pybind.cc 104.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
74 75
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
76
#include "paddle/fluid/prim/utils/utils.h"
77 78 79
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
80
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
81
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
82
#include "paddle/fluid/operators/common_infer_shape_functions.h"
83
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
84
#include "paddle/fluid/operators/py_func_op.h"
85
#include "paddle/fluid/platform/cpu_helper.h"
86
#include "paddle/fluid/platform/device/device_wrapper.h"
87
#include "paddle/fluid/platform/device_context.h"
88
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/platform/enforce.h"
90
#include "paddle/fluid/platform/init.h"
91
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
92
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
95 96 97
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
98
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
105 106
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/data_set_py.h"
108 109
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
112
#include "paddle/fluid/pybind/generator_py.h"
113
#include "paddle/fluid/pybind/global_value_getter_setter.h"
114
#include "paddle/fluid/pybind/gloo_context_py.h"
115
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/heter_wrapper_py.h"
117
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/inference_api.h"
119
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/ir.h"
121
#include "paddle/fluid/pybind/jit.h"
122
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
123
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
124
#include "paddle/fluid/pybind/pybind_variant_caster.h"
125 126
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
127
#include "paddle/phi/backends/device_manager.h"
128 129 130
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
131

132
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
133
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
134
#endif
135
#include "paddle/fluid/framework/data_type.h"
136 137
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
138 139
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
140
#include "paddle/fluid/pybind/reader_py.h"
141
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
142
#include "paddle/fluid/pybind/tensor_py.h"
143
#include "paddle/fluid/string/to_string.h"
144 145
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
146
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
147
#endif
148
#ifndef PADDLE_WITH_HIP
149
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
150
#endif
151
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
152 153
#endif

154
#ifdef PADDLE_WITH_XPU
155
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
156
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
157 158
#endif

159
#ifdef PADDLE_WITH_CUSTOM_DEVICE
160
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
161
#include "paddle/fluid/platform/collective_helper.h"
162 163 164
#include "paddle/phi/capi/capi.h"
#endif

165
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
166

J
jianghaicheng 已提交
167
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
168 169
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
170
#endif
171

Y
Yanghello 已提交
172 173 174 175
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
176
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
177 178 179
#include "paddle/fluid/pybind/fleet_py.h"
#endif

180 181 182 183
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
184
#if defined(PADDLE_WITH_RPC)
185 186 187
#include "paddle/fluid/pybind/rpc.h"
#endif

188
#include "paddle/fluid/eager/api/utils/global_utils.h"
189
#include "paddle/fluid/eager/nan_inf_utils.h"
190
#include "paddle/fluid/imperative/layout_autotune.h"
191 192
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
193 194
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
195 196
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
197
#include "paddle/phi/core/flags.h"
198 199
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
200 201
#include "pybind11/stl.h"

202
PHI_DECLARE_bool(use_mkldnn);
203

Q
Qiao Longfei 已提交
204 205
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
206 207 208
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
209

210
DECLARE_FILE_SYMBOLS(init_phi);
211
namespace paddle {
212
namespace pybind {
213

0
0x45f 已提交
214
PyTypeObject *g_framework_scope_pytype = nullptr;
215
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
216
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
217

218 219 220 221 222 223 224 225
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

226
bool IsCompiledWithCUDA() {
227 228 229 230 231 232 233
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

234 235 236 237 238 239 240 241
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

259 260
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
261 262 263 264 265 266
  return false;
#else
  return true;
#endif
}

267 268 269 270 271 272 273 274
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
289 290 291 292 293 294 295 296
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

297 298 299 300 301 302 303 304
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

305 306 307 308 309 310 311 312
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

313 314 315 316 317 318 319 320
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

321 322 323 324
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
325
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
326 327 328 329 330 331
    return true;
  else
    return false;
#endif
}

332 333 334 335
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
336
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
337 338 339 340 341 342
    return true;
  else
    return false;
#endif
}

343 344 345 346
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
347 348
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
349 350 351 352 353 354 355
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
356 357
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
358 359 360
#endif
}

361
bool IsCompiledWithBrpc() {
362
#ifndef PADDLE_WITH_DISTRIBUTE
363
  return false;
364
#else
365
  return true;
366
#endif
367 368
}

Y
update  
Yancey1989 已提交
369
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
370
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
371 372 373 374 375 376
  return true;
#else
  return false;
#endif
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
512 513
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
514 515
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
529 530
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
531 532
    }
    vec_res.emplace_back(
533
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
534 535 536 537 538 539 540 541 542 543 544 545
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
546 547
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
548 549 550 551 552 553 554 555 556 557 558 559
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
560 561 562
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
563 564 565 566
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
567 568
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
569 570 571 572
  }
  return vec_res;
}

O
OccupyMars2025 已提交
573
static void inline CreateVariableIfNotExist(
574 575
    const py::handle &py_handle,
    const framework::Scope &scope,
576 577 578 579 580 581
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
582 583
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
584 585 586 587 588 589 590 591 592 593 594 595 596
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
597 598 599
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
600 601 602 603 604
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
605 606 607 608 609
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
610 611
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
612
        PADDLE_ENFORCE_NOT_NULL(
613 614 615
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
616 617 618
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
619
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
620
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
621 622
        tensor_temp->mutable_data(
            exe->GetPlace(),
623
            framework::TransToPhiDataType(var_desc.GetDataType()));
624 625 626
      }
    }
  } else {
627 628
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
629 630 631 632 633
  }

  return;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
650 651
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
652 653 654 655 656 657 658
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
659 660 661 662
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
663
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
664 665 666 667 668 669 670 671
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

672
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
673
  BindImperative(&m);
674
  BindEager(&m);
J
Jack Zhou 已提交
675
  BindEagerStringTensor(&m);
676
  BindCudaStream(&m);
J
james 已提交
677
  BindXpuStream(&m);
678
  BindJit(&m);
679
  BindCustomDevicePy(&m);
680

Y
Yu Yang 已提交
681
  // Not used, just make sure cpu_info.cc is linked.
682
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
683

Y
Refine  
Yu Yang 已提交
684
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
685

686 687
  AssertStaticGraphAndDygraphGradMakerNoDiff();

688
  m.doc() = "C++ core of PaddlePaddle";
689

690 691 692 693
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

694
  BindException(&m);
Y
Yu Yang 已提交
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

734 735 736 737 738 739 740 741 742 743
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
744 745 746 747
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
748 749
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
750 751
  m.def("set_num_threads", &platform::SetNumThreads);

752 753
  m.def("disable_signal_handler", &DisableSignalHandler);

754 755 756 757 758 759 760 761
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

762
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
763
  m.def("cudnn_version", &platform::DnnVersion);
764 765 766 767 768 769
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
770
#endif
771

Z
Zeng Jinle 已提交
772 773 774 775
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

776 777
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
778
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
779 780 781 782 783 784
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
785
      .def_static("gen_new_memory_pool_id",
786 787 788 789 790
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
791 792
#endif

Z
Zeng Jinle 已提交
793 794 795 796
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
797 798 799
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
800 801

    PADDLE_ENFORCE_NOT_NULL(
802 803 804 805
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
806

6
633WHU 已提交
807 808
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
809
    phi::DenseTensor tensor;
6
633WHU 已提交
810

S
Siming Dai 已提交
811
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
812
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
813
    }
814
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
815
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
816
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
817 818 819 820
    }
#endif
    return tensor;
  });
H
hong 已提交
821

822
  m.def("_create_loaded_parameter",
823 824
        [](const py::handle &vec_var_list,
           const Scope &scope,
825
           const Executor *executor) {
O
OccupyMars2025 已提交
826
          CreateVariableIfNotExist(vec_var_list, scope, executor);
827 828
        });

829 830 831 832 833 834
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
835 836
  });

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

862 863 864 865 866 867
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
868

S
sneaxiy 已提交
869
  m.def(
S
sneaxiy 已提交
870
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
871 872 873 874
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
875 876 877
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
894
            }
895
            all_kernels_info.emplace(op_type, kernel_types);
896
          }
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
913
                }
914 915
              } else {
                kernel_types.emplace_back(kernel_type_str);
916
              }
917
            }
918 919 920
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
921
          }
922
        }
923

924 925 926 927
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
928 929 930
           Return the registered kernels in paddle.

           Args:
931
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
932
           )DOC");
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

986 987 988 989 990 991
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
992 993
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
994
    platform::XCCLCommContext::Release();
995 996 997
    phi::DeviceManager::Clear();
#endif
  });
998

S
sneaxiy 已提交
999 1000 1001
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1002
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1003

1004
  m.def("_set_fuse_parameter_group_size",
1005
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1006
  m.def("_set_fuse_parameter_memory_size",
1007
        &paddle::framework::ir::SetFuseParameterMemorySize);
1008

S
sneaxiy 已提交
1009 1010 1011
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1012 1013
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1014 1015
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1016 1017 1018
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1019
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1020 1021 1022

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1023
      .def(py::init<>())
1024
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1025
      .def("set_int",
1026 1027
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1028 1029 1030 1031 1032 1033 1034
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1035 1036
      .def(
          "get_tensor",
1037 1038
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1039 1040
          },
          py::return_value_policy::reference)
1041 1042
      .def("get_bytes",
           [](Variable &self) {
1043 1044 1045 1046 1047 1048
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1049
           })
S
Steffy-zxf 已提交
1050
      .def("set_string_list",
1051
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1052 1053
             *self.GetMutable<Strings>() = str_list;
           })
1054
      .def("set_vocab",
1055 1056
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1057 1058
             *self.GetMutable<Vocab>() = vocab;
           })
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1085
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1086 1087 1088 1089 1090 1091
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1092
#endif
1093 1094 1095
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1096 1097
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1108 1109
                scope_vec->size(),
                0,
1110 1111 1112 1113 1114
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1115 1116 1117 1118
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1119

S
sneaxiy 已提交
1120
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1121

0
0x45f 已提交
1122
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1136
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1137 1138 1139 1140 1141
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1142 1143 1144
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1145 1146
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1147 1148 1149 1150 1151 1152 1153
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1154
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1155

1156
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1157
           current scope, the variable would be created. Otherwise,
1158
           return the existing variable.
S
sneaxiy 已提交
1159 1160

           Args:
1161 1162
               name (str): the variable name.

S
sneaxiy 已提交
1163
           Returns:
1164
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1165
           )DOC",
1166
          py::return_value_policy::reference)
1167 1168 1169
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1170
           R"DOC(
1171
           Find variable named :code:`name` in the current scope or
1172
           its parent scope. Return None if not found.
1173

S
sneaxiy 已提交
1174 1175
           Args:
               name (str): the variable name.
1176

S
sneaxiy 已提交
1177
           Returns:
1178
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1179
           )DOC",
1180
           py::return_value_policy::reference)
1181
      .def("size", &Scope::Size)
1182 1183 1184
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1185 1186
           R"DOC(
           Find variable named :code:`name` in the current scope or
1187
           its parent scope. Return None if not found.
1188 1189 1190 1191 1192 1193 1194 1195

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1196
      .def(
1197 1198
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1199
          R"DOC(
S
sneaxiy 已提交
1200 1201 1202 1203 1204
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1205
          py::return_value_policy::reference)
1206 1207
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1208 1209
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1210
           )DOC")
1211 1212
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1213

1214 1215 1216 1217 1218 1219 1220 1221
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1222
        Create a new scope.
1223

S
sneaxiy 已提交
1224 1225 1226
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1227
      py::return_value_policy::reference);
S
sneaxiy 已提交
1228

Y
Yu Yang 已提交
1229 1230
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1231 1232
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1233 1234 1235 1236
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1237
        PADDLE_ENFORCE_EQ(
1238 1239
            info.Proto().SerializeToString(&str),
            true,
1240 1241
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1242 1243 1244
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1245 1246
    return ret_values;
  });
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1285 1286 1287 1288 1289 1290 1291 1292
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1293
              res = op_checker->GetDefaultAttrsMap();
1294 1295 1296 1297
            }
          }
          return res;
        });
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1314 1315 1316
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1317 1318 1319 1320 1321
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1322 1323 1324

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1325
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1326 1327 1328 1329 1330 1331 1332

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1333
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1334 1335 1336 1337 1338 1339 1340 1341
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1342
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1343 1344
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1345
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1346 1347
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1348 1349 1350
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1351
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1352
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1353
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1376 1377 1378 1379 1380 1381 1382 1383
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1384 1385 1386
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1387 1388 1389
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1390 1391 1392 1393 1394
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1395 1396 1397
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1398
  m.def("infer_no_need_buffer_slots",
1399 1400
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1428 1429 1430 1431 1432 1433
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1434 1435
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1436

1437
            Args:
1438 1439 1440
                   program (ProgramDesc): The original program.

             Returns:
1441
                   tuple(ProgramDesc, map<int, int>): The first part is
1442 1443 1444 1445
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1446 1447 1448 1449
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1450 1451
    VLOG(4) << s;
    return s;
1452 1453 1454 1455 1456 1457
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1458
  });
1459 1460 1461 1462
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1463 1464 1465
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1466 1467
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1468

Y
Yu Yang 已提交
1469
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1470
      .def_static("create",
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1486 1487 1488 1489
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1490
                    return context;
Q
qijun 已提交
1491
                  })
1492 1493 1494 1495
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1496
#ifndef PADDLE_WITH_XPU
1497 1498 1499
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1500
#else
W
Wilber 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1514 1515 1516 1517
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1518
      return context;
1519
#endif
1520 1521 1522 1523
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1524
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1525 1526 1527 1528
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1529 1530
#else
                return new paddle::platform::CustomDeviceContext(place);
1531
#endif
1532 1533 1534 1535 1536
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1537
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1538 1539 1540
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1541
#else
L
Leo Chen 已提交
1542
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1555 1556 1557 1558
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1559 1560 1561 1562
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1563 1564
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1565
#endif
1566 1567 1568 1569 1570
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1571
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1572 1573 1574
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1575 1576 1577
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1578
          });
1579
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1580 1581
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1582 1583 1584
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1585
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1586
#else
R
ronnywang 已提交
1587
          VLOG(1) << string::Sprintf(
1588 1589 1590 1591
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1592
              "PaddlePaddle by: pip install paddlepaddle\n");
1593 1594 1595 1596 1597 1598
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1599
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1600
#else
R
ronnywang 已提交
1601
          VLOG(1) << string::Sprintf(
1602 1603 1604 1605
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1606
              "PaddlePaddle by: pip install paddlepaddle\n");
1607 1608 1609 1610 1611 1612
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1613
    devices = phi::DeviceManager::GetAllDeviceList();
1614
#else
R
ronnywang 已提交
1615
          VLOG(1) << string::Sprintf(
1616 1617 1618 1619
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1620
              "PaddlePaddle by: pip install paddlepaddle\n");
1621 1622 1623 1624 1625 1626
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1627
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1628
#else
R
ronnywang 已提交
1629
          VLOG(1) << string::Sprintf(
1630 1631 1632 1633 1634 1635
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1636
              "PaddlePaddle by: pip install paddlepaddle\n");
1637 1638 1639
#endif
    return devices;
  });
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1659

Y
Yu Yang 已提交
1660
  py::class_<OperatorBase>(m, "Operator")
1661 1662 1663 1664 1665 1666 1667
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1668 1669
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1670 1671 1672 1673 1674 1675
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1676
      .def("run",
1677 1678
           [](OperatorBase &self,
              const Scope &scope,
1679 1680 1681 1682
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1683
      .def("run",
1684 1685
           [](OperatorBase &self,
              const Scope &scope,
1686 1687 1688 1689
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1690
      .def("run",
1691 1692
           [](OperatorBase &self,
              const Scope &scope,
1693 1694 1695 1696
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1697
      .def("run",
1698 1699
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1700
              const platform::CUDAPinnedPlace &place) {
1701
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1702 1703
             self.Run(scope, place);
           })
R
ronnywang 已提交
1704
      .def("run",
1705 1706
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1707 1708 1709 1710
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1711 1712 1713 1714 1715
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1716 1717
             return op.Outputs();
           })
Q
qijun 已提交
1718 1719
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1720
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1721
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1722 1723 1724 1725
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1726

1727 1728 1729
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1730 1731
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1732 1733 1734 1735 1736 1737
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1738 1739
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1740

1741 1742
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1743
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1744
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1745
      .def("close", &Executor::Close)
1746 1747
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1748
           py::call_guard<py::gil_scoped_release>())
1749 1750
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1751
           py::call_guard<py::gil_scoped_release>())
1752
      .def("init_for_dataset",
1753 1754 1755 1756
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1757
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1758
             pybind11::gil_scoped_release release;
1759 1760 1761 1762 1763 1764 1765
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1766
      .def("run_prepared_ctx",
1767 1768 1769
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1770
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1771
              std::map<std::string, FetchType *> *fetch_targets,
1772 1773
              bool create_local_scope = true,
              bool create_vars = true,
1774 1775 1776
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1777 1778 1779 1780 1781 1782 1783 1784
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1785
           })
1786
      .def("run_prepared_ctx",
1787 1788 1789 1790 1791
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1792 1793
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1794 1795
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1796
           })
1797
      .def("prepare",
1798 1799 1800
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1801 1802 1803 1804
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1805 1806
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1807 1808
           })
      .def("create_variables", &Executor::CreateVariables)
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1825

1826
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1827
      .def(py::init<>())
1828 1829 1830 1831 1832
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1833

1834
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1835
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1836
      .def("run",
1837
           [](StandaloneExecutor &self,
1838
              Scope *scope,
1839
              std::vector<std::string> feed_names,
1840 1841 1842 1843
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1844
               ret = self.Run(scope, feed_names, fetch_names);
1845 1846 1847
             }
             return py::cast(std::move(ret));
           })
1848 1849
      .def("dry_run",
           [](StandaloneExecutor &self,
1850
              Scope *scope,
1851
              const std::unordered_map<std::string, py::array> &input_dict) {
1852
             std::vector<phi::DenseTensor> feed_tensors;
1853 1854 1855
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1856
               phi::DenseTensor t;
1857 1858 1859 1860 1861 1862
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1863
             framework::interpreter::CostInfo cost_info;
1864 1865
             {
               pybind11::gil_scoped_release release;
1866
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1867 1868
             }
             return cost_info;
H
hong 已提交
1869 1870
           });

D
dzhwinter 已提交
1871
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1872
  m.def("init_glog", framework::InitGLOG);
1873
  m.def("init_memory_method", framework::InitMemoryMethod);
1874 1875 1876 1877
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1878 1879 1880 1881 1882 1883 1884 1885
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1886 1887
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1888 1889 1890 1891 1892 1893 1894 1895 1896
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1897
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1898
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1899
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1900
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1901
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1902
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1903
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1904
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1905 1906
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1907
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1908
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1909
  m.def("supports_bfloat16", SupportsBfloat16);
1910
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1911 1912
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1913
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1914
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1915
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1916 1917 1918
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1938 1939 1940
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1941 1942
  m.def(
      "run_cmd",
1943 1944
      [](const std::string &cmd,
         int time_out = -1,
1945
         int sleep_inter = -1) -> const std::string {
1946 1947
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1948
      },
1949 1950 1951
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1952 1953
  m.def(
      "shell_execute_cmd",
1954 1955 1956
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1957
         bool redirect_stderr = false) -> std::vector<std::string> {
1958 1959
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1960
      },
1961 1962 1963
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1964
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1965

S
Steffy-zxf 已提交
1966
  m.def("set_feed_variable",
1967 1968
        static_cast<void (*)(  // NOLINT
            Scope *,
1969
            const phi::DenseTensor &,
1970 1971
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1972
  m.def("set_feed_variable",
1973 1974
        static_cast<void (*)(  // NOLINT
            Scope *,
1975
            const std::vector<std::string> &,
1976 1977
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1978
  m.def("get_fetch_variable",
1979 1980
        [](const Scope &scope,
           const std::string &var_name,
1981 1982 1983
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1984
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1985
          } else {
R
Ruibiao Chen 已提交
1986
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1987 1988
          }
        });
1989
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1990

X
Xin Pan 已提交
1991 1992
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1993 1994 1995 1996
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1997
  BindCostModel(&m);
1998
  BindConstValue(&m);
1999
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2000
  BindFleetExecutor(&m);
2001
  BindTCPStore(&m);
2002
  BindCommContextManager(&m);
2003
  BindAutoParallel(&m);
2004
  BindJitProperty(&m);
Y
Yu Yang 已提交
2005

Y
Yu Yang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2015
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2016
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2017 2018 2019

    Examples:
        .. code-block:: python
2020

Z
Zeng Jinle 已提交
2021 2022 2023
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2024 2025 2026 2027
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2028 2029
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2030 2031 2032 2033
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2034 2035
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2036
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2037 2038
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2039 2040 2041
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2042 2043 2044
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2045 2046
      .def(
          "append",
2047
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2048 2049 2050 2051
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2052 2053
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2054
             Append a LoDensor to LoDTensorArray.
2055

2056 2057 2058 2059 2060
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2072
           )DOC")
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2084

2085
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2086
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2087
        )DOC")
2088 2089 2090 2091 2092 2093
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2094
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2095
                res[i] = py::cast(std::move(data));
2096 2097 2098
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2099
              } else {
R
Ruibiao Chen 已提交
2100
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2112

2113 2114
      .def(
          "append",
2115
          [](FetchList &self, const phi::DenseTensor &t) {
2116
            self.emplace_back();
2117
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2118 2119 2120 2121 2122 2123 2124 2125 2126
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2127
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2128 2129 2130 2131 2132 2133
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2134 2135

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2136
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2137
        )DOC")
2138 2139 2140 2141 2142 2143 2144 2145
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2146
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2147 2148
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2149
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2164

Y
Yu Yang 已提交
2165
  m.def("op_support_gpu", OpSupportGPU);
2166
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2167
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2168
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2169 2170 2171 2172 2173 2174 2175 2176
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2177 2178 2179 2180 2181 2182
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2183 2184

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2210
      });
D
dangqingqing 已提交
2211

2212
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2213 2214 2215
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2216 2217 2218
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2219 2220 2221
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2222
#endif
P
peizhilin 已提交
2223
#endif
Y
Yu Yang 已提交
2224

J
jianghaicheng 已提交
2225 2226 2227 2228
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2229 2230 2231 2232 2233 2234
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2235 2236 2237 2238
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2239
      .value("kAll", platform::ProfilerState::kAll)
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2251
  m.def("set_tracer_option", platform::SetTracerOption);
2252 2253
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2254
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2255
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2256
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2257
    PADDLE_ENFORCE_EQ(
2258 2259
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2260 2261 2262
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2263
    callable.inc_ref();
2264 2265 2266 2267 2268 2269 2270 2271
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2272
  });
2273
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2274 2275 2276
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2277

2278
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2279 2280
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2281 2282
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2283 2284
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2285 2286 2287 2288 2289 2290 2291 2292 2293
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2358 2359
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2360 2361 2362 2363
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2364 2365 2366
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2367 2368 2369 2370 2371
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2372 2373 2374
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2375 2376

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2377 2378
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2379
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2380
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2381 2382
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2383 2384 2385 2386 2387 2388
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2412 2413 2414 2415 2416 2417 2418 2419
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2438 2439
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2440 2441
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2442

2443
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2444 2445 2446 2447
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2448
#endif  // PADDLE_WITH_CUDA
2449 2450 2451 2452 2453 2454 2455 2456
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2457

J
jianghaicheng 已提交
2458 2459
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2460 2461 2462
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2463 2464 2465 2466 2467 2468 2469
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2470
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2471 2472
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2473
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2484 2485 2486 2487
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2510 2511
                         option.get_type(),
                         option_name));
2512 2513 2514 2515 2516 2517 2518
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2519 2520
                         option_name,
                         option.first.cast<std::string>(),
2521 2522
                         option.second.cast<std::uint64_t>());
                   }
2523 2524 2525 2526 2527 2528
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2574 2575
                           option.second.get_type(),
                           option_key));
2576
                     }
2577 2578
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2579 2580 2581 2582 2583 2584
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2585 2586
                     element.second.get_type(),
                     option_name));
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2617 2618
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2619 2620 2621
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2622 2623
#endif

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2641 2642 2643 2644 2645 2646 2647 2648
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2649
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2650 2651 2652 2653 2654 2655 2656 2657 2658
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2659
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2660 2661 2662 2663 2664 2665 2666
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2667 2668
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2669

2670 2671
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2672

2673 2674
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2675
  // Add the api for nan op debug
2676 2677 2678 2679
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2680 2681
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2682

2683 2684 2685 2686 2687 2688 2689 2690
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });

2691 2692 2693 2694 2695 2696
  m.def("check_numerics",
        [](const std::string &op_name, const paddle::Tensor &tensor) {
          VLOG(4) << "Check tensor whether has nan or inf.";
          egr::CheckTensorHasNanOrInf(op_name, tensor);
        });

D
dongdaxiang 已提交
2697
  BindFleetWrapper(&m);
2698
  BindIO(&m);
2699 2700 2701
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2702

T
Thunderbrook 已提交
2703
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2704
  BindHeterWrapper(&m);
2705
  BindMetrics(&m);
T
Thunderbrook 已提交
2706
#endif
T
Thunderbrook 已提交
2707
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2708
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2709 2710 2711
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2712
#endif
2713
  BindGlooWrapper(&m);
H
hutuxian 已提交
2714
  BindBoxHelper(&m);
H
hutuxian 已提交
2715 2716 2717
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2718
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2719
  BindNCCLWrapper(&m);
2720 2721 2722
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2723
#endif
F
flame 已提交
2724 2725
  BindGraph(&m);
  BindNode(&m);
2726
  BindPass(&m);
F
flame 已提交
2727
  BindInferenceApi(&m);
2728
  BindCompatible(&m);
2729
  BindDataset(&m);
Y
yaoxuefeng 已提交
2730
  BindGenerator(&m);
2731
#ifndef PADDLE_NO_PYTHON
2732 2733
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2734 2735 2736
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2737

T
tangwei12 已提交
2738
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2739 2740
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2741
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2742 2743
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2744 2745 2746 2747 2748
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2749 2750 2751 2752
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2753
#ifdef PADDLE_WITH_HETERPS
2754 2755
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2756 2757 2758
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2759
#endif
X
Xinger 已提交
2760
#if defined(PADDLE_WITH_RPC)
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2773
}
2774
}  // namespace pybind
2775
}  // namespace paddle