pybind.cc 111.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17
#include "paddle/fluid/eager/grad_node_info.h"

18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

C
chengduoZH 已提交
23
#include <algorithm>
24
#include <cctype>
25
#include <cstdlib>
26
#include <iterator>
C
chengduoZH 已提交
27
#include <map>
S
sneaxiy 已提交
28
#include <memory>
C
chengduoZH 已提交
29
#include <mutex>  // NOLINT // for call_once
30
#include <sstream>
C
chengduoZH 已提交
31
#include <string>
32 33
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
34
#include <unordered_map>
35
#include <unordered_set>
C
chengduoZH 已提交
36 37
#include <utility>
#include <vector>
38

39
#include "paddle/fluid/framework/convert_utils.h"
40
#include "paddle/fluid/framework/custom_operator.h"
41
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
42
#include "paddle/fluid/framework/data_type_transform.h"
43
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/executor.h"
45
#include "paddle/fluid/framework/executor_cache.h"
46
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
48
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
50
#include "paddle/fluid/framework/io/fs.h"
51
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
52
#include "paddle/fluid/framework/ir/cost_model.h"
53
#include "paddle/fluid/framework/ir/generate_pass.h"
54
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
57
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
58 59
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
60
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/op_info.h"
62
#include "paddle/fluid/framework/op_registry.h"
63
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/framework/parallel_executor.h"
65
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/framework/prune.h"
67
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/framework/scope_pool.h"
70
#include "paddle/fluid/framework/selected_rows_utils.h"
71
#include "paddle/fluid/framework/tensor_util.h"
72
#include "paddle/fluid/framework/trainer.h"
73
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
74
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
76
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
77
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
78 79
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
80
#include "paddle/fluid/prim/utils/utils.h"
81 82 83
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
84
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
85
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
86
#include "paddle/fluid/operators/common_infer_shape_functions.h"
87
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
88
#include "paddle/fluid/operators/py_func_op.h"
89
#include "paddle/fluid/platform/cpu_helper.h"
90
#include "paddle/fluid/platform/device/device_wrapper.h"
91
#include "paddle/fluid/platform/device_context.h"
92
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/platform/enforce.h"
94
#include "paddle/fluid/platform/init.h"
95
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
96
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
99 100 101
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
109 110
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
112 113
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
120
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/heter_wrapper_py.h"
122
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/inference_api.h"
124
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/ir.h"
126
#include "paddle/fluid/pybind/jit.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130 131
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
132
#include "paddle/phi/backends/device_manager.h"
133 134 135
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
136

137
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
138
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
139
#endif
140
#include "paddle/fluid/framework/data_type.h"
141 142
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
143 144
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
145
#include "paddle/fluid/pybind/reader_py.h"
146
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
147
#include "paddle/fluid/pybind/tensor_py.h"
148
#include "paddle/fluid/string/to_string.h"
149 150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
151
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
152
#endif
153
#ifndef PADDLE_WITH_HIP
154
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
155
#endif
156
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
157 158
#endif

159
#ifdef PADDLE_WITH_XPU
160
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
161
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
162 163
#endif

164
#ifdef PADDLE_WITH_CUSTOM_DEVICE
165
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
166
#include "paddle/fluid/platform/collective_helper.h"
167 168
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

Y
Yanghello 已提交
179 180 181 182
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
183
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
184 185 186
#include "paddle/fluid/pybind/fleet_py.h"
#endif

187 188 189 190
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
191
#if defined(PADDLE_WITH_RPC)
192 193 194
#include "paddle/fluid/pybind/rpc.h"
#endif

195
#include "paddle/fluid/eager/api/utils/global_utils.h"
196
#include "paddle/fluid/eager/nan_inf_utils.h"
197
#include "paddle/fluid/imperative/layout_autotune.h"
198
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
199 200
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
201
#include "paddle/fluid/pybind/eager_utils.h"
202
#include "paddle/ir/core/program.h"
203
#include "paddle/phi/api/ext/op_meta_info.h"
204 205
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
206
#include "paddle/phi/core/flags.h"
207 208
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
209 210
#include "pybind11/stl.h"

211
PHI_DECLARE_bool(use_mkldnn);
212

Q
Qiao Longfei 已提交
213 214
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
215 216 217
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
218

219
DECLARE_FILE_SYMBOLS(init_phi);
220
DECLARE_FILE_SYMBOLS(kernel_dialect);
221
namespace paddle {
222
namespace pybind {
223

0
0x45f 已提交
224
PyTypeObject *g_framework_scope_pytype = nullptr;
225
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
226
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
227
PyTypeObject *g_data_type_pytype = nullptr;
228

229 230 231 232 233 234 235 236
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

237
bool IsCompiledWithCUDA() {
238 239 240 241 242 243 244
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

245 246 247 248 249 250 251 252
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

270 271
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
272 273 274 275 276 277
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
300 301 302 303 304 305 306 307
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

308
bool IsCompiledWithMKLDNN() {
309
#ifndef PADDLE_WITH_DNNL
310 311 312 313 314 315
  return false;
#else
  return true;
#endif
}

316 317 318 319 320 321 322 323
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

324 325 326 327 328 329 330 331 332
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

333 334 335 336 337 338 339 340
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

341
bool SupportsBfloat16() {
342
#ifndef PADDLE_WITH_DNNL
343 344
  return false;
#else
345
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
346 347 348 349 350 351
    return true;
  else
    return false;
#endif
}

352
bool SupportsBfloat16FastPerformance() {
353
#ifndef PADDLE_WITH_DNNL
354 355
  return false;
#else
356
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
357 358 359 360 361 362
    return true;
  else
    return false;
#endif
}

363
bool SupportsInt8() {
364
#ifndef PADDLE_WITH_DNNL
365 366
  return false;
#else
367 368
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
369 370 371 372
#endif
}

bool SupportsVNNI() {
373
#ifndef PADDLE_WITH_DNNL
374 375
  return false;
#else
376 377
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
378 379 380
#endif
}

381
bool IsCompiledWithBrpc() {
382
#ifndef PADDLE_WITH_DISTRIBUTE
383
  return false;
384
#else
385
  return true;
386
#endif
387 388
}

Y
update  
Yancey1989 已提交
389
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
390
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
391 392 393 394 395 396
  return true;
#else
  return false;
#endif
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
532 533
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
534 535
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
549 550
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
551 552
    }
    vec_res.emplace_back(
553
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
554 555 556 557 558 559 560 561 562 563 564 565
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
566 567
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
568 569 570 571 572 573 574 575 576 577 578 579
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
580 581 582
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
583 584 585 586
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
587 588
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
589 590 591 592
  }
  return vec_res;
}

O
OccupyMars2025 已提交
593
static void inline CreateVariableIfNotExist(
594 595
    const py::handle &py_handle,
    const framework::Scope &scope,
596 597 598 599 600 601
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
602 603
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
604 605 606 607 608 609 610 611 612 613 614 615 616
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
617 618 619
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
620 621 622 623 624
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
625 626 627 628 629
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
630 631
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
632
        PADDLE_ENFORCE_NOT_NULL(
633 634 635
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
636 637 638
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
639
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
640
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
641 642
        tensor_temp->mutable_data(
            exe->GetPlace(),
643
            framework::TransToPhiDataType(var_desc.GetDataType()));
644 645 646
      }
    }
  } else {
647 648
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
649 650 651 652 653
  }

  return;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
670 671
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
672 673 674 675 676 677 678
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
679 680 681 682
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
683
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
684 685 686 687 688 689 690 691
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

692 693 694 695 696
void BindVjp(pybind11::module *m) {
  m->def(
      "call_vjp",
      [](ir::Operation &fwd_op,
         const std::vector<std::vector<ir::OpResult>> &out_grads,
697
         const std::vector<std::vector<bool>> &stop_gradients) {
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        py::list res;
        ir::IrContext *ctx = ir::IrContext::Instance();
        ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
        auto vjp_interface_impl =
            fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
        if (vjp_interface_impl == nullptr) {
          PADDLE_THROW(phi::errors::InvalidArgument(
              "The vjp function is not registered in %s op ", fwd_op.name()));
        }
        std::vector<std::vector<ir::OpResult>> vjp_res =
            vjp_interface_impl->vjp_(&fwd_op, out_grads, stop_gradients);
        PADDLE_ENFORCE_EQ(
            stop_gradients.size(),
            vjp_res.size(),
            phi::errors::InvalidArgument(
                "The size of stop_gradients should be the same as vjp_res "
                "size."
                "But the size of stop_gradients: %d, vjp_res size: %d",
                stop_gradients.size(),
                vjp_res.size()));
        for (size_t i = 0; i < vjp_res.size(); ++i) {
          PADDLE_ENFORCE_EQ(stop_gradients[i].size(),
                            vjp_res[i].size(),
                            phi::errors::InvalidArgument(
                                "The size of stop_gradients[%d] should be the "
                                "same as vjp_res[%d] "
                                "size."
                                "But the size of stop_gradients[%d]: %d, "
                                "vjp_res[%d] size: %d",
                                i,
                                i,
                                i,
                                stop_gradients[i].size(),
                                i,
                                vjp_res[i].size()));
          py::list sub_res;
          for (size_t j = 0; j < vjp_res[i].size(); ++j) {
735
            if (!vjp_res[i][j]) {
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
              sub_res.append(nullptr);
            } else {
              sub_res.append(vjp_res[i][j]);
            }
          }
          res.append(sub_res);
        }
        return res;
      });

  m->def("has_vjp", [](ir::Operation &fwd_op) {
    ir::IrContext *ctx = ir::IrContext::Instance();
    ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
    auto vjp_interface_impl =
        fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
    if (vjp_interface_impl == nullptr) return false;
    return true;
  });
}
755
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
756
  BindImperative(&m);
757
  BindEager(&m);
J
Jack Zhou 已提交
758
  BindEagerStringTensor(&m);
759
  BindCudaStream(&m);
J
james 已提交
760
  BindXpuStream(&m);
761
  BindJit(&m);
762
  BindEvalFrame(&m);
763
  BindCustomDevicePy(&m);
764

Y
Yu Yang 已提交
765
  // Not used, just make sure cpu_info.cc is linked.
766
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
767

Y
Refine  
Yu Yang 已提交
768
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
769

770 771
  AssertStaticGraphAndDygraphGradMakerNoDiff();

772
  m.doc() = "C++ core of PaddlePaddle";
773

774 775 776 777
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

778
  BindException(&m);
Y
Yu Yang 已提交
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

818 819 820 821 822 823 824 825 826 827
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
828 829 830 831
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
832 833
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
834 835
  m.def("set_num_threads", &platform::SetNumThreads);

836 837
  m.def("disable_signal_handler", &DisableSignalHandler);

838 839 840 841 842 843 844 845
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
  py::class_<egr::GradNodeBase, std::shared_ptr<egr::GradNodeBase>>(
      m, "GradNodeBase")
      .def("name",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->name();
           })
      .def_property_readonly(
          "next_functions",
          [](const std::shared_ptr<egr::GradNodeBase> &self) {
            return self->NextFunctions();
          })
      .def("input_meta",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->InputMeta();
           })
      .def("output_meta", [](const std::shared_ptr<egr::GradNodeBase> &self) {
        return self->OutputMeta();
      });
864

865
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
866
  m.def("cudnn_version", &platform::DnnVersion);
867 868 869 870 871 872
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
873
#endif
874

Z
Zeng Jinle 已提交
875 876 877 878
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

879 880
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
881
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
882 883 884 885 886 887
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
888
      .def_static("gen_new_memory_pool_id",
889 890 891 892 893
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
894 895
#endif

Z
Zeng Jinle 已提交
896 897 898 899
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
900 901 902
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
903 904

    PADDLE_ENFORCE_NOT_NULL(
905 906 907 908
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
909

6
633WHU 已提交
910 911
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
912
    phi::DenseTensor tensor;
6
633WHU 已提交
913

S
Siming Dai 已提交
914
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
915
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
916
    }
917
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
918
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
919
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
920 921 922 923
    }
#endif
    return tensor;
  });
H
hong 已提交
924

925
  m.def("_create_loaded_parameter",
926 927
        [](const py::handle &vec_var_list,
           const Scope &scope,
928
           const Executor *executor) {
O
OccupyMars2025 已提交
929
          CreateVariableIfNotExist(vec_var_list, scope, executor);
930 931
        });

932 933 934 935 936 937
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
938 939
  });

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

965 966 967 968 969 970
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
971

S
sneaxiy 已提交
972
  m.def(
S
sneaxiy 已提交
973
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
974 975 976 977
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
978 979 980
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
997
            }
998
            all_kernels_info.emplace(op_type, kernel_types);
999
          }
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
1016
                }
1017 1018
              } else {
                kernel_types.emplace_back(kernel_type_str);
1019
              }
1020
            }
1021 1022 1023
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
1024
          }
1025
        }
1026

1027 1028 1029 1030
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
1031 1032 1033
           Return the registered kernels in paddle.

           Args:
1034
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
1035
           )DOC");
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1089 1090 1091 1092 1093 1094
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1095 1096
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1097
    platform::XCCLCommContext::Release();
1098 1099 1100
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1101
    phi::DeviceManager::Release();
1102 1103
#endif
  });
1104

S
sneaxiy 已提交
1105 1106 1107
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1108
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1109

1110
  m.def("_set_fuse_parameter_group_size",
1111
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1112
  m.def("_set_fuse_parameter_memory_size",
1113
        &paddle::framework::ir::SetFuseParameterMemorySize);
1114

S
sneaxiy 已提交
1115 1116 1117
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1118 1119
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1120 1121
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1122 1123 1124
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1125
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1126 1127 1128

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1129
      .def(py::init<>())
1130
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1131
      .def("set_int",
1132 1133
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1134 1135 1136 1137 1138 1139 1140
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1141 1142
      .def(
          "get_tensor",
1143 1144
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1145 1146
          },
          py::return_value_policy::reference)
1147 1148
      .def("get_bytes",
           [](Variable &self) {
1149 1150 1151 1152 1153 1154
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1155
           })
S
Steffy-zxf 已提交
1156
      .def("set_string_list",
1157
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1158 1159
             *self.GetMutable<Strings>() = str_list;
           })
1160
      .def("set_vocab",
1161 1162
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1163 1164
             *self.GetMutable<Vocab>() = vocab;
           })
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1191
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1192 1193 1194 1195 1196 1197
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1198
#endif
1199 1200 1201
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1202 1203
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1214 1215
                scope_vec->size(),
                0,
1216 1217 1218 1219 1220
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1221 1222 1223 1224
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1225

S
sneaxiy 已提交
1226
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1227

0
0x45f 已提交
1228
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1242
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1243 1244 1245 1246 1247
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1248 1249 1250
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1251 1252
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1253 1254
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1255 1256 1257 1258 1259 1260 1261
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1262
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1263

1264
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1265
           current scope, the variable would be created. Otherwise,
1266
           return the existing variable.
S
sneaxiy 已提交
1267 1268

           Args:
1269 1270
               name (str): the variable name.

S
sneaxiy 已提交
1271
           Returns:
1272
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1273
           )DOC",
1274
          py::return_value_policy::reference)
1275 1276 1277
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1278
           R"DOC(
1279
           Find variable named :code:`name` in the current scope or
1280
           its parent scope. Return None if not found.
1281

S
sneaxiy 已提交
1282 1283
           Args:
               name (str): the variable name.
1284

S
sneaxiy 已提交
1285
           Returns:
1286
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1287
           )DOC",
1288
           py::return_value_policy::reference)
1289
      .def("size", &Scope::Size)
1290 1291 1292
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1293 1294
           R"DOC(
           Find variable named :code:`name` in the current scope or
1295
           its parent scope. Return None if not found.
1296 1297 1298 1299 1300 1301 1302 1303

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1304
      .def(
1305 1306
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1307
          R"DOC(
S
sneaxiy 已提交
1308 1309 1310 1311 1312
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1313
          py::return_value_policy::reference)
1314 1315
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1316 1317
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1318
           )DOC")
1319
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1320
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1321

1322 1323 1324 1325 1326 1327 1328 1329
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1330
        Create a new scope.
1331

S
sneaxiy 已提交
1332 1333 1334
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1335
      py::return_value_policy::reference);
S
sneaxiy 已提交
1336

Y
Yu Yang 已提交
1337 1338
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1339 1340
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1341 1342 1343 1344
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1345
        PADDLE_ENFORCE_EQ(
1346 1347
            info.Proto().SerializeToString(&str),
            true,
1348 1349
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1350 1351 1352
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1353 1354
    return ret_values;
  });
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1393 1394 1395 1396 1397 1398 1399 1400
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1401
              res = op_checker->GetDefaultAttrsMap();
1402 1403 1404 1405
            }
          }
          return res;
        });
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1422
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
1423 1424
  m.def("_set_bwd_prim_blacklist",
        &paddle::prim::PrimCommonUtils::SetPrimBackwardBlacklist);
1425 1426
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1427 1428 1429 1430 1431
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1432 1433 1434

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1435
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1436 1437 1438 1439

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1440
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1441
            PADDLE_THROW(platform::errors::NotFound(
1442
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1443 1444 1445 1446 1447 1448 1449 1450
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1451
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1452 1453
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1454
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1455 1456
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1457 1458 1459
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1460
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1461
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1462 1463
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1475
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1476
                      << op_desc.Type();
J
Jiabin Yang 已提交
1477 1478 1479
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1480
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1481
                      << op_desc.Type();
J
Jiabin Yang 已提交
1482 1483 1484 1485 1486 1487 1488 1489
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1490 1491 1492 1493 1494 1495 1496 1497
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1498 1499 1500
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1501 1502 1503
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1504 1505 1506 1507 1508
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1509 1510 1511
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1512 1513 1514
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1515
  m.def("infer_no_need_buffer_slots",
1516 1517
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1545 1546 1547 1548 1549 1550
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1551 1552
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1553

1554
            Args:
1555 1556 1557
                   program (ProgramDesc): The original program.

             Returns:
1558
                   tuple(ProgramDesc, map<int, int>): The first part is
1559 1560 1561 1562
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1563 1564 1565 1566
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1567 1568
    VLOG(4) << s;
    return s;
1569 1570 1571 1572 1573 1574
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1575
  });
1576 1577 1578 1579
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1580 1581 1582
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1583 1584
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1585

Y
Yu Yang 已提交
1586
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1587
      .def_static("create",
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1603 1604 1605 1606
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1607
                    return context;
Q
qijun 已提交
1608
                  })
1609 1610 1611 1612
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1613
#ifndef PADDLE_WITH_XPU
1614 1615 1616
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1617
#else
W
Wilber 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1631 1632 1633 1634
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1635
      return context;
1636
#endif
1637 1638 1639 1640
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1641
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1642 1643 1644 1645
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1646 1647
#else
                return new paddle::platform::CustomDeviceContext(place);
1648
#endif
1649 1650 1651 1652 1653
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1654
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1655 1656 1657
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1658
#else
L
Leo Chen 已提交
1659
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1672 1673 1674 1675
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1676 1677 1678 1679
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1680 1681
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1682
#endif
1683 1684 1685 1686 1687
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1688
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1689 1690 1691
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1692 1693 1694
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1695
          });
1696
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1697 1698
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1699 1700 1701
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1702
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1703
#else
R
ronnywang 已提交
1704
          VLOG(1) << string::Sprintf(
1705 1706 1707 1708
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1709
              "PaddlePaddle by: pip install paddlepaddle\n");
1710 1711 1712 1713 1714 1715
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1716
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1717
#else
R
ronnywang 已提交
1718
          VLOG(1) << string::Sprintf(
1719 1720 1721 1722
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1723
              "PaddlePaddle by: pip install paddlepaddle\n");
1724 1725 1726 1727 1728 1729
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1730
    devices = phi::DeviceManager::GetAllDeviceList();
1731
#else
R
ronnywang 已提交
1732
          VLOG(1) << string::Sprintf(
1733 1734 1735 1736
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1737
              "PaddlePaddle by: pip install paddlepaddle\n");
1738 1739 1740 1741 1742 1743
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1744
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1745
#else
R
ronnywang 已提交
1746
          VLOG(1) << string::Sprintf(
1747 1748 1749 1750 1751 1752
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1753
              "PaddlePaddle by: pip install paddlepaddle\n");
1754 1755 1756
#endif
    return devices;
  });
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1776

Y
Yu Yang 已提交
1777
  py::class_<OperatorBase>(m, "Operator")
1778 1779 1780 1781 1782 1783 1784
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1785 1786
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1787 1788 1789 1790 1791 1792
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1793
      .def("run",
1794 1795
           [](OperatorBase &self,
              const Scope &scope,
1796 1797 1798 1799
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1800
      .def("run",
1801 1802
           [](OperatorBase &self,
              const Scope &scope,
1803 1804 1805 1806
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1807
      .def("run",
1808 1809
           [](OperatorBase &self,
              const Scope &scope,
1810 1811 1812 1813
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1814
      .def("run",
1815 1816
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1817
              const platform::CUDAPinnedPlace &place) {
1818
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1819 1820
             self.Run(scope, place);
           })
R
ronnywang 已提交
1821
      .def("run",
1822 1823
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1824 1825 1826 1827
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1828 1829 1830 1831 1832
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1833 1834
             return op.Outputs();
           })
Q
qijun 已提交
1835 1836
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1837
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1838
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1839 1840 1841 1842
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1843

1844 1845 1846
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1847 1848
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1849 1850 1851 1852 1853 1854
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1855 1856
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1857

1858 1859
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1860
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1861
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1862
      .def("close", &Executor::Close)
1863 1864
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1865
           py::call_guard<py::gil_scoped_release>())
1866 1867
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1868
           py::call_guard<py::gil_scoped_release>())
1869
      .def("init_for_dataset",
1870 1871 1872 1873
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1874
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1875
             pybind11::gil_scoped_release release;
1876 1877 1878 1879 1880 1881 1882
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1883
      .def("run_prepared_ctx",
1884 1885 1886
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1887
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1888
              std::map<std::string, FetchType *> *fetch_targets,
1889 1890
              bool create_local_scope = true,
              bool create_vars = true,
1891 1892 1893
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1894 1895 1896 1897 1898 1899 1900 1901
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1902
           })
1903
      .def("run_prepared_ctx",
1904 1905 1906 1907 1908
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1909 1910
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1911 1912
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1913
           })
1914
      .def("prepare",
1915 1916 1917
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1918 1919 1920 1921
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1922 1923
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1924 1925
           })
      .def("create_variables", &Executor::CreateVariables)
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1942

1943
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1944
      .def(py::init<>())
1945 1946 1947 1948 1949
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1950

1951
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1952 1953 1954
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1955
      .def("run",
1956
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1957 1958 1959
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1960
               ret = self.Run(feed_names);
1961 1962
             }
             return py::cast(std::move(ret));
H
hong 已提交
1963 1964
           });

1965 1966
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1967
      .def(py::init<const std::string &>(), py::arg("type"))
1968 1969 1970 1971
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1972 1973
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1974 1975 1976 1977 1978 1979 1980 1981 1982

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
1983 1984 1985 1986 1987 1988 1989
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string,
                                       std::shared_ptr<::ir::Program>> &>(),
          py::arg("job_list"),
          py::arg("type_to_ir_program"))
1990 1991 1992
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1993

D
dzhwinter 已提交
1994
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1995
  m.def("init_glog", framework::InitGLOG);
1996
  m.def("init_memory_method", framework::InitMemoryMethod);
1997 1998 1999 2000
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2001 2002 2003 2004 2005 2006 2007 2008
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
2009 2010
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2011
  m.def("init_tensor_operants", []() {
2012 2013 2014 2015 2016 2017
    paddle::OperantsManager::Instance().eager_operants =
        std::make_unique<paddle::prim::EagerTensorOperants>();
    paddle::OperantsManager::Instance().static_operants =
        std::make_unique<paddle::prim::StaticTensorOperants>();
    paddle::OperantsManager::Instance().phi_operants =
        std::make_unique<paddle::operants::PhiTensorOperants>();
2018 2019
    VLOG(4) << "Initialize tensor operants successfully";
  });
2020
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2021
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2022
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2023
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2024
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2025
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2026
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2027
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2028 2029
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2030
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2031
  m.def("is_run_with_cinn", IsRunWithCINN);
2032
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2033
  m.def("supports_bfloat16", SupportsBfloat16);
2034
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2035 2036
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2037
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2038
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2039
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2040 2041 2042
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
2043 2044 2045 2046 2047
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2067 2068 2069
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
2070 2071
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
2072 2073
  m.def(
      "run_cmd",
2074 2075
      [](const std::string &cmd,
         int time_out = -1,
2076
         int sleep_inter = -1) -> const std::string {
2077 2078
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2079
      },
2080 2081 2082
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2083 2084
  m.def(
      "shell_execute_cmd",
2085 2086 2087
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2088
         bool redirect_stderr = false) -> std::vector<std::string> {
2089 2090
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2091
      },
2092 2093 2094
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2095
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2096

S
Steffy-zxf 已提交
2097
  m.def("set_feed_variable",
2098 2099
        static_cast<void (*)(  // NOLINT
            Scope *,
2100
            const phi::DenseTensor &,
2101 2102
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2103
  m.def("set_feed_variable",
2104 2105
        static_cast<void (*)(  // NOLINT
            Scope *,
2106
            const std::vector<std::string> &,
2107 2108
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2109
  m.def("get_fetch_variable",
2110 2111
        [](const Scope &scope,
           const std::string &var_name,
2112 2113 2114
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2115
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2116
          } else {
R
Ruibiao Chen 已提交
2117
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2118 2119
          }
        });
2120
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2121

X
Xin Pan 已提交
2122 2123
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2124 2125 2126 2127
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2128
  BindCostModel(&m);
2129
  BindConstValue(&m);
2130
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2131
  BindFleetExecutor(&m);
2132
  BindTCPStore(&m);
2133
  BindCommContextManager(&m);
2134
  BindAutoParallel(&m);
2135
  BindJitProperty(&m);
Y
Yu Yang 已提交
2136

Y
Yu Yang 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2146
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2147
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2148 2149 2150

    Examples:
        .. code-block:: python
2151

Z
Zeng Jinle 已提交
2152 2153 2154
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2155 2156 2157 2158
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2159 2160
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2161 2162 2163 2164
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2165 2166
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2167
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2168 2169
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2170 2171 2172
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2173 2174 2175
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2176 2177
      .def(
          "append",
2178
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2179 2180 2181 2182
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2183 2184
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2185
             Append a LoDensor to LoDTensorArray.
2186

2187 2188 2189 2190 2191
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2203
           )DOC")
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2215

2216
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2217
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2218
        )DOC")
2219 2220 2221 2222 2223 2224
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2225
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2226
                res[i] = py::cast(std::move(data));
2227 2228 2229
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2230
              } else {
R
Ruibiao Chen 已提交
2231
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2243

2244 2245
      .def(
          "append",
2246
          [](FetchList &self, const phi::DenseTensor &t) {
2247
            self.emplace_back();
2248
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2249 2250 2251 2252 2253 2254 2255 2256 2257
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2258
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2259 2260 2261 2262 2263 2264
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2265 2266

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2267
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2268
        )DOC")
2269 2270 2271 2272 2273 2274 2275 2276
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2277
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2278 2279
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2280
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2295

Y
Yu Yang 已提交
2296
  m.def("op_support_gpu", OpSupportGPU);
2297
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2298
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2299
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2300 2301 2302 2303 2304 2305 2306 2307
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2308 2309 2310 2311 2312 2313
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2314 2315

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2341
      });
D
dangqingqing 已提交
2342

2343
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2344 2345 2346
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2347 2348 2349
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2350 2351 2352
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2353
#endif
P
peizhilin 已提交
2354
#endif
Y
Yu Yang 已提交
2355

J
jianghaicheng 已提交
2356 2357 2358 2359
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2360 2361 2362 2363 2364 2365
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2366 2367 2368 2369
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2370
      .value("kAll", platform::ProfilerState::kAll)
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2382
  m.def("set_tracer_option", platform::SetTracerOption);
2383 2384
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2385
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2386
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2387
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2388
    PADDLE_ENFORCE_EQ(
2389 2390
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2391 2392 2393
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2394
    callable.inc_ref();
2395 2396 2397 2398
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2399 2400
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2401 2402
          return pass;
        });
2403
  });
2404
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2405 2406 2407
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
2408 2409 2410
  m.def("register_subgraph_pass", [](const std::string &pass_type) {
    framework::ir::Pass::AddSupportSubgraphPass(pass_type);
  });
Y
Yu Yang 已提交
2411

2412
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2413 2414
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2415 2416
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2417 2418
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2419 2420 2421 2422 2423 2424 2425 2426 2427
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2492 2493
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2494 2495 2496 2497
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2498 2499 2500
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2501 2502 2503 2504 2505
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2506 2507 2508
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2509 2510

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2511 2512
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2513
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2514
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2515 2516
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2517
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2518 2519 2520 2521 2522 2523
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2547 2548 2549 2550 2551 2552 2553 2554
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2573 2574
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2575 2576
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2577

2578
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2579 2580 2581 2582
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2583
#endif  // PADDLE_WITH_CUDA
2584 2585 2586 2587 2588 2589 2590 2591
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2592

J
jianghaicheng 已提交
2593 2594
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2595 2596 2597
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2598 2599 2600 2601 2602 2603 2604
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2605
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2606 2607
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2608
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2619 2620 2621 2622
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2645 2646
                         option.get_type(),
                         option_name));
2647 2648 2649 2650 2651 2652 2653
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2654 2655
                         option_name,
                         option.first.cast<std::string>(),
2656 2657
                         option.second.cast<std::uint64_t>());
                   }
2658 2659 2660 2661 2662 2663
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2709 2710
                           option.second.get_type(),
                           option_key));
2711
                     }
2712 2713
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2714 2715 2716 2717 2718 2719
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2720 2721
                     element.second.get_type(),
                     option_name));
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2752 2753
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2754 2755 2756
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2757 2758
#endif

2759 2760 2761
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
2762 2763 2764
    for (auto &op_item : list_op) {
      auto op_name = (op_item.first).c_str();
      auto counts = op_item.second;
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2776 2777 2778 2779 2780 2781 2782 2783
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2784
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2785 2786 2787 2788 2789 2790 2791 2792 2793
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2794
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2795 2796 2797 2798 2799 2800 2801
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2802 2803
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2804

2805 2806
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2807

2808 2809
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2810
  // Add the api for nan op debug
2811 2812 2813 2814
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2815 2816
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2817

2818 2819 2820 2821 2822 2823 2824
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
D
dongdaxiang 已提交
2825
  BindFleetWrapper(&m);
2826
  BindIO(&m);
2827 2828 2829
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
  py::enum_<phi::DataType> data_type(m, "DataType");
  g_data_type_pytype = (PyTypeObject *)data_type.ptr();  // NOLINT
  data_type.value("UNDEFINED", phi::DataType::UNDEFINED)
      .value("BOOL", phi::DataType::BOOL)
      .value("UINT8", phi::DataType::UINT8)
      .value("INT8", phi::DataType::INT8)
      .value("UINT16", phi::DataType::UINT16)
      .value("INT16", phi::DataType::INT16)
      .value("UINT32", phi::DataType::UINT32)
      .value("INT32", phi::DataType::INT32)
      .value("UINT64", phi::DataType::UINT64)
      .value("INT64", phi::DataType::INT64)
      .value("FLOAT32", phi::DataType::FLOAT32)
      .value("FLOAT64", phi::DataType::FLOAT64)
      .value("COMPLEX64", phi::DataType::COMPLEX64)
      .value("COMPLEX128", phi::DataType::COMPLEX128)
      .value("FLOAT16", phi::DataType::FLOAT16)
      .value("BFLOAT16", phi::DataType::BFLOAT16)
      .export_values();

T
Thunderbrook 已提交
2851
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2852
  BindHeterWrapper(&m);
2853
  BindMetrics(&m);
T
Thunderbrook 已提交
2854
#endif
T
Thunderbrook 已提交
2855
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2856
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2857 2858 2859
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2860
#endif
2861
  BindGlooWrapper(&m);
H
hutuxian 已提交
2862
  BindBoxHelper(&m);
H
hutuxian 已提交
2863 2864 2865
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2866
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2867
  BindNCCLWrapper(&m);
2868 2869 2870
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2871
#endif
F
flame 已提交
2872 2873
  BindGraph(&m);
  BindNode(&m);
2874
  BindPass(&m);
F
flame 已提交
2875
  BindInferenceApi(&m);
2876
  BindCompatible(&m);
2877
  BindDataset(&m);
Y
yaoxuefeng 已提交
2878
  BindGenerator(&m);
2879
#ifndef PADDLE_NO_PYTHON
2880 2881
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2882 2883 2884
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2885

T
tangwei12 已提交
2886
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2887 2888
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2889
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2890 2891
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2892 2893 2894 2895 2896
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2897 2898 2899 2900
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2901
#ifdef PADDLE_WITH_HETERPS
2902 2903
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2904 2905 2906
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2907
#endif
X
Xinger 已提交
2908
#if defined(PADDLE_WITH_RPC)
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2921 2922

  BindNewIR(&m);
2923
  BindVjp(&m);
L
Luo Tao 已提交
2924
}
2925
}  // namespace pybind
2926
}  // namespace paddle