Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c5cff997
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c5cff997
编写于
10月 08, 2019
作者:
S
ShenLiang
提交者:
Dong Daxiang
10月 08, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc of eye、gather_nd、scatter_nd、scatter_nd_add、center_loss (#19990)
* fix doc, test=document_fix test=document_preview
上级
0ec2c081
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
36 addition
and
29 deletion
+36
-29
paddle/fluid/API.spec
paddle/fluid/API.spec
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+21
-15
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+10
-9
未找到文件。
paddle/fluid/API.spec
浏览文件 @
c5cff997
...
...
@@ -126,7 +126,7 @@ paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', '
paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd4ac047e0d5e6b7b1c5ff6ef7d7cfff5'))
paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eef66730acc806088f9e8ba90252bda1'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '
7129819d94625c6104054e8187768589
'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '
9f61b78e88de4a33c7f9f13f6ebf3a4c
'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '6d3ee14da70adfa36d85c40b18716ef2'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'c37d51aad655c8a9f9b045c64717320a'))
...
...
@@ -212,10 +212,10 @@ paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale'
paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1, 'NCDHW')), ('document', '5b4d0f823f94c260fe5e6f7eec60a797'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 'NCHW')), ('document', '0107a5cbae1aef3f381d3d769a6068eb'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c'))
paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
3cc24f9cf135770aa6263dba25b457f9
'))
paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
7092e3da56bc91dd7b0cb967cfff101a
'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '69b22affd4a6326502af166f04c095ab'))
paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
c2fa5ee7484b52b95a28abf1d8827cd0
'))
paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1
4b5449ce42f8ff4ac4ce79b41c86cc5
'))
paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
b797ea7aa9e7d5c0e54b208d3bde0db6
'))
paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1
5feefb05913d8bd14fbc586cd4c603c
'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf'))
paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042'))
paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None), ('document', 'e714b4aa7993dfe9c1a38886875dbaac'))
...
...
@@ -341,7 +341,7 @@ paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], va
paddle.fluid.layers.zeros_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd88a23bcdc443719b3953593f7cef14a'))
paddle.fluid.layers.ones_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd18d42059c6b189cbd3fab2fcb206c15'))
paddle.fluid.layers.diag (ArgSpec(args=['diagonal'], varargs=None, keywords=None, defaults=None), ('document', '88a15e15f0098d549f07a01eaebf9ce3'))
paddle.fluid.layers.eye (ArgSpec(args=['num_rows', 'num_columns', 'batch_shape', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'float32')), ('document', '
25389d1e239a5d1cda66298f908ec549
'))
paddle.fluid.layers.eye (ArgSpec(args=['num_rows', 'num_columns', 'batch_shape', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'float32')), ('document', '
60cdc70ae43ba69fae36d720ef3016a1
'))
paddle.fluid.layers.While ('paddle.fluid.layers.control_flow.While', ('document', '50110155608a00f43d3d3fd1be41dcb4'))
paddle.fluid.layers.While.__init__ (ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.While.block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c5cff997
...
...
@@ -375,8 +375,10 @@ def center_loss(input,
"""
**Center loss Cost layer**
This layer accepts input (deep features,the output of the last hidden layer)
and target label and return the center loss cost
This OP accepts input (deep features,the output of the last hidden layer)
and target label and return the center loss cost. The average of the
distances of each sample in the mini-batch from the center of the
corresponding category is calculated as the center loss.
For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
...
...
@@ -385,9 +387,9 @@ def center_loss(input,
Out = \\frac{1}{2}(X - Y)^2
Args:
input (Variable): a 2-D tensor with shape[N x M].
input (Variable): a 2-D tensor with shape[N x M].
Its dtype should be float32 or float64.
label (Variable): the groud truth which is a 2-D tensor
with shape[N x 1],where N is the batch size.
with shape[N x 1],where N is the batch size.
Its dtype should be int32.
num_classes (int): the number of classification categories.
alpha (float|Variable): learning rate of centers.
param_attr (ParamAttr): Attribute initializer of centers.
...
...
@@ -9537,10 +9539,11 @@ def gather_nd(input, index, name=None):
= [23]
Args:
input (Variable): The source input
index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
Its dtype should be int32, int64.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically
layer will be named automatically
.
Returns:
output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
...
...
@@ -9626,11 +9629,14 @@ def scatter_nd_add(ref, index, updates, name=None):
**Scatter_nd_add Layer**
Output is obtained by applying sparse addition to a single value
or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R`
or slice in a Variable.
:attr:`ref` is a Tensor with rank :math:`R`
and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index`
has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
is a Tensor with rank :math:`K - 1 + R - Q` and its
shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
add the corresponding :attr:`updates` slice to the :attr:`ref` slice
which is obtained by the last one dimension of :attr:`index` .
...
...
@@ -9662,15 +9668,15 @@ def scatter_nd_add(ref, index, updates, name=None):
output = [[67, 19], [-16, -27]]
Args:
ref (Variable): The ref input.
ref (Variable): The ref input.
Its dtype should be int32, int64, float32, float64.
index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
name (str|None): The output variable name.
Default None
.
updates (Variable): The updated value of scatter_nd_add op, and it must have the same
d
type
as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
.
name (str|None): The output variable name.
If set None, the layer will be named automatically
.
Returns:
output (Variable): The output is a tensor with the same shape and type as ref.
output (Variable): The output is a tensor with the same shape and
d
type as ref.
Examples:
...
...
@@ -9719,10 +9725,10 @@ def scatter_nd(index, updates, shape, name=None):
Args:
index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd op.
updates (Variable): The updated value of scatter_nd op.
Its dtype should be int32, int64, float32, float64.
It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape(tuple|list): Shape of output tensor.
name (str|None): The output variable name.
Default None
.
name (str|None): The output variable name.
If set None, the layer will be named automatically
.
Returns:
output (Variable): The output is a tensor with the same type as :attr:`updates` .
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
c5cff997
...
...
@@ -1018,25 +1018,26 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
If None, default: num_rows.
batch_shape(list(int)): If provided, the returned tensor will have a leading
batch size of this shape.
dtype(string): 'float32'|'int32'|..., the data type of the returned tensor.
dtype(string): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
Returns:
Variable: An identity
t
ensor of shape batch_shape + [num_rows, num_columns].
Variable: An identity
Tensor or LoDT
ensor of shape batch_shape + [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.eye(3, dtype='int32')
# [[1, 0, 0]
data = fluid.layers.eye(3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]
# [0, 0, 1]]
# [0, 0, 1]]
data = fluid.layers.eye(2, 3, dtype='int32')
# [[1, 0, 0]
# [[1, 0, 0]
# [0, 1, 0]]
data = fluid.layers.eye(2, batch_shape=[3])
data = fluid.layers.eye(2, batch_shape=[3])
# Construct a batch of 3 identity tensors, each 2 x 2.
# data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录