Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
baef1124
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baef1124
编写于
3月 14, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ParallelExecutor And dependency engine
上级
8f061e43
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
433 addition
and
23 deletion
+433
-23
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+337
-1
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+23
-22
paddle/fluid/platform/place.h
paddle/fluid/platform/place.h
+11
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+14
-0
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+47
-0
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
baef1124
...
...
@@ -13,7 +13,343 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "lod_tensor.h"
#include "op_registry.h"
namespace
paddle
{
namespace
framework
{}
// namespace framework
namespace
framework
{
struct
OpHandle
;
struct
VarHandle
{
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
OpHandle
*
generated_op_
;
std
::
vector
<
OpHandle
*>
deps_ops_
;
};
struct
OpHandle
{
std
::
vector
<
VarHandle
*>
inputs_
;
std
::
vector
<
VarHandle
*>
outputs_
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
string
DebugString
()
{
std
::
stringstream
ss
;
ss
<<
"("
;
for
(
auto
*
var
:
inputs_
)
{
ss
<<
var
->
name_
<<
":"
<<
var
->
place_
<<
", "
;
}
ss
<<
") --> ("
;
for
(
auto
*
var
:
outputs_
)
{
ss
<<
var
->
name_
<<
":"
<<
var
->
place_
<<
", "
;
}
ss
<<
")
\n
"
;
return
ss
.
str
();
}
virtual
~
OpHandle
()
{}
};
struct
ComputationOpHandle
:
public
OpHandle
{
std
::
unique_ptr
<
OperatorBase
>
op_
;
explicit
ComputationOpHandle
(
const
OpDesc
&
op_desc
)
:
op_
(
framework
::
OpRegistry
::
CreateOp
(
op_desc
))
{}
};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{};
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{};
class
ParallelExecutorPrivate
{
public:
std
::
unordered_map
<
platform
::
Place
,
Scope
*
,
platform
::
PlaceHash
>
local_scopes_
;
std
::
unordered_map
<
platform
::
Place
,
platform
::
CUDADeviceContext
,
platform
::
PlaceHash
>
dev_ctxs_
;
platform
::
Place
main_place_
;
std
::
unordered_map
<
platform
::
Place
,
std
::
unordered_map
<
std
::
string
,
std
::
map
<
int
,
VarHandle
>>
,
platform
::
PlaceHash
>
vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
};
// TODO(yy): Move this function somewhere
ncclDataType_t
ToNCCLDataType
(
std
::
type_index
type
)
{
// FIXME!!
return
ncclFloat
;
}
ParallelExecutor
::
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
)
:
member_
(
new
ParallelExecutorPrivate
())
{
// Step 1. RunStartupProgram and Bcast the params to devs.
Executor
exe
(
places
[
0
]);
exe
.
Run
(
startup_program
,
scope
,
0
);
// Create local scopes
for
(
auto
&
place
:
places
)
{
member_
->
local_scopes_
[
place
]
=
&
scope
->
NewScope
();
}
member_
->
main_place_
=
places
[
0
];
// Bcast Parameters to all GPUs
if
(
platform
::
is_gpu_place
(
member_
->
main_place_
))
{
// Is CUDA
// BCastParamsToGPUs(startup_program);
}
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
ConstructDependencyGraph
(
params
,
main_program
,
loss_var_name
);
}
void
ParallelExecutor
::
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
{
std
::
unordered_set
<
std
::
__cxx11
::
string
>
grads
;
for
(
auto
&
each_param
:
params
)
{
grads
.
insert
(
each_param
+
"@GRAD"
);
}
bool
is_forwarding
=
true
;
for
(
auto
*
op
:
main_program
.
Block
(
0
).
AllOps
())
{
bool
change_forward
=
false
;
if
(
!
is_forwarding
)
{
// FIXME(yy): Do not hard code like this
if
(
op
->
OutputArgumentNames
().
size
()
==
1
&&
op
->
OutputArgumentNames
()[
0
]
==
loss_var_name
+
"@GRAD"
)
{
continue
;
// Drop fill 1. for backward coeff;
}
}
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
place
);
op_handle
->
inputs_
.
emplace_back
(
var
);
var
->
deps_ops_
.
emplace_back
(
op_handle
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
GenerateVar
(
op_handle
,
each_var_name
,
place
);
}
if
(
is_forwarding
)
{
if
(
var_names
.
size
()
==
1
&&
var_names
[
0
]
==
loss_var_name
)
{
// Insert ScaleCost OpHandle
member_
->
ops_
.
emplace_back
(
new
ScaleLossGradOpHandle
());
op_handle
=
member_
->
ops_
.
back
().
get
();
auto
&
place
=
pair
.
first
;
VarHandle
*
loss
=
GetVarHandle
(
loss_var_name
,
place
);
loss
->
deps_ops_
.
emplace_back
(
op_handle
);
op_handle
->
inputs_
.
emplace_back
(
loss
);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
place
);
change_forward
=
true
;
LOG
(
INFO
)
<<
"Scale Loss "
<<
op_handle
->
DebugString
();
}
}
}
if
(
change_forward
)
{
is_forwarding
=
false
;
}
if
(
!
is_forwarding
)
{
auto
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
og
:
var_names
)
{
if
(
grads
.
count
(
og
)
!=
0
)
{
// is param grad
// Insert NCCL AllReduce Op
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
());
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
auto
&
place
=
pair
.
first
;
auto
&
vars
=
member_
->
vars_
[
place
][
og
];
if
(
vars
.
empty
())
{
// This device has no data. continue.
continue
;
}
auto
*
prev_grad
=
&
vars
[
vars
.
size
()
-
1
];
op_handle
->
inputs_
.
emplace_back
(
prev_grad
);
prev_grad
->
deps_ops_
.
emplace_back
(
op_handle
);
auto
&
var
=
vars
[
vars
.
size
()];
var
.
place_
=
place
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
og
;
var
.
version_
=
vars
.
size
()
-
1
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
}
}
}
}
}
void
ParallelExecutor
::
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
vars
=
member_
->
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
VarHandle
*
ParallelExecutor
::
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
var_holders
=
member_
->
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
{
auto
*
main_scope
=
member_
->
local_scopes_
[
member_
->
main_place_
];
for
(
auto
*
var_desc
:
startup_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
LOD_TENSOR
)
{
auto
&
main_tensor
=
main_scope
->
FindVar
(
var_desc
->
Name
())
->
Get
<
LoDTensor
>
();
ncclDataType_t
data_type
=
ToNCCLDataType
(
main_tensor
.
type
());
auto
&
dims
=
main_tensor
.
dims
();
size_t
numel
=
main_tensor
.
numel
();
std
::
vector
<
std
::
pair
<
void
*
,
const
platform
::
DeviceContext
*>>
mems
;
mems
.
emplace_back
(
const_cast
<
void
*>
(
main_tensor
.
data
<
void
>
()),
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
member_
->
main_place_
)));
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
if
(
pair
.
first
==
member_
->
main_place_
)
{
continue
;
}
auto
local_scope
=
pair
.
second
;
auto
*
t
=
local_scope
->
Var
(
var_desc
->
Name
())
->
GetMutable
<
LoDTensor
>
();
t
->
Resize
(
dims
);
mems
.
emplace_back
(
t
->
mutable_data
(
pair
.
first
,
main_tensor
.
type
()),
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
pair
.
first
)));
}
// TODO(yy): Invoke ncclBCast here. mems, numel, data_type. The mems[0]
// is the src, rests are dests.
(
void
)(
data_type
);
(
void
)(
numel
);
// Free Communication Ctx
for
(
auto
&
pair
:
mems
)
{
// Release Communication Ctx
// FIXME: Store CUDA DevCtx to member. Since NCCL All Reduce will use
// this
delete
pair
.
second
;
}
}
}
}
std
::
vector
<
LoDTensor
>
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
// Version --> VarHandle
std
::
unordered_set
<
VarHandle
*>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
for
(
auto
&
place_pair
:
member_
->
vars_
)
{
for
(
auto
&
name_pair
:
place_pair
.
second
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
pending_vars
.
insert
(
&
version_pair
.
second
);
}
}
}
for
(
auto
&
op
:
member_
->
ops_
)
{
pending_ops
.
insert
({
op
.
get
(),
op
->
inputs_
.
size
()});
}
std
::
unordered_set
<
OpHandle
*>
complete_op
;
size_t
num_op
=
pending_ops
.
size
();
while
(
complete_op
.
size
()
!=
num_op
)
{
std
::
vector
<
VarHandle
*>
to_remove
;
for
(
auto
&
var
:
pending_vars
)
{
if
(
var
->
generated_op_
==
nullptr
||
complete_op
.
count
(
var
->
generated_op_
)
!=
0
)
{
to_remove
.
push_back
(
var
);
}
}
for
(
auto
*
var
:
to_remove
)
{
pending_vars
.
erase
(
var
);
}
std
::
vector
<
OpHandle
*>
to_run
;
for
(
auto
*
var
:
to_remove
)
{
for
(
auto
*
op
:
var
->
deps_ops_
)
{
if
(
var
->
name_
==
"mean_0.tmp_0@GRAD"
)
{
LOG
(
INFO
)
<<
op
->
DebugString
();
}
auto
&
num
=
pending_ops
[
op
];
--
num
;
if
(
num
==
0
)
{
to_run
.
emplace_back
(
op
);
}
}
}
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
complete_op
.
insert
(
op
);
}
if
(
to_run
.
empty
())
break
;
// TODO(yy): Use thead pool to run OpHandle. Operators in ToRun can be
// paralleled. We can also use another schedule method. Just a demo here.
std
::
stringstream
ss
;
ss
<<
"
\n
"
;
for
(
auto
*
op
:
to_run
)
{
ss
<<
op
->
DebugString
()
<<
"
\n
"
;
}
ss
<<
std
::
endl
;
LOG
(
INFO
)
<<
ss
.
str
();
}
PADDLE_ENFORCE_EQ
(
complete_op
.
size
(),
num_op
);
return
std
::
vector
<
LoDTensor
>
();
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.h
浏览文件 @
baef1124
...
...
@@ -28,32 +28,33 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
AllReduceCallBack
{
void
operator
()(
framework
::
OperatorBase
*
op
);
std
::
unordered_set
<
std
::
string
>
param_grad_names_
;
platform
::
DeviceContext
dev_ctx
;
};
class
ParallelExecutorPrivate
;
class
VarHandle
;
class
OpHandle
;
class
ParallelExecutor
{
public:
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>&
places
,
const
std
::
unordered_set
&
params
);
/* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope
*
* @param
* ProgramDesc
* Scope
*/
void
Run
(
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
=
true
,
bool
create_vars
=
true
);
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
);
std
::
vector
<
LoDTensor
>
Run
(
const
std
::
vector
<
std
::
string
>&
fetch_tensors
);
private:
std
::
vector
<
framework
::
Executor
>
exes_
;
std
::
vector
<
framework
::
Scope
*>
scopes_
;
std
::
vector
<
AllReduceCallBack
>
all_reduce_callbacks_
;
platform
::
Communicator
nccl_com_
;
ParallelExecutorPrivate
*
member_
;
void
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
;
};
}
// namespace framework
...
...
paddle/fluid/platform/place.h
浏览文件 @
baef1124
...
...
@@ -65,6 +65,17 @@ bool is_cpu_place(const Place &);
bool
places_are_same_class
(
const
Place
&
,
const
Place
&
);
bool
is_same_place
(
const
Place
&
,
const
Place
&
);
struct
PlaceHash
{
std
::
size_t
operator
()(
const
Place
&
p
)
const
{
std
::
hash
<
int
>
ihash
;
size_t
dev_id
=
0
;
if
(
is_gpu_place
(
p
))
{
dev_id
=
boost
::
get
<
CUDAPlace
>
(
p
).
device
;
}
return
ihash
(
dev_id
<<
2
|
p
.
which
());
}
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Place
&
);
template
<
typename
Visitor
>
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
baef1124
...
...
@@ -2,6 +2,7 @@ if(WITH_PYTHON)
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method
parallel_executor
${
GLOB_OP_LIB
}
)
if
(
NOT APPLE AND NOT ANDROID
)
target_link_libraries
(
paddle_pybind rt
)
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
baef1124
...
...
@@ -25,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
...
...
@@ -488,6 +489,19 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
py
::
class_
<
ParallelExecutor
>
(
m
,
"ParallelExecutor"
)
.
def
(
"__init__"
,
[](
ParallelExecutor
&
self
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
)
{
new
(
&
self
)
ParallelExecutor
(
places
,
params
,
startup_program
,
main_program
,
loss_var_name
,
scope
);
})
.
def
(
"run"
,
[](
ParallelExecutor
&
self
)
{
self
.
Run
({});
});
BindRecordIOWriter
(
m
);
return
m
.
ptr
();
}
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
0 → 100644
浏览文件 @
baef1124
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
class
ParallelExecutor
(
unittest
.
TestCase
):
def
test_main
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
reader
=
fluid
.
layers
.
open_recordio_file
(
filename
=
'tmp'
,
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
fluid
.
layers
.
fc
(
img
,
size
=
200
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
adam
=
fluid
.
optimizer
.
Adam
()
adam
.
minimize
(
loss
)
act_places
=
[]
for
each
in
[
fluid
.
CUDAPlace
(
0
),
fluid
.
CUDAPlace
(
1
)]:
p
=
fluid
.
core
.
Place
()
p
.
set_place
(
each
)
act_places
.
append
(
p
)
exe
=
fluid
.
core
.
ParallelExecutor
(
act_places
,
set
([
p
.
name
for
p
in
main
.
global_block
().
iter_parameters
()]),
startup
.
desc
,
main
.
desc
,
loss
.
name
,
fluid
.
global_scope
())
exe
.
run
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录