attr shape is a Variable, the data type must be int64 or int32.
13801
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13802
            result_3 = fluid.layers.uniform_random(var_shape)
13803 13804 13805 13806
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13807 13808

    """
13809
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
13810 13811
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
13812
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
13813

13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
                    "Each dimension size given in shape must not be negtive "
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
13848
    attrs = {'seed': seed, 'min': min, 'max': max}
13849
    if in_dygraph_mode():
H
hong 已提交
13850
        attrs['shape'] = shape
13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)