pybind.cc 96.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
59
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
69 70 71
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
72
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
73
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
74
#include "paddle/fluid/operators/common_infer_shape_functions.h"
75
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
76
#include "paddle/fluid/operators/py_func_op.h"
77
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
78
#include "paddle/fluid/platform/cpu_info.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/distributed_py.h"
92
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
93
#include "paddle/fluid/pybind/imperative.h"
94
#include "paddle/fluid/pybind/io.h"
95
#include "paddle/fluid/pybind/jit.h"
96 97
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
98
#include "paddle/utils/none.h"
99 100 101
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
112
#include "paddle/fluid/pybind/generator_py.h"
113
#include "paddle/fluid/pybind/global_value_getter_setter.h"
114
#include "paddle/fluid/pybind/gloo_context_py.h"
115
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/ir.h"
119
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
121
#include "paddle/fluid/pybind/pybind_variant_caster.h"
122
#include "paddle/phi/backends/device_manager.h"
123

124
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
125
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
126
#endif
127
#include "paddle/fluid/framework/data_type.h"
128 129
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
130 131
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
132
#include "paddle/fluid/pybind/reader_py.h"
133
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
134
#include "paddle/fluid/pybind/tensor_py.h"
135
#include "paddle/fluid/string/to_string.h"
136 137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
138
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
139
#endif
140
#ifndef PADDLE_WITH_HIP
141
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
142
#endif
143
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
144 145
#endif

146
#ifdef PADDLE_WITH_ASCEND_CL
147
#include "paddle/fluid/platform/collective_helper.h"
148 149
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
150 151
#endif

152
#ifdef PADDLE_WITH_XPU
153
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
154
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
155 156
#endif

157
#ifdef PADDLE_WITH_CUSTOM_DEVICE
158
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
159 160 161
#include "paddle/phi/capi/capi.h"
#endif

162
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
163

J
jianghaicheng 已提交
164
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
165 166
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
167
#endif
168

169 170 171 172
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
173 174 175 176
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
177
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
178 179 180
#include "paddle/fluid/pybind/fleet_py.h"
#endif

181 182 183 184
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

185
#include "paddle/fluid/eager/api/utils/global_utils.h"
186
#include "paddle/fluid/imperative/layout_autotune.h"
187 188
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
189 190
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
191 192
#include "pybind11/stl.h"

193
DECLARE_bool(use_mkldnn);
194

Q
Qiao Longfei 已提交
195 196
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
197 198 199
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
200

201
namespace paddle {
202
namespace pybind {
203

0
0x45f 已提交
204
PyTypeObject *g_framework_scope_pytype = nullptr;
205
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
206
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
207

208 209 210 211 212 213 214 215
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

216
bool IsCompiledWithCUDA() {
217 218 219 220 221 222 223
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

249 250
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
251 252 253 254 255 256
  return false;
#else
  return true;
#endif
}

257 258 259 260 261 262 263 264
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
281 282 283 284 285 286 287 288
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

297 298 299 300 301 302 303 304
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

305 306 307 308 309 310 311 312
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

313 314 315 316 317 318 319 320
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

321 322 323 324 325 326 327 328 329 330 331
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

332 333 334 335 336 337 338 339 340 341 342
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

360
bool IsCompiledWithBrpc() {
361
#ifndef PADDLE_WITH_DISTRIBUTE
362
  return false;
363
#else
364
  return true;
365
#endif
366 367
}

Y
update  
Yancey1989 已提交
368
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
369
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
370 371 372 373 374 375
  return true;
#else
  return false;
#endif
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
444 445
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
446 447
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
461 462
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
463 464
    }
    vec_res.emplace_back(
465
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
466 467 468 469 470 471 472 473 474 475 476 477
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
478 479
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
480 481 482 483 484 485 486 487 488 489 490 491
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
492 493 494
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
495 496 497 498
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
499 500
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
501 502 503 504
  }
  return vec_res;
}

O
OccupyMars2025 已提交
505
static void inline CreateVariableIfNotExist(
506 507
    const py::handle &py_handle,
    const framework::Scope &scope,
508 509 510 511 512 513
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
514 515
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
516 517 518 519 520 521 522 523 524 525 526 527 528
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
529 530 531
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
532 533 534 535 536
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
537 538 539 540 541
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
542 543
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
544
        PADDLE_ENFORCE_NOT_NULL(
545 546 547
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
548 549 550 551
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
552
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
553 554
        tensor_temp->mutable_data(
            exe->GetPlace(),
555
            framework::TransToPhiDataType(var_desc.GetDataType()));
556 557 558
      }
    }
  } else {
559 560
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
561 562 563 564 565
  }

  return;
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
582 583
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
584 585 586 587 588 589 590
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
591 592 593 594
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
595
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
596 597 598 599 600 601 602 603
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

604
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
605
  BindImperative(&m);
606
  BindEager(&m);
J
Jack Zhou 已提交
607
  BindEagerStringTensor(&m);
608
  BindCudaStream(&m);
609
  BindJit(&m);
610

Y
Yu Yang 已提交
611 612 613
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
614
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
615

616 617
  AssertStaticGraphAndDygraphGradMakerNoDiff();

618
  m.doc() = "C++ core of PaddlePaddle";
619

620 621 622 623
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

624
  BindException(&m);
Y
Yu Yang 已提交
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

641 642
  m.def("set_num_threads", &platform::SetNumThreads);

643 644
  m.def("disable_signal_handler", &DisableSignalHandler);

645 646 647 648 649 650 651 652
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

653
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
654
  m.def("cudnn_version", &platform::DnnVersion);
655 656 657 658 659 660
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
661
#endif
662

Z
Zeng Jinle 已提交
663 664 665 666
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

667 668 669 670 671 672 673 674 675
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
676 677
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
678
      .def("replay", &platform::CUDAGraph::Replay)
679 680
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
681 682
#endif

Z
Zeng Jinle 已提交
683 684 685 686
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
687 688 689
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
690 691

    PADDLE_ENFORCE_NOT_NULL(
692 693 694 695
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
696

6
633WHU 已提交
697 698
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
699
    framework::Tensor tensor;
6
633WHU 已提交
700

S
Siming Dai 已提交
701
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
702 703
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
704
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
705
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
706 707 708 709 710
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
711

712
  m.def("_create_loaded_parameter",
713 714
        [](const py::handle &vec_var_list,
           const Scope &scope,
715
           const Executor *executor) {
O
OccupyMars2025 已提交
716
          CreateVariableIfNotExist(vec_var_list, scope, executor);
717 718
        });

719 720 721 722 723 724
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
725 726
  });

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

752 753 754 755 756 757
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
758

S
sneaxiy 已提交
759
  m.def(
S
sneaxiy 已提交
760
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
761 762 763 764
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
765 766 767
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
784
            }
785
            all_kernels_info.emplace(op_type, kernel_types);
786
          }
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
803
                }
804 805
              } else {
                kernel_types.emplace_back(kernel_type_str);
806
              }
807
            }
808 809 810
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
811
          }
812
        }
813

814 815 816 817
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
818 819 820
           Return the registered kernels in paddle.

           Args:
821
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
822
           )DOC");
823

824 825 826 827 828 829
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
830 831 832 833 834
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
835

S
sneaxiy 已提交
836 837 838
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
839
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
840

841
  m.def("_set_fuse_parameter_group_size",
842
        &paddle::framework::ir::SetFuseParameterGroupsSize);
843
  m.def("_set_fuse_parameter_memory_size",
844
        &paddle::framework::ir::SetFuseParameterMemorySize);
845

S
sneaxiy 已提交
846 847 848
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

849 850
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

851 852 853
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
895 896 897 898 899 900 901 902 903 904 905 906 907
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
908 909 910 911 912
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
913

914
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
915 916 917

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
918
      .def(py::init<>())
919
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
920
      .def("set_int",
921 922
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
923 924 925 926 927 928 929
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
930 931 932 933 934 935
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
936 937 938 939
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
940 941 942 943
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
944 945 946 947
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
974
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
975 976 977 978 979 980
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
981
#endif
982 983 984
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
985 986
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
987 988 989 990 991 992 993 994 995 996
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
997 998
                scope_vec->size(),
                0,
999 1000 1001 1002 1003
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1004 1005 1006 1007
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1008

S
sneaxiy 已提交
1009
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1010

0
0x45f 已提交
1011
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1025
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1026 1027 1028 1029 1030
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1031 1032 1033
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1034 1035
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1036 1037 1038 1039 1040 1041 1042
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1043
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1044

1045
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1046
           current scope, the variable would be created. Otherwise,
1047
           return the existing variable.
S
sneaxiy 已提交
1048 1049

           Args:
1050 1051
               name (str): the variable name.

S
sneaxiy 已提交
1052
           Returns:
1053
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1054
           )DOC",
1055
          py::return_value_policy::reference)
1056 1057 1058
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1059
           R"DOC(
1060
           Find variable named :code:`name` in the current scope or
1061
           its parent scope. Return None if not found.
1062

S
sneaxiy 已提交
1063 1064
           Args:
               name (str): the variable name.
1065

S
sneaxiy 已提交
1066
           Returns:
1067
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1068
           )DOC",
1069
           py::return_value_policy::reference)
1070
      .def("size", &Scope::Size)
1071 1072 1073
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1074 1075
           R"DOC(
           Find variable named :code:`name` in the current scope or
1076
           its parent scope. Return None if not found.
1077 1078 1079 1080 1081 1082 1083 1084

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1085
      .def(
1086 1087
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1088
          R"DOC(
S
sneaxiy 已提交
1089 1090 1091 1092 1093
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1094
          py::return_value_policy::reference)
1095 1096
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1097 1098
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1099
           )DOC")
1100 1101
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1102

1103 1104 1105 1106 1107 1108 1109 1110
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1111
        Create a new scope.
1112

S
sneaxiy 已提交
1113 1114 1115
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1116
      py::return_value_policy::reference);
S
sneaxiy 已提交
1117

Y
Yu Yang 已提交
1118 1119
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1120 1121
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1122 1123 1124 1125
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1126
        PADDLE_ENFORCE_EQ(
1127 1128
            info.Proto().SerializeToString(&str),
            true,
1129 1130
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1131 1132 1133
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1134 1135
    return ret_values;
  });
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1174 1175 1176 1177 1178 1179 1180 1181
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1182
              res = op_checker->GetDefaultAttrsMap();
1183 1184 1185 1186
            }
          }
          return res;
        });
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1222 1223 1224
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1225 1226 1227 1228 1229
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1230 1231 1232
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1233
  m.def("infer_no_need_buffer_slots",
1234 1235
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1263 1264 1265 1266 1267 1268
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1269 1270
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1271

1272
            Args:
1273 1274 1275
                   program (ProgramDesc): The original program.

             Returns:
1276
                   tuple(ProgramDesc, map<int, int>): The first part is
1277 1278 1279 1280
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1281 1282 1283 1284
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1285 1286
    VLOG(4) << s;
    return s;
1287 1288 1289 1290 1291 1292
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1293
  });
1294 1295 1296 1297
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1298 1299 1300
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1301 1302
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1303

Y
Yu Yang 已提交
1304
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1305
      .def_static("create",
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1322
                  })
1323 1324 1325 1326
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1327
#ifndef PADDLE_WITH_XPU
1328 1329 1330
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1331
#else
W
Wilber 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1346
#endif
1347 1348 1349 1350 1351
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1352
#ifndef PADDLE_WITH_MLU
1353 1354 1355
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1356 1357
#else
                    return new paddle::platform::MLUDeviceContext(place);
1358
#endif
1359 1360 1361 1362 1363
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1364
#ifndef PADDLE_WITH_ASCEND_CL
1365 1366 1367
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1368 1369
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1370
#endif
1371 1372 1373 1374
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1375
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1376 1377 1378 1379
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1380 1381
#else
                return new paddle::platform::CustomDeviceContext(place);
1382
#endif
1383 1384 1385 1386 1387
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1388
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1389 1390 1391
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1392
#else
L
Leo Chen 已提交
1393
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1406 1407 1408 1409
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1410 1411
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1412
#endif
1413 1414 1415 1416 1417
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1418
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1419 1420 1421
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1422 1423 1424
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1425
          });
1426
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1427 1428
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1429 1430 1431
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1432
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1433
#else
R
ronnywang 已提交
1434
          VLOG(1) << string::Sprintf(
1435 1436 1437 1438
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1439
              "PaddlePaddle by: pip install paddlepaddle\n");
1440 1441 1442 1443 1444 1445
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1446
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1447
#else
R
ronnywang 已提交
1448
          VLOG(1) << string::Sprintf(
1449 1450 1451 1452
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1453
              "PaddlePaddle by: pip install paddlepaddle\n");
1454 1455 1456 1457 1458 1459
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1460
    devices = phi::DeviceManager::GetAllDeviceList();
1461
#else
R
ronnywang 已提交
1462
          VLOG(1) << string::Sprintf(
1463 1464 1465 1466
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1467
              "PaddlePaddle by: pip install paddlepaddle\n");
1468 1469 1470 1471 1472 1473
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1474
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1475
#else
R
ronnywang 已提交
1476
          VLOG(1) << string::Sprintf(
1477 1478 1479 1480 1481 1482
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1483
              "PaddlePaddle by: pip install paddlepaddle\n");
1484 1485 1486
#endif
    return devices;
  });
Y
Yu Yang 已提交
1487

Y
Yu Yang 已提交
1488
  py::class_<OperatorBase>(m, "Operator")
1489 1490 1491 1492 1493 1494 1495
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1496 1497
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1498 1499 1500 1501 1502 1503
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1504
      .def("run",
1505 1506
           [](OperatorBase &self,
              const Scope &scope,
1507 1508 1509 1510
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1511
      .def("run",
1512 1513
           [](OperatorBase &self,
              const Scope &scope,
1514 1515 1516 1517
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1518
      .def("run",
1519 1520
           [](OperatorBase &self,
              const Scope &scope,
1521 1522 1523 1524
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1525
      .def("run",
1526 1527
           [](OperatorBase &self,
              const Scope &scope,
1528 1529 1530 1531
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1532
      .def("run",
1533 1534
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1535
              const platform::CUDAPinnedPlace &place) {
1536
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1537 1538
             self.Run(scope, place);
           })
1539
      .def("run",
1540 1541
           [](OperatorBase &self,
              const Scope &scope,
1542 1543 1544 1545
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1546
      .def("run",
1547 1548
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1549 1550 1551 1552
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1553 1554 1555 1556 1557
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1558 1559
             return op.Outputs();
           })
Q
qijun 已提交
1560 1561
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1562
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1563
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1564 1565 1566 1567
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1568

1569 1570 1571
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1572 1573
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1574 1575 1576 1577 1578 1579
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1580 1581
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1582

1583 1584
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1585
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1586
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1587
      .def("close", &Executor::Close)
1588 1589
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1590
           py::call_guard<py::gil_scoped_release>())
1591 1592
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1593
           py::call_guard<py::gil_scoped_release>())
1594
      .def("init_for_dataset",
1595 1596 1597 1598
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1599
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1600
             pybind11::gil_scoped_release release;
1601 1602 1603 1604 1605 1606 1607
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1608
      .def("run_prepared_ctx",
1609 1610 1611
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1612
              std::map<std::string, const LoDTensor *> *feed_targets,
1613
              std::map<std::string, FetchType *> *fetch_targets,
1614 1615
              bool create_local_scope = true,
              bool create_vars = true,
1616 1617 1618
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1619 1620 1621 1622 1623 1624 1625 1626
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1627
           })
1628
      .def("run_prepared_ctx",
1629 1630 1631 1632 1633
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1634 1635
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1636 1637
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1638
           })
1639
      .def("prepare",
1640 1641 1642
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1643 1644 1645 1646
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1647 1648
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1649 1650
           })
      .def("create_variables", &Executor::CreateVariables)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1667

1668
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1669
      .def(py::init<>())
1670 1671 1672 1673 1674
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1675

1676
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1677
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1678
      .def("run",
1679
           [](StandaloneExecutor &self,
1680
              Scope *scope,
1681
              std::vector<std::string> feed_names,
1682 1683 1684 1685
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1686
               ret = self.Run(scope, feed_names, fetch_names);
1687 1688 1689
             }
             return py::cast(std::move(ret));
           })
1690 1691
      .def("dry_run",
           [](StandaloneExecutor &self,
1692
              Scope *scope,
1693
              const std::unordered_map<std::string, py::array> &input_dict) {
1694
             std::vector<framework::LoDTensor> feed_tensors;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1705
             framework::interpreter::CostInfo cost_info;
1706 1707
             {
               pybind11::gil_scoped_release release;
1708
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1709 1710
             }
             return cost_info;
H
hong 已提交
1711 1712
           });

D
dzhwinter 已提交
1713
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1714
  m.def("init_glog", framework::InitGLOG);
1715 1716 1717 1718
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1719 1720 1721 1722 1723 1724 1725 1726
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1727 1728
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1729
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1730
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1731
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1732
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1733
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1734
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1735
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1736
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1737
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1738 1739
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1740
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1741
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1742
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1743
  m.def("supports_bfloat16", SupportsBfloat16);
1744
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1745 1746
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1747
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1748
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1749
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1750 1751 1752
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1772 1773 1774
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1775 1776
  m.def(
      "run_cmd",
1777 1778
      [](const std::string &cmd,
         int time_out = -1,
1779
         int sleep_inter = -1) -> const std::string {
1780 1781
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1782
      },
1783 1784 1785
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1786 1787
  m.def(
      "shell_execute_cmd",
1788 1789 1790
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1791
         bool redirect_stderr = false) -> std::vector<std::string> {
1792 1793
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1794
      },
1795 1796 1797
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1798
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1799

1800
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1801 1802
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1803
    return platform::GetGPUComputeCapability(place.device) >= 53;
1804
  });
1805 1806 1807 1808
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1809
#endif
1810

S
Steffy-zxf 已提交
1811
  m.def("set_feed_variable",
1812 1813 1814 1815 1816
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1817
  m.def("set_feed_variable",
1818 1819 1820 1821 1822
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1823
  m.def("get_fetch_variable",
1824 1825
        [](const Scope &scope,
           const std::string &var_name,
1826 1827 1828
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1829
            return py::cast(PADDLE_GET(LoDTensor, var));
1830
          } else {
R
Ruibiao Chen 已提交
1831
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1832 1833
          }
        });
1834
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1835

X
Xin Pan 已提交
1836 1837
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1838 1839 1840 1841
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1842
  BindCostModel(&m);
1843
  BindConstValue(&m);
1844
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1845
  BindFleetExecutor(&m);
1846
  BindTCPStore(&m);
1847
  BindAutoParallel(&m);
1848
  BindJitProperty(&m);
Y
Yu Yang 已提交
1849

Y
Yu Yang 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1859
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1860
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1861 1862 1863

    Examples:
        .. code-block:: python
1864

Z
Zeng Jinle 已提交
1865 1866 1867
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1868 1869 1870 1871
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1872 1873
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1874 1875 1876 1877
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1878 1879 1880
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1881 1882
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1883 1884 1885
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1886 1887 1888
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1889 1890 1891 1892 1893 1894 1895
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1896 1897
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1898
             Append a LoDensor to LoDTensorArray.
1899

1900 1901 1902 1903 1904
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1916
           )DOC")
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1928

1929
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1930
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1931
        )DOC")
1932 1933 1934 1935 1936 1937
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1938
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1939
                res[i] = py::cast(std::move(data));
1940 1941 1942
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1943
              } else {
R
Ruibiao Chen 已提交
1944
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1956

1957 1958 1959 1960
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1961
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1962 1963 1964 1965 1966 1967 1968 1969 1970
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1971
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1972 1973 1974 1975 1976 1977
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1978 1979

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1980
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1981
        )DOC")
1982 1983 1984 1985 1986 1987 1988 1989
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1990
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1991 1992
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1993
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2008

Y
Yu Yang 已提交
2009
  m.def("op_support_gpu", OpSupportGPU);
2010
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2011
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2012
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2013 2014 2015 2016 2017 2018 2019 2020
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2021 2022 2023 2024 2025 2026
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2027 2028

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2054
      });
D
dangqingqing 已提交
2055

2056
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2057 2058 2059
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2060 2061 2062 2063
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2064
#endif
P
peizhilin 已提交
2065
#endif
Y
Yu Yang 已提交
2066

2067 2068
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2069
  m.def("npu_finalize", []() {
2070 2071
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2072 2073 2074
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2075
      platform::NPUDeviceGuard guard(devices[i]);
2076 2077 2078 2079
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2100 2101 2102 2103
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2104 2105 2106 2107
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2108 2109 2110 2111 2112 2113
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2114 2115 2116 2117
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2118
      .value("kAll", platform::ProfilerState::kAll)
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2130
  m.def("set_tracer_option", platform::SetTracerOption);
2131 2132
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2133
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2134
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2135
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2136
    PADDLE_ENFORCE_EQ(
2137 2138
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2139 2140 2141
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2142
    callable.inc_ref();
2143 2144 2145 2146 2147 2148 2149 2150
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2151
  });
2152
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2153 2154 2155
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2156

2157
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2158 2159
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2160 2161
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2162 2163
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2164 2165 2166 2167 2168 2169 2170 2171 2172
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2237 2238
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2239 2240 2241 2242
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2243 2244 2245 2246 2247
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2248 2249 2250
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2251 2252

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2253 2254
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2255
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2256
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2257 2258
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2259 2260 2261 2262 2263 2264
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2288 2289 2290 2291 2292 2293 2294 2295
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2314 2315 2316 2317 2318 2319
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2320

2321
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2322 2323
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2324 2325
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2326
#endif  // PADDLE_WITH_CUDA
2327 2328 2329 2330 2331 2332 2333 2334
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2335

J
jianghaicheng 已提交
2336 2337
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2338 2339 2340
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2341 2342 2343 2344 2345 2346 2347
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2348
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2349 2350
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2351
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2362 2363 2364 2365
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2388 2389
                         option.get_type(),
                         option_name));
2390 2391 2392 2393 2394 2395 2396
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2397 2398
                         option_name,
                         option.first.cast<std::string>(),
2399 2400
                         option.second.cast<std::uint64_t>());
                   }
2401 2402 2403 2404 2405 2406
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2452 2453
                           option.second.get_type(),
                           option_key));
2454
                     }
2455 2456
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2457 2458 2459 2460 2461 2462
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2463 2464
                     element.second.get_type(),
                     option_name));
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2495 2496
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2497 2498 2499
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2500 2501
#endif

2502 2503 2504 2505 2506 2507 2508 2509
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2510
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2511 2512 2513 2514 2515 2516 2517 2518 2519
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2520
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2521 2522 2523 2524 2525 2526 2527
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2528 2529
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2530

2531 2532
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2533

2534 2535
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2536

D
dongdaxiang 已提交
2537
  BindFleetWrapper(&m);
2538
  BindIO(&m);
2539 2540 2541
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2542

T
Thunderbrook 已提交
2543
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2544
  BindHeterWrapper(&m);
2545
  BindMetrics(&m);
T
Thunderbrook 已提交
2546
#endif
T
Thunderbrook 已提交
2547
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2548
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2549 2550 2551
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2552
#endif
2553
  BindGlooWrapper(&m);
H
hutuxian 已提交
2554
  BindBoxHelper(&m);
H
hutuxian 已提交
2555 2556 2557
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2558
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2559
  BindNCCLWrapper(&m);
2560 2561 2562
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2563
#endif
F
flame 已提交
2564 2565
  BindGraph(&m);
  BindNode(&m);
2566
  BindPass(&m);
F
flame 已提交
2567
  BindInferenceApi(&m);
2568
  BindCompatible(&m);
2569
  BindDataset(&m);
Y
yaoxuefeng 已提交
2570
  BindGenerator(&m);
2571
#ifndef PADDLE_NO_PYTHON
2572 2573
  BindDistributed(&m);
#endif
2574 2575 2576
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2577
  BindAscendDevice(&m);
2578
#endif
Y
Yanghello 已提交
2579 2580 2581
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2582

T
tangwei12 已提交
2583
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2584 2585
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2586
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2587 2588
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2589 2590 2591 2592 2593
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2594 2595 2596 2597
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2598
#ifdef PADDLE_WITH_HETERPS
2599 2600
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2601 2602 2603
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2604
#endif
L
Luo Tao 已提交
2605
}
2606
}  // namespace pybind
2607
}  // namespace paddle