Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b420ec3a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b420ec3a
编写于
2月 25, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
invoke backward_hooks after reduce op's depcounts map
test=develop
上级
84bf4d7b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
165 addition
and
87 deletion
+165
-87
paddle/fluid/framework/block_desc.cc
paddle/fluid/framework/block_desc.cc
+8
-0
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-0
paddle/fluid/framework/python_headers.h
paddle/fluid/framework/python_headers.h
+8
-0
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+34
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+16
-6
paddle/fluid/pybind/imperative.h
paddle/fluid/pybind/imperative.h
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+31
-15
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-2
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+63
-63
未找到文件。
paddle/fluid/framework/block_desc.cc
浏览文件 @
b420ec3a
...
...
@@ -155,6 +155,14 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
ops_
.
erase
(
ops_
.
begin
()
+
s
,
ops_
.
begin
()
+
e
);
}
void
BlockDesc
::
RemoveOpInternal
(
const
OpDesc
*
op_desc
)
{
for
(
auto
it
=
ops_
.
begin
();
it
!=
ops_
.
end
();
++
it
)
{
if
(
it
->
get
()
==
op_desc
)
{
ops_
.
erase
(
it
);
}
}
}
std
::
vector
<
OpDesc
*>
BlockDesc
::
AllOps
()
const
{
std
::
vector
<
OpDesc
*>
res
;
for
(
const
auto
&
op
:
ops_
)
{
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
b420ec3a
...
...
@@ -93,6 +93,8 @@ class BlockDesc {
*/
void
RemoveOp
(
size_t
s
,
size_t
e
);
void
RemoveOpInternal
(
const
OpDesc
*
op_desc
);
void
RemoveVar
(
const
std
::
string
&
name
)
{
vars_
.
erase
(
name
);
}
std
::
vector
<
OpDesc
*>
AllOps
()
const
;
...
...
paddle/fluid/framework/python_headers.h
浏览文件 @
b420ec3a
...
...
@@ -24,3 +24,11 @@ limitations under the License. */
#pragma pop_macro("_XOPEN_SOURCE")
#pragma pop_macro("_POSIX_C_SOURCE")
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
paddle/fluid/imperative/layer.cc
浏览文件 @
b420ec3a
...
...
@@ -118,16 +118,19 @@ class Autograd {
while
(
!
ready
.
empty
())
{
OpBase
*
ready_op
=
ready
.
front
();
ready
.
pop_front
();
LOG
(
ERROR
)
<<
"ApplyGrad Start"
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_grads
=
ready_op
->
ApplyGrad
();
for
(
auto
it
:
input_grads
)
{
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
LOG
(
ERROR
)
<<
"XX"
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
if
(
!
ingrads
[
i
])
continue
;
if
(
ready_op
->
input_vars_
[
it
.
first
][
i
]
->
IsStopGradient
())
{
continue
;
}
LOG
(
ERROR
)
<<
"XX"
;
OpBase
*
pre_op
=
ready_op
->
pre_ops_
[
it
.
first
][
i
];
if
(
!
pre_op
)
continue
;
...
...
@@ -137,8 +140,13 @@ class Autograd {
if
(
pre_op_ready
)
{
ready
.
push_back
(
pre_op
);
}
LOG
(
ERROR
)
<<
"XX"
;
}
}
ready_op
->
InvokeBackwardHooks
();
LOG
(
ERROR
)
<<
"ApplyGrad End"
;
}
}
...
...
@@ -221,8 +229,10 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)]);
}
else
{
grad_outputs
.
resize
(
grad_op_descs_
.
size
());
LOG
(
ERROR
)
<<
"ApplyGrad "
<<
grad_op_descs_
.
size
();
for
(
size_t
k
=
0
;
k
<
grad_op_descs_
.
size
();
++
k
)
{
framework
::
OpDesc
*
grad_op_desc
=
grad_op_descs_
[
k
];
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
...
...
@@ -234,12 +244,16 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
framework
::
RuntimeContext
ctx
(
grad_input_vars_
[
k
],
grad_outputs
[
k
]);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc
->
InferVarType
(
block_
);
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
framework
::
OperatorWithKernel
*
op_kernel
=
...
...
@@ -253,6 +267,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
LOG
(
ERROR
)
<<
"delete grad start "
;
for
(
size_t
k
=
0
;
k
<
grad_output_vars_
.
size
();
++
k
)
{
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
...
...
@@ -271,6 +287,24 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
return
input_vars_
;
}
void
OpBase
::
InvokeBackwardHooks
()
{
LOG
(
ERROR
)
<<
"call backward start "
;
// call backward hooks
for
(
py
::
object
&
callable
:
backward_hooks_
)
{
callable
(
this
);
}
LOG
(
ERROR
)
<<
"call backward end "
;
}
void
OpBase
::
RegisterBackwardHooks
(
const
py
::
object
&
callable
)
{
LOG
(
ERROR
)
<<
"Register backward hooks "
<<
trace_id_
;
// TODO(minqiyang): check the callable format
backward_hooks_
.
push_back
(
callable
);
}
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
b420ec3a
...
...
@@ -114,7 +114,8 @@ class VarBase {
private:
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
:
name_
(),
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
block_
(
nullptr
),
...
...
@@ -124,7 +125,7 @@ class VarBase {
public:
virtual
~
VarBase
()
{
LOG
(
ERROR
)
<<
"remove var "
<<
name_
;
LOG
(
ERROR
)
<<
"remove var "
<<
name_
.
c_str
()
;
if
(
block_
)
{
block_
->
RemoveVar
(
name_
);
...
...
@@ -182,6 +183,7 @@ class VarBase {
return
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
());
}
std
::
string
name_
;
framework
::
VarDesc
*
var_desc_
;
framework
::
Variable
*
var_
;
...
...
@@ -194,20 +196,20 @@ class VarBase {
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
std
::
string
name_
;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
* gradient. This object should be managed totally by Python intepreter.
*/
class
OpBase
{
class
PYBIND11_HIDDEN
OpBase
{
public:
OpBase
()
:
op_desc_
(
nullptr
),
forward_id_
(
-
1
),
backward_id_
(
-
1
),
trace_id_
(
-
1
),
place_
(
platform
::
CPUPlace
())
{}
place_
(
platform
::
CPUPlace
()),
backward_hooks_
()
{}
virtual
~
OpBase
()
{
for
(
framework
::
OpDesc
*
desc
:
grad_op_descs_
)
{
...
...
@@ -217,12 +219,18 @@ class OpBase {
LOG
(
ERROR
)
<<
"remove op "
<<
op_desc_
->
Type
()
<<
" id "
<<
trace_id_
;
if
(
block_
)
{
block_
->
RemoveOp
(
trace_id_
,
trace_id_
+
1
);
block_
->
RemoveOp
Internal
(
op_desc_
);
}
LOG
(
ERROR
)
<<
"remove op end "
<<
trace_id_
;
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
();
void
RegisterBackwardHooks
(
const
py
::
object
&
callable
);
void
InvokeBackwardHooks
();
// One of `op_desc_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
framework
::
OpDesc
*
op_desc_
;
...
...
@@ -248,6 +256,8 @@ class OpBase {
std
::
vector
<
framework
::
VariableValueMap
>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
std
::
vector
<
py
::
object
>
backward_hooks_
;
};
class
Layer
{
...
...
paddle/fluid/pybind/imperative.h
浏览文件 @
b420ec3a
...
...
@@ -33,7 +33,7 @@ class Layer : public imperative::Layer {
}
};
class
PyOpBase
:
public
imperative
::
OpBase
{
class
P
YBIND11_HIDDEN
P
yOpBase
:
public
imperative
::
OpBase
{
public:
using
imperative
::
OpBase
::
OpBase
;
// Inherit constructors
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
b420ec3a
...
...
@@ -169,6 +169,18 @@ PYBIND11_MODULE(core, m) {
py
::
return_value_policy
::
take_ownership
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"name"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
name_
;
},
[](
imperative
::
VarBase
&
self
,
const
std
::
string
&
name
)
{
self
.
name_
=
name
;
LOG
(
ERROR
)
<<
"create ivar name "
<<
self
.
name_
;
})
.
def_property
(
"block"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
block_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
BlockDesc
*
block
)
{
self
.
block_
=
block
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"desc"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
...
...
@@ -185,6 +197,10 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
.
def
(
"register_backward_hooks"
,
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
)
{
self
.
RegisterBackwardHooks
(
callable
);
})
.
def_property
(
"desc"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
op_desc_
;
},
[](
imperative
::
OpBase
&
self
,
framework
::
OpDesc
*
op_desc
)
{
...
...
@@ -415,11 +431,11 @@ PYBIND11_MODULE(core, m) {
Set LoD of the LoDTensor according to recursive sequence length.
For example, if recursive_sequence_lengths=[[2, 3]], meaning that
there are two sequences with length 2 and 3 respectively, the
corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
there are two sequences with length 2 and 3 respectively, the
corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
Args:
recursive_sequence_lengths (List[List[int]]): sequence lengths.
recursive_sequence_lengths (List[List[int]]): sequence lengths.
)DOC"
)
.
def
(
"lod"
,
[](
LoDTensor
&
self
)
->
std
::
vector
<
std
::
vector
<
size_t
>>
{
...
...
@@ -450,7 +466,7 @@ PYBIND11_MODULE(core, m) {
Return the sequence length of the LoDTensor corresponding to LoD.
Returns:
out (List[List[int]): the sequence lengths.
out (List[List[int]): the sequence lengths.
)DOC"
)
.
def
(
"has_valid_recursive_sequence_lengths"
,
[](
LoDTensor
&
self
)
->
bool
{
...
...
@@ -601,29 +617,29 @@ All parameter, weight, gradient are variables in Paddle.
},
py
::
arg
(
"name"
),
R"DOC(
Find or create variable named :code:`name` in the current scope.
Find or create variable named :code:`name` in the current scope.
If the variable named :code:`name` does not exist in the
If the variable named :code:`name` does not exist in the
current scope, the variable would be created. Otherwise,
return the existing variable.
return the existing variable.
Args:
name (str): the variable name.
name (str): the variable name.
Returns:
out (core.Variable): the found or created variable.
out (core.Variable): the found or created variable.
)DOC"
,
py
::
return_value_policy
::
reference
)
.
def
(
"find_var"
,
&
Scope
::
FindVar
,
py
::
arg
(
"name"
),
R"DOC(
Find variable named :code:`name` in the current scope or
Find variable named :code:`name` in the current scope or
its parent scope. Return None if not found.
Args:
name (str): the variable name.
Returns:
out (core.Variable|None): the found variable or None.
out (core.Variable|None): the found variable or None.
)DOC"
,
py
::
return_value_policy
::
reference
)
.
def
(
"new_scope"
,
[](
Scope
&
self
)
->
Scope
*
{
return
&
self
.
NewScope
();
},
...
...
@@ -647,7 +663,7 @@ All parameter, weight, gradient are variables in Paddle.
},
R"DOC(
Create a new scope.
Returns:
out (core._Scope): the created scope.
)DOC"
,
...
...
python/paddle/fluid/framework.py
浏览文件 @
b420ec3a
...
...
@@ -381,11 +381,11 @@ class Variable(object):
if
_in_imperative_mode
():
# record vars in tracer rather than blocks
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
self
.
_ivar
.
block
=
block
.
desc
self
.
_ivar
.
name
=
name
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
(
stop_gradient
)
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
block
=
block
.
desc
self
.
_ivar
.
name
=
name
if
persistable
:
self
.
block
.
vars
[
name
]
=
self
else
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
b420ec3a
...
...
@@ -146,69 +146,69 @@ class TestImperativeMnist(unittest.TestCase):
for
param
in
mnist
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
mnist
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
([
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
dy_x_data
.
all
(),
static_x_data
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-5
))
#
with new_program_scope():
#
fluid.default_startup_program().random_seed = seed
#
fluid.default_main_program().random_seed = seed
#
exe = fluid.Executor(fluid.CPUPlace(
#
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
#
mnist = MNIST("mnist")
#
sgd = SGDOptimizer(learning_rate=1e-3)
#
train_reader = paddle.batch(
#
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
#
img = fluid.layers.data(
#
name='pixel', shape=[1, 28, 28], dtype='float32')
#
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
#
cost = mnist(img)
#
loss = fluid.layers.cross_entropy(cost, label)
#
avg_loss = fluid.layers.mean(loss)
#
sgd.minimize(avg_loss)
#
# initialize params and fetch them
#
static_param_init_value = {}
#
static_param_name_list = []
#
for param in mnist.parameters():
#
static_param_name_list.append(param.name)
#
out = exe.run(fluid.default_startup_program(),
#
fetch_list=static_param_name_list)
#
for i in range(len(static_param_name_list)):
#
static_param_init_value[static_param_name_list[i]] = out[i]
#
for epoch in range(epoch_num):
#
for batch_id, data in enumerate(train_reader()):
#
static_x_data = np.array(
#
[x[0].reshape(1, 28, 28)
#
for x in data]).astype('float32')
#
y_data = np.array(
#
[x[1] for x in data]).astype('int64').reshape([128, 1])
#
fetch_list = [avg_loss.name]
#
fetch_list.extend(static_param_name_list)
#
out = exe.run(
#
fluid.default_main_program(),
#
feed={"pixel": static_x_data,
#
"label": y_data},
#
fetch_list=fetch_list)
#
static_param_value = {}
#
static_out = out[0]
#
for i in range(1, len(out)):
#
static_param_value[static_param_name_list[i - 1]] = out[
#
i]
#
self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
#
for key, value in six.iteritems(static_param_init_value):
#
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
#
self.assertTrue(np.allclose(static_out, dy_out))
#
for key, value in six.iteritems(static_param_value):
#
self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录