pybind.cc 71.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
44
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
46
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
49
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
50
#include "paddle/fluid/platform/cpu_info.h"
51
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/platform/enforce.h"
53
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
54 55
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
56
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
60
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
61
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
62
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
63
#include "paddle/fluid/pybind/ir.h"
64

W
wopeizl 已提交
65
#ifndef _WIN32
D
dongdaxiang 已提交
66
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
67
#endif
68
#include "paddle/fluid/framework/data_type.h"
69 70
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
71
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/pybind/tensor_py.h"
73
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
74
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
75
#ifndef _WIN32
Y
Yi Wang 已提交
76
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
77
#endif
Y
Yi Wang 已提交
78 79
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
80 81
#endif

82 83 84 85
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
86 87
#include "pybind11/stl.h"

88 89 90
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
91
DECLARE_bool(use_mkldnn);
92 93 94
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
95

Q
Qiao Longfei 已提交
96 97 98
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

99
namespace paddle {
100
namespace pybind {
101
bool IsCompiledWithCUDA() {
102
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
103 104 105 106 107 108
  return false;
#else
  return true;
#endif
}

109 110 111 112 113 114 115 116
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

117 118 119 120 121 122 123 124
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

125
bool IsCompiledWithBrpc() {
126
#ifndef PADDLE_WITH_DISTRIBUTE
127 128
  return false;
#endif
129 130 131 132 133 134

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
135 136
}

Y
update  
Yancey1989 已提交
137
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
138
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
139 140 141 142 143 144
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
145 146 147 148 149 150 151 152 153 154
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

155 156 157 158 159 160
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
161 162 163
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
164
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
165

166
  m.doc() = "C++ core of PaddlePaddle";
167

168 169 170 171
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

172
  BindException(&m);
Y
Yu Yang 已提交
173

174 175
  m.def("set_num_threads", &platform::SetNumThreads);

176 177 178 179 180 181
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
182
  m.def(
S
sneaxiy 已提交
183
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
184 185 186 187
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
188 189 190
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
191 192 193
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
194
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
195

196
  m.def("_set_fuse_parameter_group_size",
197
        &paddle::framework::ir::SetFuseParameterGroupsSize);
198
  m.def("_set_fuse_parameter_memory_size",
199
        &paddle::framework::ir::SetFuseParameterMemorySize);
200

S
sneaxiy 已提交
201 202 203
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

204 205
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

206
  BindImperative(&m);
207

208
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
209
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
210 211
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
212
      .def("_get_dims",
213
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
214
      .def("_set_dims",
Q
qijun 已提交
215
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
216
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
217
           })
Y
yuyang18 已提交
218
      .def("_set_layout",
D
dzhwinter 已提交
219 220 221
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
222
      .def("_alloc_float",
D
dzhwinter 已提交
223
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
224
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
225
           })
Y
yuyang18 已提交
226
      .def("_alloc_float",
Y
Yu Yang 已提交
227
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
229
           })
230 231 232 233
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
234
      .def("_alloc_int",
Y
Yu Yang 已提交
235
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
236
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
237
           })
Y
yuyang18 已提交
238
      .def("_alloc_int",
D
dzhwinter 已提交
239
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
240
             self.mutable_data<int>(place);
Q
qijun 已提交
241
           })
Y
yuyang18 已提交
242
      .def("_alloc_int",
C
chengduoZH 已提交
243 244 245
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
246
      .def("_alloc_float",
C
chengduoZH 已提交
247 248 249
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
265
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
266 267
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
268
      .def("set", PyCPUTensorSetFromArray<double>)
269
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
270
      .def("set", PyCPUTensorSetFromArray<bool>)
271
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
272
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
273
      .def("set", PyCPUTensorSetFromArray<int8_t>)
274
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
275 276
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
277
      .def("set", PyCUDATensorSetFromArray<double>)
278
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
279
      .def("set", PyCUDATensorSetFromArray<bool>)
280
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
281
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
282
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
283 284 285 286 287 288
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
289
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
290
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
291
#endif
292
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
293 294 295 296
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
297
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
298
      .def("_dtype", [](Tensor &self) { return self.type(); })
299 300 301 302 303 304
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
305

X
Xin Pan 已提交
306 307 308 309 310 311 312 313 314
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

315 316
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
317
    described by x.lod.
X
Xin Pan 已提交
318

Z
Zeng Jinle 已提交
319 320 321
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
322

Z
Zeng Jinle 已提交
323
    x.lod  = [[2, 3]]
324

Z
Zeng Jinle 已提交
325
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
326

Z
Zeng Jinle 已提交
327
    x.shape = [5, 2]
X
Xin Pan 已提交
328

Z
Zeng Jinle 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
346 347 348 349 350 351 352 353 354 355 356 357

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
358
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
359 360 361 362 363 364 365 366 367
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
368 369
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
370 371 372
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
373
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
374 375 376 377 378
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
379
      .def("set_lod",
380
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
381
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
382
             LoD new_lod;
383 384
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
385 386 387
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
388
             self.set_lod(new_lod);
S
sneaxiy 已提交
389 390 391 392 393 394
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
395 396 397 398 399 400 401 402 403 404

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
405
           )DOC")
406 407 408 409 410 411 412 413 414 415 416
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
417 418
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
419 420
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
421 422 423 424
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
425
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
426 427
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
428 429

           Args:
430
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
431 432 433 434 435 436 437 438 439 440

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
441
           )DOC")
442 443 444 445 446 447 448 449
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
450 451 452 453 454 455
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
456 457 458 459 460 461 462 463 464 465 466

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
467
           )DOC")
G
gongweibao 已提交
468
      // Set above comments of set_lod.
469 470 471 472 473 474 475 476
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
477 478 479 480 481
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
482
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
483 484 485 486 487 488 489 490 491 492 493

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
494 495 496 497 498 499 500 501 502 503 504 505
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513 514 515 516

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
517 518 519 520 521 522 523
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
524
           )DOC")
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
543
      });
D
dangqingqing 已提交
544

Q
qijun 已提交
545 546 547 548 549 550 551 552 553 554 555
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
556 557
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
558 559
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
560 561 562 563 564 565 566 567 568
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
569
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
570
      .def("rows", [](SelectedRows &self) {
571 572 573 574 575
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
576
      });
Q
qijun 已提交
577

578
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
579 580 581

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
582
      .def(py::init<>())
583
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
584
      .def("set_int",
585 586
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
587 588 589 590 591 592 593
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
594
      .def("get_tensor",
595 596
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
597 598
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
599 600 601
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
602 603 604 605 606
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
607 608 609
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
610
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
611 612 613 614 615
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
616
#endif
Y
Refine  
Yu Yang 已提交
617 618
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
619
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
620 621
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
622
           py::return_value_policy::reference);
623

S
sneaxiy 已提交
624
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
625

S
sneaxiy 已提交
626 627 628 629
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
630

S
sneaxiy 已提交
631 632
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
633
      .def("push",
S
sneaxiy 已提交
634
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
635
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
636
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
637
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
638
           })
S
sneaxiy 已提交
639 640 641 642
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
643

S
sneaxiy 已提交
644
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
645 646
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
647
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
648 649 650 651
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
652
        py::return_value_policy::copy);
S
sneaxiy 已提交
653

S
sneaxiy 已提交
654
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

668
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
669 670 671 672 673 674
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
675 676
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
677
      .def("var",
678
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
679
             return self.Var(name);
Y
Yu Yang 已提交
680
           },
S
sneaxiy 已提交
681 682
           py::arg("name"),
           R"DOC(
683
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
684

685
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
686
           current scope, the variable would be created. Otherwise,
687
           return the existing variable.
S
sneaxiy 已提交
688 689

           Args:
690 691
               name (str): the variable name.

S
sneaxiy 已提交
692
           Returns:
693
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
694 695 696 697
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
698
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
699
           its parent scope. Return None if not found.
700

S
sneaxiy 已提交
701 702
           Args:
               name (str): the variable name.
703

S
sneaxiy 已提交
704
           Returns:
705
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
706
           )DOC",
707
           py::return_value_policy::reference)
708
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
709 710 711 712 713 714
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
715
           py::return_value_policy::reference)
S
sneaxiy 已提交
716 717 718
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
719 720
           )DOC")
      .def("_kids", &Scope::kids);
721

S
sneaxiy 已提交
722 723 724 725 726 727
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
728 729
        R"DOC(
        Create a new scope.
730

S
sneaxiy 已提交
731 732 733
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
734 735
        py::return_value_policy::reference);

Y
Yu Yang 已提交
736 737
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
738 739
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
740 741 742 743
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
744 745
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
746 747 748 749
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
750 751
    return ret_values;
  });
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
768 769 770 771 772 773 774
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
775 776 777
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
778

Y
Yu Yang 已提交
779
  m.def("prune", [](const ProgramDesc &origin,
780
                    const std::set<std::string> &feeded_var_names,
781
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
782
    ProgramDesc prog_with_targets(origin);
783

784
    for (const auto &t : targets) {
785
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
786
    }
787
    proto::ProgramDesc pruned_desc;
788
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
789
    return new ProgramDesc(pruned_desc);
790
  });
791 792 793
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
794 795 796 797
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
798 799 800
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
801 802
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
803
  // clang-format off
Y
Yu Yang 已提交
804
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
805 806
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
807
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
808 809 810
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
811
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
812
                      -> paddle::platform::DeviceContext* {
813
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
814
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
815
#else
Q
qijun 已提交
816
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
817
#endif
C
chengduoZH 已提交
818 819 820 821 822 823 824 825 826 827 828
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
829
// clang-format on
P
peizhilin 已提交
830
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
831 832
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
833 834 835 836
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
837 838 839 840

    Examples:
        .. code-block:: python

841
          import paddle.fluid as fluid
L
lujun 已提交
842 843
          gpu_place = fluid.CUDAPlace(0)

844
        )DOC")
S
sneaxiy 已提交
845 846 847
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
872 873
             new (&self) platform::CUDAPlace(dev_id);
#else
874 875 876 877 878 879 880 881 882
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
883 884
#endif
           })
S
sneaxiy 已提交
885 886 887 888 889 890
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
891
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
892

893 894 895
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
896 897 898 899

    Examples:
        .. code-block:: python

900
          import paddle.fluid as fluid
L
lujun 已提交
901 902
          cpu_place = fluid.CPUPlace()

903
        )DOC")
904
      .def(py::init<>())
S
sneaxiy 已提交
905 906 907 908 909 910
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
911
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
912

913 914 915
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
916 917 918 919

    Examples:
        .. code-block:: python

920
          import paddle.fluid as fluid
L
lujun 已提交
921 922
          place = fluid.CUDAPinnedPlace()

923
        )DOC")
S
sneaxiy 已提交
924
      .def("__init__",
S
sneaxiy 已提交
925
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
926 927 928
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
929
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
930
           })
S
sneaxiy 已提交
931 932 933 934 935 936 937 938
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
939 940
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
941 942
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
943 944 945 946 947
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
948 949
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
950 951 952 953 954 955
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
956 957 958 959
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
960 961
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
962 963 964 965 966
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
967
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
968
             self = gpu_place;
C
chengduoZH 已提交
969 970
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
971 972
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
973
      });
Y
Yu Yang 已提交
974

Y
Yu Yang 已提交
975
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
976 977 978 979 980 981 982 983 984 985 986
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
987
      .def("run",
988
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
989 990 991
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
992
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
993 994 995 996 997
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
998 999 1000 1001 1002 1003 1004
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1005 1006
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1007
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1008
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1009 1010 1011 1012
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1013

1014 1015 1016
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
1017
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1018
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1019
      .def("close", &Executor::Close)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1034 1035 1036 1037 1038 1039 1040 1041
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1042 1043
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1044 1045
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1046
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1047 1048
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1049
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1050 1051
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1052
      });
S
sneaxiy 已提交
1053

D
dzhwinter 已提交
1054
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1055
  m.def("init_glog", framework::InitGLOG);
1056
  m.def("init_dgc", framework::InitDGC);
1057
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1058 1059
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1060

1061
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1062
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1063
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1064
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1065
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1066 1067 1068 1069 1070 1071
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1072

1073
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1074
  m.def("get_fetch_variable", framework::GetFetchVariable);
1075
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1076

X
Xin Pan 已提交
1077 1078
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1079 1080 1081 1082 1083
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1084

Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1094 1095 1096 1097 1098
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1099

Z
Zeng Jinle 已提交
1100 1101 1102 1103
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1104 1105
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1116 1117 1118 1119 1120 1121
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1146

Y
Yu Yang 已提交
1147
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1148
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1149
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1150

P
peizhilin 已提交
1151
#ifndef _WIN32
D
dangqingqing 已提交
1152 1153 1154
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1155
#endif
P
peizhilin 已提交
1156
#endif
Y
Yu Yang 已提交
1157

1158 1159 1160 1161
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1162
      .value("kAll", platform::ProfilerState::kAll)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1176
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1177
  m.def("reset_profiler", platform::ResetProfiler);
1178
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1179 1180 1181
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1182

1183 1184
  m.def("size_of_dtype", framework::SizeOfType);

1185 1186 1187
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1188 1189
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1190
      .def("has", &ir::Pass::Has)
1191 1192 1193
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1194
           })
1195
      .def(
1196
          "set",
1197 1198 1199
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1200 1201
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1216 1217
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1218
        self.Apply(graph.get());
F
flame 已提交
1219
      });
1220

X
fix  
Xin Pan 已提交
1221 1222
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1237
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1238

Y
yuyang18 已提交
1239
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1240 1241 1242 1243
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1244 1245 1246
    Examples:
        .. code-block:: python

1247
          import paddle.fluid as fluid
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1258 1259 1260
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1261 1262
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1263 1264
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1265 1266
        )DOC");

Y
yuyang18 已提交
1267
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1268 1269 1270 1271 1272
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1283
      .def_property(
1284 1285 1286 1287
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1288 1289 1290 1291
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1292 1293 1294 1295 1296
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1297 1298 1299
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1300 1301
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1302 1303 1304 1305 1306 1307 1308
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1309 1310 1311 1312
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1313 1314
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1315 1316 1317 1318 1319 1320

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1321
              )DOC")
Q
Qiao Longfei 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1333 1334 1335 1336 1337
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1338

Y
yuyang18 已提交
1339
  exec_strategy.def_property(
Y
yuyang18 已提交
1340 1341 1342 1343 1344 1345 1346
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1347 1348
      });

C
chengduo 已提交
1349 1350 1351 1352
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1353 1354 1355
    Examples:
        .. code-block:: python

F
flame 已提交
1356 1357 1358
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1359
)DOC");
Y
yuyang18 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1376 1377
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1378
            self.reduce_ = strategy;
C
chengduo 已提交
1379
          },
C
chengduo 已提交
1380 1381 1382 1383 1384 1385 1386
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1387 1388 1389 1390 1391 1392 1393 1394

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1395 1396 1397 1398 1399
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1400 1401
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1402
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1403
          },
C
chengduo 已提交
1404 1405 1406 1407 1408
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1409 1410 1411 1412 1413

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1442
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1457
                   )DOC")
Y
yuyang18 已提交
1458 1459 1460 1461
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1462 1463
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1464
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1465
          },
C
chengduo 已提交
1466
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1467 1468 1469 1470 1471 1472 1473 1474
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1475 1476
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1477
                    )DOC")
S
sneaxiy 已提交
1478 1479 1480 1481 1482 1483
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1484 1485
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1486 1487
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1488 1489
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1490 1491 1492 1493 1494 1495 1496 1497

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1498 1499 1500 1501 1502 1503
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1504 1505
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1506 1507
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1508 1509
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1510 1511 1512 1513 1514 1515 1516 1517

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1518 1519 1520 1521
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1522 1523 1524
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1525 1526
            self.num_trainers_ = num_trainers;
          })
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1539 1540 1541 1542 1543 1544
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1545
      .def_property("use_hierarchical_allreduce",
1546 1547 1548 1549 1550 1551
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1552
      .def_property("hierarchical_allreduce_inter_nranks",
1553 1554 1555 1556 1557 1558 1559
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1560 1561 1562 1563 1564 1565
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1566 1567
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1568 1569 1570
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1581 1582 1583 1584 1585 1586
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1587 1588
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1589 1590 1591
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1615 1616 1617 1618 1619
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1620 1621
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1622 1623
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1624 1625
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1626 1627
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1628 1629
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1630 1631 1632 1633
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1634 1635
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1654 1655
      .def_property(
          "memory_optimize",
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1675
                consumption, set to True to enable it.
1676

1677 1678 1679 1680
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1681 1682 1683
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1684 1685 1686 1687 1688 1689 1690 1691 1692
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1693 1694 1695
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1696
      .def_property(
D
dzhwinter 已提交
1697 1698 1699
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1700 1701
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1702 1703 1704 1705
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1706
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1707 1708 1709 1710 1711 1712 1713
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1714 1715 1716 1717
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1718 1719 1720 1721 1722 1723 1724 1725 1726
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1727
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1728
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1729 1730 1731 1732 1733
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1734 1735

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1736
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1737
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1738
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1739 1740 1741 1742
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1743 1744 1745 1746 1747
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1748 1749 1750
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1751 1752 1753 1754
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1755
      .def("run", [](ParallelExecutor &self,
1756
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1757
        pybind11::gil_scoped_release release;
1758
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1759
      });
Y
Yu Yang 已提交
1760

D
dongdaxiang 已提交
1761
  BindFleetWrapper(&m);
H
hutuxian 已提交
1762
  BindBoxHelper(&m);
W
wopeizl 已提交
1763
#ifndef _WIN32
D
dongdaxiang 已提交
1764
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1765
#endif
F
flame 已提交
1766 1767
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1768
  BindInferenceApi(&m);
1769
  BindDataset(&m);
1770 1771 1772
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1773
}
1774
}  // namespace pybind
1775
}  // namespace paddle