pybind.cc 103.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
37
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/executor.h"
39
#include "paddle/fluid/framework/executor_cache.h"
40
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
42
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
44
#include "paddle/fluid/framework/io/fs.h"
45
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
46
#include "paddle/fluid/framework/ir/cost_model.h"
47
#include "paddle/fluid/framework/ir/generate_pass.h"
48
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
51
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
52
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/op_info.h"
54
#include "paddle/fluid/framework/op_registry.h"
55
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
56
#include "paddle/fluid/framework/parallel_executor.h"
57
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/framework/prune.h"
59
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/scope_pool.h"
62
#include "paddle/fluid/framework/selected_rows_utils.h"
63
#include "paddle/fluid/framework/tensor_util.h"
64
#include "paddle/fluid/framework/trainer.h"
65
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
66
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
67
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
68
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
69
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
70
#include "paddle/fluid/prim/utils/utils.h"
71 72 73
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
74
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
75
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
76
#include "paddle/fluid/operators/common_infer_shape_functions.h"
77
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
78
#include "paddle/fluid/operators/py_func_op.h"
79
#include "paddle/fluid/platform/cpu_helper.h"
80
#include "paddle/fluid/platform/device/device_wrapper.h"
81
#include "paddle/fluid/platform/device_context.h"
82
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
83
#include "paddle/fluid/platform/enforce.h"
84
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
85
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
86 87
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
88 89 90
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
91
#include "paddle/fluid/pybind/cuda_streams_py.h"
92
#include "paddle/fluid/pybind/custom_device_py.h"
93
#include "paddle/fluid/pybind/distributed_py.h"
94
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
95
#include "paddle/fluid/pybind/imperative.h"
96
#include "paddle/fluid/pybind/io.h"
97
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
98
#include "paddle/fluid/pybind/xpu_streams_py.h"
99
#include "paddle/phi/backends/cpu/cpu_info.h"
100 101
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
102
#include "paddle/utils/none.h"
103 104 105
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
106
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
107
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
108
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
109
#include "paddle/fluid/pybind/box_helper_py.h"
110
#include "paddle/fluid/pybind/communication.h"
111
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
121
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
124
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
125
#include "paddle/fluid/pybind/pybind_variant_caster.h"
126
#include "paddle/phi/backends/device_manager.h"
127

128
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
129
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
130
#endif
131
#include "paddle/fluid/framework/data_type.h"
132 133
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
134 135
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
136
#include "paddle/fluid/pybind/reader_py.h"
137
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
138
#include "paddle/fluid/pybind/tensor_py.h"
139
#include "paddle/fluid/string/to_string.h"
140 141
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
142
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
143
#endif
144
#ifndef PADDLE_WITH_HIP
145
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
146
#endif
147
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
148 149
#endif

150
#ifdef PADDLE_WITH_ASCEND_CL
151
#include "paddle/fluid/platform/collective_helper.h"
152 153
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163 164 165
#include "paddle/phi/capi/capi.h"
#endif

166
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
167

J
jianghaicheng 已提交
168
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
169 170
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
171
#endif
172

173 174 175 176
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
177 178 179 180
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
181
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
182 183 184
#include "paddle/fluid/pybind/fleet_py.h"
#endif

185 186 187 188
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
189
#if defined(PADDLE_WITH_RPC)
190 191 192
#include "paddle/fluid/pybind/rpc.h"
#endif

193
#include "paddle/fluid/eager/api/utils/global_utils.h"
194
#include "paddle/fluid/imperative/layout_autotune.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
199 200
#include "pybind11/stl.h"

201
DECLARE_bool(use_mkldnn);
202

Q
Qiao Longfei 已提交
203 204
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
205 206 207
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
208

209
namespace paddle {
210
namespace pybind {
211

0
0x45f 已提交
212
PyTypeObject *g_framework_scope_pytype = nullptr;
213
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
214
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
215

216 217 218 219 220 221 222 223
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

224
bool IsCompiledWithCUDA() {
225 226 227 228 229 230 231
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

257 258
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
259 260 261 262 263 264
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

281 282 283 284 285 286 287 288
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
303 304 305 306 307 308 309 310
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

311 312 313 314 315 316 317 318
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

319 320 321 322 323 324 325 326
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

327 328 329 330 331 332 333 334
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

335 336 337 338 339 340 341 342
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

343 344 345 346
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
347
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
348 349 350 351 352 353
    return true;
  else
    return false;
#endif
}

354 355 356 357
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
358
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
359 360 361 362 363 364
    return true;
  else
    return false;
#endif
}

365 366 367 368
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
369 370
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
371 372 373 374 375 376 377
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
378 379
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
380 381 382
#endif
}

383
bool IsCompiledWithBrpc() {
384
#ifndef PADDLE_WITH_DISTRIBUTE
385
  return false;
386
#else
387
  return true;
388
#endif
389 390
}

Y
update  
Yancey1989 已提交
391
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
392
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
393 394 395 396 397 398
  return true;
#else
  return false;
#endif
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
467 468
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
469 470
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
484 485
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
486 487
    }
    vec_res.emplace_back(
488
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
489 490 491 492 493 494 495 496 497 498 499 500
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
501 502
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
503 504 505 506 507 508 509 510 511 512 513 514
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
515 516 517
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
518 519 520 521
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
522 523
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
524 525 526 527
  }
  return vec_res;
}

O
OccupyMars2025 已提交
528
static void inline CreateVariableIfNotExist(
529 530
    const py::handle &py_handle,
    const framework::Scope &scope,
531 532 533 534 535 536
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
537 538
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
552 553 554
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
555 556 557 558 559
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
560 561 562 563 564
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
565 566
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
567
        PADDLE_ENFORCE_NOT_NULL(
568 569 570
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
571 572 573
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
574
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
575
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
576 577
        tensor_temp->mutable_data(
            exe->GetPlace(),
578
            framework::TransToPhiDataType(var_desc.GetDataType()));
579 580 581
      }
    }
  } else {
582 583
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
584 585 586 587 588
  }

  return;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
605 606
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
607 608 609 610 611 612 613
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
614 615 616 617
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
618
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
619 620 621 622 623 624 625 626
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

627
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
628
  BindImperative(&m);
629
  BindEager(&m);
J
Jack Zhou 已提交
630
  BindEagerStringTensor(&m);
631
  BindCudaStream(&m);
J
james 已提交
632
  BindXpuStream(&m);
633
  BindJit(&m);
634
  BindCustomDevicePy(&m);
635

Y
Yu Yang 已提交
636
  // Not used, just make sure cpu_info.cc is linked.
637
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
638

Y
Refine  
Yu Yang 已提交
639
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
640

641 642
  AssertStaticGraphAndDygraphGradMakerNoDiff();

643
  m.doc() = "C++ core of PaddlePaddle";
644

645 646 647 648
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

649
  BindException(&m);
Y
Yu Yang 已提交
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

666 667 668 669 670 671 672 673 674 675
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
676 677
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
678 679
  m.def("set_num_threads", &platform::SetNumThreads);

680 681
  m.def("disable_signal_handler", &DisableSignalHandler);

682 683 684 685 686 687 688 689
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

690
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
691
  m.def("cudnn_version", &platform::DnnVersion);
692 693 694 695 696 697
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
698
#endif
699

Z
Zeng Jinle 已提交
700 701 702 703
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

704 705
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
706
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
707 708 709 710 711 712
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
713
      .def_static("gen_new_memory_pool_id",
714 715 716 717 718
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
719 720
#endif

Z
Zeng Jinle 已提交
721 722 723 724
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
725 726 727
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
728 729

    PADDLE_ENFORCE_NOT_NULL(
730 731 732 733
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
734

6
633WHU 已提交
735 736
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
737
    phi::DenseTensor tensor;
6
633WHU 已提交
738

S
Siming Dai 已提交
739
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
740
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
741
    }
742
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
743
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
744
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
745 746 747 748
    }
#endif
    return tensor;
  });
H
hong 已提交
749

750
  m.def("_create_loaded_parameter",
751 752
        [](const py::handle &vec_var_list,
           const Scope &scope,
753
           const Executor *executor) {
O
OccupyMars2025 已提交
754
          CreateVariableIfNotExist(vec_var_list, scope, executor);
755 756
        });

757 758 759 760 761 762
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
763 764
  });

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

790 791 792 793 794 795
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
796

S
sneaxiy 已提交
797
  m.def(
S
sneaxiy 已提交
798
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
799 800 801 802
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
803 804 805
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
822
            }
823
            all_kernels_info.emplace(op_type, kernel_types);
824
          }
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
841
                }
842 843
              } else {
                kernel_types.emplace_back(kernel_type_str);
844
              }
845
            }
846 847 848
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
849
          }
850
        }
851

852 853 854 855
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
856 857 858
           Return the registered kernels in paddle.

           Args:
859
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
860
           )DOC");
861

862 863 864 865 866 867
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
868 869 870 871 872
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
873

S
sneaxiy 已提交
874 875 876
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
877
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
878

879
  m.def("_set_fuse_parameter_group_size",
880
        &paddle::framework::ir::SetFuseParameterGroupsSize);
881
  m.def("_set_fuse_parameter_memory_size",
882
        &paddle::framework::ir::SetFuseParameterMemorySize);
883

S
sneaxiy 已提交
884 885 886
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

887 888
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
889 890
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

891 892 893
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
935 936 937 938 939 940 941 942 943 944 945 946 947
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
948 949 950 951 952
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
953

954
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
955 956 957

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
958
      .def(py::init<>())
959
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
960
      .def("set_int",
961 962
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
963 964 965 966 967 968 969
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
970 971
      .def(
          "get_tensor",
972 973
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
974 975
          },
          py::return_value_policy::reference)
976 977
      .def("get_bytes",
           [](Variable &self) {
978 979 980 981 982 983
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
984
           })
S
Steffy-zxf 已提交
985
      .def("set_string_list",
986
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
987 988
             *self.GetMutable<Strings>() = str_list;
           })
989
      .def("set_vocab",
990 991
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
992 993
             *self.GetMutable<Vocab>() = vocab;
           })
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1020
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1021 1022 1023 1024 1025 1026
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1027
#endif
1028 1029 1030
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1031 1032
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1043 1044
                scope_vec->size(),
                0,
1045 1046 1047 1048 1049
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1050 1051 1052 1053
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1054

S
sneaxiy 已提交
1055
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1056

0
0x45f 已提交
1057
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1071
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1072 1073 1074 1075 1076
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1077 1078 1079
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1080 1081
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1082 1083 1084 1085 1086 1087 1088
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1089
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1090

1091
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1092
           current scope, the variable would be created. Otherwise,
1093
           return the existing variable.
S
sneaxiy 已提交
1094 1095

           Args:
1096 1097
               name (str): the variable name.

S
sneaxiy 已提交
1098
           Returns:
1099
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1100
           )DOC",
1101
          py::return_value_policy::reference)
1102 1103 1104
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1105
           R"DOC(
1106
           Find variable named :code:`name` in the current scope or
1107
           its parent scope. Return None if not found.
1108

S
sneaxiy 已提交
1109 1110
           Args:
               name (str): the variable name.
1111

S
sneaxiy 已提交
1112
           Returns:
1113
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1114
           )DOC",
1115
           py::return_value_policy::reference)
1116
      .def("size", &Scope::Size)
1117 1118 1119
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1120 1121
           R"DOC(
           Find variable named :code:`name` in the current scope or
1122
           its parent scope. Return None if not found.
1123 1124 1125 1126 1127 1128 1129 1130

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1131
      .def(
1132 1133
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1134
          R"DOC(
S
sneaxiy 已提交
1135 1136 1137 1138 1139
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1140
          py::return_value_policy::reference)
1141 1142
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1143 1144
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1145
           )DOC")
1146 1147
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1148

1149 1150 1151 1152 1153 1154 1155 1156
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1157
        Create a new scope.
1158

S
sneaxiy 已提交
1159 1160 1161
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1162
      py::return_value_policy::reference);
S
sneaxiy 已提交
1163

Y
Yu Yang 已提交
1164 1165
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1166 1167
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1168 1169 1170 1171
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1172
        PADDLE_ENFORCE_EQ(
1173 1174
            info.Proto().SerializeToString(&str),
            true,
1175 1176
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1177 1178 1179
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1180 1181
    return ret_values;
  });
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1220 1221 1222 1223 1224 1225 1226 1227
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1228
              res = op_checker->GetDefaultAttrsMap();
1229 1230 1231 1232
            }
          }
          return res;
        });
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1249 1250 1251
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1252 1253 1254 1255 1256
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1257 1258 1259

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1260
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1261 1262 1263 1264 1265 1266 1267

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1268
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1269 1270 1271 1272 1273 1274 1275 1276
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1277
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1278 1279
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1280
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1281 1282
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1283 1284 1285
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1286
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1287
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1288
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1311 1312 1313 1314 1315 1316 1317 1318
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1319 1320 1321
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1322 1323 1324 1325 1326
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1327 1328 1329
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1330
  m.def("infer_no_need_buffer_slots",
1331 1332
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1360 1361 1362 1363 1364 1365
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1366 1367
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1368

1369
            Args:
1370 1371 1372
                   program (ProgramDesc): The original program.

             Returns:
1373
                   tuple(ProgramDesc, map<int, int>): The first part is
1374 1375 1376 1377
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1378 1379 1380 1381
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1382 1383
    VLOG(4) << s;
    return s;
1384 1385 1386 1387 1388 1389
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1390
  });
1391 1392 1393 1394
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1395 1396 1397
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1398 1399
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1400

Y
Yu Yang 已提交
1401
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1402
      .def_static("create",
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1418 1419 1420 1421
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1422
                    return context;
Q
qijun 已提交
1423
                  })
1424 1425 1426 1427
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1428
#ifndef PADDLE_WITH_XPU
1429 1430 1431
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1432
#else
W
Wilber 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1446 1447 1448 1449
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1450
      return context;
1451
#endif
1452 1453 1454 1455 1456
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1457
#ifndef PADDLE_WITH_MLU
1458 1459 1460
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1461 1462
#else
                    return new paddle::platform::MLUDeviceContext(place);
1463
#endif
1464 1465 1466 1467 1468
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1469
#ifndef PADDLE_WITH_ASCEND_CL
1470 1471 1472
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1473 1474
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1475
#endif
1476 1477 1478 1479
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1480
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1481 1482 1483 1484
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1485 1486
#else
                return new paddle::platform::CustomDeviceContext(place);
1487
#endif
1488 1489 1490 1491 1492
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1493
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1494 1495 1496
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1497
#else
L
Leo Chen 已提交
1498
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1511 1512 1513 1514
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1515 1516 1517 1518
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1519 1520
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1521
#endif
1522 1523 1524 1525 1526
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1527
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1528 1529 1530
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1531 1532 1533
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1534
          });
1535
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1536 1537
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1538 1539 1540
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1541
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1542
#else
R
ronnywang 已提交
1543
          VLOG(1) << string::Sprintf(
1544 1545 1546 1547
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1548
              "PaddlePaddle by: pip install paddlepaddle\n");
1549 1550 1551 1552 1553 1554
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1555
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1556
#else
R
ronnywang 已提交
1557
          VLOG(1) << string::Sprintf(
1558 1559 1560 1561
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1562
              "PaddlePaddle by: pip install paddlepaddle\n");
1563 1564 1565 1566 1567 1568
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1569
    devices = phi::DeviceManager::GetAllDeviceList();
1570
#else
R
ronnywang 已提交
1571
          VLOG(1) << string::Sprintf(
1572 1573 1574 1575
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1576
              "PaddlePaddle by: pip install paddlepaddle\n");
1577 1578 1579 1580 1581 1582
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1583
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1584
#else
R
ronnywang 已提交
1585
          VLOG(1) << string::Sprintf(
1586 1587 1588 1589 1590 1591
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1592
              "PaddlePaddle by: pip install paddlepaddle\n");
1593 1594 1595
#endif
    return devices;
  });
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1615

Y
Yu Yang 已提交
1616
  py::class_<OperatorBase>(m, "Operator")
1617 1618 1619 1620 1621 1622 1623
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1624 1625
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1626 1627 1628 1629 1630 1631
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1632
      .def("run",
1633 1634
           [](OperatorBase &self,
              const Scope &scope,
1635 1636 1637 1638
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1639
      .def("run",
1640 1641
           [](OperatorBase &self,
              const Scope &scope,
1642 1643 1644 1645
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1646
      .def("run",
1647 1648
           [](OperatorBase &self,
              const Scope &scope,
1649 1650 1651 1652
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1653
      .def("run",
1654 1655
           [](OperatorBase &self,
              const Scope &scope,
1656 1657 1658 1659
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1660
      .def("run",
1661 1662
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1663
              const platform::CUDAPinnedPlace &place) {
1664
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1665 1666
             self.Run(scope, place);
           })
1667
      .def("run",
1668 1669
           [](OperatorBase &self,
              const Scope &scope,
1670 1671 1672 1673
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1674
      .def("run",
1675 1676
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1677 1678 1679 1680
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1681 1682 1683 1684 1685
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1686 1687
             return op.Outputs();
           })
Q
qijun 已提交
1688 1689
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1690
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1691
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1692 1693 1694 1695
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1696

1697 1698 1699
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1700 1701
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1702 1703 1704 1705 1706 1707
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1708 1709
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1710

1711 1712
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1713
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1714
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1715
      .def("close", &Executor::Close)
1716 1717
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1718
           py::call_guard<py::gil_scoped_release>())
1719 1720
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1721
           py::call_guard<py::gil_scoped_release>())
1722
      .def("init_for_dataset",
1723 1724 1725 1726
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1727
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1728
             pybind11::gil_scoped_release release;
1729 1730 1731 1732 1733 1734 1735
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1736
      .def("run_prepared_ctx",
1737 1738 1739
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1740
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1741
              std::map<std::string, FetchType *> *fetch_targets,
1742 1743
              bool create_local_scope = true,
              bool create_vars = true,
1744 1745 1746
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1747 1748 1749 1750 1751 1752 1753 1754
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1755
           })
1756
      .def("run_prepared_ctx",
1757 1758 1759 1760 1761
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1762 1763
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1764 1765
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1766
           })
1767
      .def("prepare",
1768 1769 1770
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1771 1772 1773 1774
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1775 1776
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1777 1778
           })
      .def("create_variables", &Executor::CreateVariables)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1795

1796
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1797
      .def(py::init<>())
1798 1799 1800 1801 1802
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1803

1804
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1805
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1806
      .def("run",
1807
           [](StandaloneExecutor &self,
1808
              Scope *scope,
1809
              std::vector<std::string> feed_names,
1810 1811 1812 1813
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1814
               ret = self.Run(scope, feed_names, fetch_names);
1815 1816 1817
             }
             return py::cast(std::move(ret));
           })
1818 1819
      .def("dry_run",
           [](StandaloneExecutor &self,
1820
              Scope *scope,
1821
              const std::unordered_map<std::string, py::array> &input_dict) {
1822
             std::vector<phi::DenseTensor> feed_tensors;
1823 1824 1825
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1826
               phi::DenseTensor t;
1827 1828 1829 1830 1831 1832
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1833
             framework::interpreter::CostInfo cost_info;
1834 1835
             {
               pybind11::gil_scoped_release release;
1836
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1837 1838
             }
             return cost_info;
H
hong 已提交
1839 1840
           });

D
dzhwinter 已提交
1841
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1842
  m.def("init_glog", framework::InitGLOG);
1843 1844 1845 1846
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1847 1848 1849 1850 1851 1852 1853 1854
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1855 1856
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1857
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1858
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1859
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1860
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1861
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1862
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1863
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1864
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1865
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1866
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1867 1868
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1869
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1870
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1871
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1872
  m.def("supports_bfloat16", SupportsBfloat16);
1873
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1874 1875
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1876
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1877
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1878
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1879 1880 1881
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1901 1902 1903
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1904 1905
  m.def(
      "run_cmd",
1906 1907
      [](const std::string &cmd,
         int time_out = -1,
1908
         int sleep_inter = -1) -> const std::string {
1909 1910
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1911
      },
1912 1913 1914
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1915 1916
  m.def(
      "shell_execute_cmd",
1917 1918 1919
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1920
         bool redirect_stderr = false) -> std::vector<std::string> {
1921 1922
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1923
      },
1924 1925 1926
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1927
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1928

1929
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1930 1931
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1932
    return platform::GetGPUComputeCapability(place.device) >= 53;
1933
  });
1934 1935 1936 1937
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1938
#endif
1939

S
Steffy-zxf 已提交
1940
  m.def("set_feed_variable",
1941 1942
        static_cast<void (*)(  // NOLINT
            Scope *,
1943
            const phi::DenseTensor &,
1944 1945
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1946
  m.def("set_feed_variable",
1947 1948
        static_cast<void (*)(  // NOLINT
            Scope *,
1949
            const std::vector<std::string> &,
1950 1951
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1952
  m.def("get_fetch_variable",
1953 1954
        [](const Scope &scope,
           const std::string &var_name,
1955 1956 1957
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1958
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1959
          } else {
R
Ruibiao Chen 已提交
1960
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1961 1962
          }
        });
1963
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1964

X
Xin Pan 已提交
1965 1966
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1967 1968 1969 1970
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1971
  BindCostModel(&m);
1972
  BindConstValue(&m);
1973
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1974
  BindFleetExecutor(&m);
1975
  BindTCPStore(&m);
1976
  BindCommContextManager(&m);
1977
  BindAutoParallel(&m);
1978
  BindJitProperty(&m);
Y
Yu Yang 已提交
1979

Y
Yu Yang 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1989
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1990
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1991 1992 1993

    Examples:
        .. code-block:: python
1994

Z
Zeng Jinle 已提交
1995 1996 1997
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1998 1999 2000 2001
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2002 2003
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2004 2005 2006 2007
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2008 2009
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2010
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2011 2012
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2013 2014 2015
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2016 2017 2018
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2019 2020
      .def(
          "append",
2021
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2022 2023 2024 2025
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2026 2027
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2028
             Append a LoDensor to LoDTensorArray.
2029

2030 2031 2032 2033 2034
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2046
           )DOC")
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2058

2059
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2060
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2061
        )DOC")
2062 2063 2064 2065 2066 2067
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2068
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2069
                res[i] = py::cast(std::move(data));
2070 2071 2072
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2073
              } else {
R
Ruibiao Chen 已提交
2074
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2086

2087 2088
      .def(
          "append",
2089
          [](FetchList &self, const phi::DenseTensor &t) {
2090
            self.emplace_back();
2091
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2092 2093 2094 2095 2096 2097 2098 2099 2100
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2101
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2102 2103 2104 2105 2106 2107
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2108 2109

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2110
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2111
        )DOC")
2112 2113 2114 2115 2116 2117 2118 2119
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2120
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2121 2122
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2123
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2138

Y
Yu Yang 已提交
2139
  m.def("op_support_gpu", OpSupportGPU);
2140
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2141
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2142
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2143 2144 2145 2146 2147 2148 2149 2150
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2151 2152 2153 2154 2155 2156
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2157 2158

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2184
      });
D
dangqingqing 已提交
2185

2186
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2187 2188 2189
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2190 2191 2192
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2193 2194 2195
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2196
#endif
P
peizhilin 已提交
2197
#endif
Y
Yu Yang 已提交
2198

2199 2200
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2201
  m.def("npu_finalize", []() {
2202 2203
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2204 2205 2206
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2207
      platform::NPUDeviceGuard guard(devices[i]);
2208 2209 2210 2211
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2232 2233 2234 2235
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2236 2237 2238 2239
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2240 2241 2242 2243 2244 2245
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2246 2247 2248 2249
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2250
      .value("kAll", platform::ProfilerState::kAll)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2262
  m.def("set_tracer_option", platform::SetTracerOption);
2263 2264
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2265
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2266
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2267
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2268
    PADDLE_ENFORCE_EQ(
2269 2270
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2271 2272 2273
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2274
    callable.inc_ref();
2275 2276 2277 2278 2279 2280 2281 2282
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2283
  });
2284
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2285 2286 2287
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2288

2289
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2290 2291
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2292 2293
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2294 2295
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2296 2297 2298 2299 2300 2301 2302 2303 2304
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2369 2370
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2371 2372 2373 2374
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2375 2376 2377
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2378 2379 2380 2381 2382
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2383 2384 2385
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2386 2387

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2388 2389
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2390
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2391
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2392 2393
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2394 2395 2396 2397 2398 2399
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2423 2424 2425 2426 2427 2428 2429 2430
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2449 2450
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2451 2452
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2453

2454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2455 2456
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2457 2458
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2459
#endif  // PADDLE_WITH_CUDA
2460 2461 2462 2463 2464 2465 2466 2467
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2468

J
jianghaicheng 已提交
2469 2470
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2471 2472 2473
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2474 2475 2476 2477 2478 2479 2480
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2481
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2482 2483
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2484
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2495 2496 2497 2498
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2521 2522
                         option.get_type(),
                         option_name));
2523 2524 2525 2526 2527 2528 2529
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2530 2531
                         option_name,
                         option.first.cast<std::string>(),
2532 2533
                         option.second.cast<std::uint64_t>());
                   }
2534 2535 2536 2537 2538 2539
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2585 2586
                           option.second.get_type(),
                           option_key));
2587
                     }
2588 2589
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2590 2591 2592 2593 2594 2595
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2596 2597
                     element.second.get_type(),
                     option_name));
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2628 2629
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2630 2631 2632
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2633 2634
#endif

2635 2636 2637 2638 2639 2640 2641 2642
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2643
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2644 2645 2646 2647 2648 2649 2650
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2651
  m.def("get_low_precision_op_list", [] {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2663 2664
  });

2665 2666
  m.def("autotune_status", [] {
    py::dict res;
2667
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2668 2669 2670 2671 2672 2673 2674
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2675 2676
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2677

2678 2679
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2680

2681 2682
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2683 2684 2685
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2686

D
dongdaxiang 已提交
2687
  BindFleetWrapper(&m);
2688
  BindIO(&m);
2689 2690 2691
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2692

T
Thunderbrook 已提交
2693
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2694
  BindHeterWrapper(&m);
2695
  BindMetrics(&m);
T
Thunderbrook 已提交
2696
#endif
T
Thunderbrook 已提交
2697
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2698
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2699 2700 2701
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2702
#endif
2703
  BindGlooWrapper(&m);
H
hutuxian 已提交
2704
  BindBoxHelper(&m);
H
hutuxian 已提交
2705 2706 2707
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2708
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2709
  BindNCCLWrapper(&m);
2710 2711 2712
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2713
#endif
F
flame 已提交
2714 2715
  BindGraph(&m);
  BindNode(&m);
2716
  BindPass(&m);
F
flame 已提交
2717
  BindInferenceApi(&m);
2718
  BindCompatible(&m);
2719
  BindDataset(&m);
Y
yaoxuefeng 已提交
2720
  BindGenerator(&m);
2721
#ifndef PADDLE_NO_PYTHON
2722 2723
  BindDistributed(&m);
#endif
2724 2725 2726
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2727
  BindAscendDevice(&m);
2728
#endif
Y
Yanghello 已提交
2729 2730 2731
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2732

T
tangwei12 已提交
2733
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2734 2735
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2736
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2737 2738
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2739 2740 2741 2742 2743
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2744 2745 2746 2747
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2748
#ifdef PADDLE_WITH_HETERPS
2749 2750
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2751 2752 2753
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2754
#endif
X
Xinger 已提交
2755
#if defined(PADDLE_WITH_RPC)
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2768
}
2769
}  // namespace pybind
2770
}  // namespace paddle