pybind.cc 105.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
56 57
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
58
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/op_info.h"
60
#include "paddle/fluid/framework/op_registry.h"
61
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
62
#include "paddle/fluid/framework/parallel_executor.h"
63
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/framework/prune.h"
65
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/framework/scope_pool.h"
68
#include "paddle/fluid/framework/selected_rows_utils.h"
69
#include "paddle/fluid/framework/tensor_util.h"
70
#include "paddle/fluid/framework/trainer.h"
71
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
72
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
74
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
75
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
76 77
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
78
#include "paddle/fluid/prim/utils/utils.h"
79 80 81
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
82
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
83
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
84
#include "paddle/fluid/operators/common_infer_shape_functions.h"
85
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
86
#include "paddle/fluid/operators/py_func_op.h"
87
#include "paddle/fluid/platform/cpu_helper.h"
88
#include "paddle/fluid/platform/device/device_wrapper.h"
89
#include "paddle/fluid/platform/device_context.h"
90
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/platform/enforce.h"
92
#include "paddle/fluid/platform/init.h"
93
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
94
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
97 98 99
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
100
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
101
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
102
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
103
#include "paddle/fluid/pybind/box_helper_py.h"
104
#include "paddle/fluid/pybind/communication.h"
105
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/const_value.h"
107 108
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
110 111
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/heter_wrapper_py.h"
119
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/inference_api.h"
121
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/jit.h"
124
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
125
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
126
#include "paddle/fluid/pybind/pybind_variant_caster.h"
127 128
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
129
#include "paddle/phi/backends/device_manager.h"
130 131 132
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
133

134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
135
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
136
#endif
137
#include "paddle/fluid/framework/data_type.h"
138 139
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
140 141
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
142
#include "paddle/fluid/pybind/reader_py.h"
143
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
144
#include "paddle/fluid/pybind/tensor_py.h"
145
#include "paddle/fluid/string/to_string.h"
146 147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
148
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
149
#endif
150
#ifndef PADDLE_WITH_HIP
151
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
152
#endif
153
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163
#include "paddle/fluid/platform/collective_helper.h"
164 165 166
#include "paddle/phi/capi/capi.h"
#endif

167
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
168

J
jianghaicheng 已提交
169
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
170 171
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
172
#endif
173

Y
Yanghello 已提交
174 175 176 177
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
178
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
179 180 181
#include "paddle/fluid/pybind/fleet_py.h"
#endif

182 183 184 185
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
186
#if defined(PADDLE_WITH_RPC)
187 188 189
#include "paddle/fluid/pybind/rpc.h"
#endif

190
#include "paddle/fluid/eager/api/utils/global_utils.h"
191
#include "paddle/fluid/eager/nan_inf_utils.h"
192
#include "paddle/fluid/imperative/layout_autotune.h"
193 194
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
199
#include "paddle/phi/core/flags.h"
200 201
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
202 203
#include "pybind11/stl.h"

204
PHI_DECLARE_bool(use_mkldnn);
205

Q
Qiao Longfei 已提交
206 207
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
208 209 210
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
211

212
DECLARE_FILE_SYMBOLS(init_phi);
213
namespace paddle {
214
namespace pybind {
215

0
0x45f 已提交
216
PyTypeObject *g_framework_scope_pytype = nullptr;
217
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
218
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
219

220 221 222 223 224 225 226 227
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

228
bool IsCompiledWithCUDA() {
229 230 231 232 233 234 235
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

261 262
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
263 264 265 266 267 268
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
291 292 293 294 295 296 297 298
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

299 300 301 302 303 304 305 306
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

307 308 309 310 311 312 313 314
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

315 316 317 318 319 320 321 322 323
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

324 325 326 327 328 329 330 331
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

332 333 334 335
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
336
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
337 338 339 340 341 342
    return true;
  else
    return false;
#endif
}

343 344 345 346
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
347
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
348 349 350 351 352 353
    return true;
  else
    return false;
#endif
}

354 355 356 357
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
358 359
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
360 361 362 363 364 365 366
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
367 368
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
369 370 371
#endif
}

372
bool IsCompiledWithBrpc() {
373
#ifndef PADDLE_WITH_DISTRIBUTE
374
  return false;
375
#else
376
  return true;
377
#endif
378 379
}

Y
update  
Yancey1989 已提交
380
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
381
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
382 383 384 385 386 387
  return true;
#else
  return false;
#endif
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
523 524
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
525 526
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
540 541
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
542 543
    }
    vec_res.emplace_back(
544
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
545 546 547 548 549 550 551 552 553 554 555 556
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
557 558
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
559 560 561 562 563 564 565 566 567 568 569 570
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
571 572 573
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
574 575 576 577
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
578 579
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
580 581 582 583
  }
  return vec_res;
}

O
OccupyMars2025 已提交
584
static void inline CreateVariableIfNotExist(
585 586
    const py::handle &py_handle,
    const framework::Scope &scope,
587 588 589 590 591 592
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
593 594
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
595 596 597 598 599 600 601 602 603 604 605 606 607
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
608 609 610
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
611 612 613 614 615
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
616 617 618 619 620
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
621 622
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
623
        PADDLE_ENFORCE_NOT_NULL(
624 625 626
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
627 628 629
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
630
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
631
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
632 633
        tensor_temp->mutable_data(
            exe->GetPlace(),
634
            framework::TransToPhiDataType(var_desc.GetDataType()));
635 636 637
      }
    }
  } else {
638 639
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
640 641 642 643 644
  }

  return;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
661 662
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
663 664 665 666 667 668 669
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
670 671 672 673
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
674
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
675 676 677 678 679 680 681 682
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

683
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
684
  BindImperative(&m);
685
  BindEager(&m);
J
Jack Zhou 已提交
686
  BindEagerStringTensor(&m);
687
  BindCudaStream(&m);
J
james 已提交
688
  BindXpuStream(&m);
689
  BindJit(&m);
690
  BindEvalFrame(&m);
691
  BindCustomDevicePy(&m);
692

Y
Yu Yang 已提交
693
  // Not used, just make sure cpu_info.cc is linked.
694
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
695

Y
Refine  
Yu Yang 已提交
696
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
697

698 699
  AssertStaticGraphAndDygraphGradMakerNoDiff();

700
  m.doc() = "C++ core of PaddlePaddle";
701

702 703 704 705
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

706
  BindException(&m);
Y
Yu Yang 已提交
707

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

746 747 748 749 750 751 752 753 754 755
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
756 757 758 759
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
760 761
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
762 763
  m.def("set_num_threads", &platform::SetNumThreads);

764 765
  m.def("disable_signal_handler", &DisableSignalHandler);

766 767 768 769 770 771 772 773
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

774
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
775
  m.def("cudnn_version", &platform::DnnVersion);
776 777 778 779 780 781
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
782
#endif
783

Z
Zeng Jinle 已提交
784 785 786 787
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

788 789
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
790
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
791 792 793 794 795 796
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
797
      .def_static("gen_new_memory_pool_id",
798 799 800 801 802
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
803 804
#endif

Z
Zeng Jinle 已提交
805 806 807 808
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
809 810 811
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
812 813

    PADDLE_ENFORCE_NOT_NULL(
814 815 816 817
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
818

6
633WHU 已提交
819 820
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
821
    phi::DenseTensor tensor;
6
633WHU 已提交
822

S
Siming Dai 已提交
823
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
824
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
825
    }
826
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
827
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
828
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
829 830 831 832
    }
#endif
    return tensor;
  });
H
hong 已提交
833

834
  m.def("_create_loaded_parameter",
835 836
        [](const py::handle &vec_var_list,
           const Scope &scope,
837
           const Executor *executor) {
O
OccupyMars2025 已提交
838
          CreateVariableIfNotExist(vec_var_list, scope, executor);
839 840
        });

841 842 843 844 845 846
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
847 848
  });

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

874 875 876 877 878 879
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
880

S
sneaxiy 已提交
881
  m.def(
S
sneaxiy 已提交
882
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
883 884 885 886
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
887 888 889
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
906
            }
907
            all_kernels_info.emplace(op_type, kernel_types);
908
          }
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
925
                }
926 927
              } else {
                kernel_types.emplace_back(kernel_type_str);
928
              }
929
            }
930 931 932
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
933
          }
934
        }
935

936 937 938 939
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
940 941 942
           Return the registered kernels in paddle.

           Args:
943
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
944
           )DOC");
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

998 999 1000 1001 1002 1003
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1004 1005
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1006
    platform::XCCLCommContext::Release();
1007 1008 1009
    phi::DeviceManager::Clear();
#endif
  });
1010

S
sneaxiy 已提交
1011 1012 1013
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1014
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1015

1016
  m.def("_set_fuse_parameter_group_size",
1017
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1018
  m.def("_set_fuse_parameter_memory_size",
1019
        &paddle::framework::ir::SetFuseParameterMemorySize);
1020

S
sneaxiy 已提交
1021 1022 1023
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1024 1025
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1026 1027
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1028 1029 1030
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1031
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1032 1033 1034

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1035
      .def(py::init<>())
1036
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1037
      .def("set_int",
1038 1039
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1040 1041 1042 1043 1044 1045 1046
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1047 1048
      .def(
          "get_tensor",
1049 1050
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1051 1052
          },
          py::return_value_policy::reference)
1053 1054
      .def("get_bytes",
           [](Variable &self) {
1055 1056 1057 1058 1059 1060
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1061
           })
S
Steffy-zxf 已提交
1062
      .def("set_string_list",
1063
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1064 1065
             *self.GetMutable<Strings>() = str_list;
           })
1066
      .def("set_vocab",
1067 1068
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1069 1070
             *self.GetMutable<Vocab>() = vocab;
           })
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1097
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1098 1099 1100 1101 1102 1103
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1104
#endif
1105 1106 1107
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1108 1109
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1120 1121
                scope_vec->size(),
                0,
1122 1123 1124 1125 1126
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1127 1128 1129 1130
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1131

S
sneaxiy 已提交
1132
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1133

0
0x45f 已提交
1134
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1148
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1149 1150 1151 1152 1153
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1154 1155 1156
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1157 1158
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1159 1160 1161 1162 1163 1164 1165
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1166
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1167

1168
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1169
           current scope, the variable would be created. Otherwise,
1170
           return the existing variable.
S
sneaxiy 已提交
1171 1172

           Args:
1173 1174
               name (str): the variable name.

S
sneaxiy 已提交
1175
           Returns:
1176
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1177
           )DOC",
1178
          py::return_value_policy::reference)
1179 1180 1181
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1182
           R"DOC(
1183
           Find variable named :code:`name` in the current scope or
1184
           its parent scope. Return None if not found.
1185

S
sneaxiy 已提交
1186 1187
           Args:
               name (str): the variable name.
1188

S
sneaxiy 已提交
1189
           Returns:
1190
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1191
           )DOC",
1192
           py::return_value_policy::reference)
1193
      .def("size", &Scope::Size)
1194 1195 1196
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1197 1198
           R"DOC(
           Find variable named :code:`name` in the current scope or
1199
           its parent scope. Return None if not found.
1200 1201 1202 1203 1204 1205 1206 1207

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1208
      .def(
1209 1210
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1211
          R"DOC(
S
sneaxiy 已提交
1212 1213 1214 1215 1216
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1217
          py::return_value_policy::reference)
1218 1219
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1220 1221
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1222
           )DOC")
1223
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1224
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1225

1226 1227 1228 1229 1230 1231 1232 1233
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1234
        Create a new scope.
1235

S
sneaxiy 已提交
1236 1237 1238
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1239
      py::return_value_policy::reference);
S
sneaxiy 已提交
1240

Y
Yu Yang 已提交
1241 1242
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1243 1244
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1245 1246 1247 1248
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1249
        PADDLE_ENFORCE_EQ(
1250 1251
            info.Proto().SerializeToString(&str),
            true,
1252 1253
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1254 1255 1256
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1257 1258
    return ret_values;
  });
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1297 1298 1299 1300 1301 1302 1303 1304
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1305
              res = op_checker->GetDefaultAttrsMap();
1306 1307 1308 1309
            }
          }
          return res;
        });
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1326 1327 1328
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1329 1330 1331 1332 1333
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1334 1335 1336

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1337
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1338 1339 1340 1341

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1342
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1343
            PADDLE_THROW(platform::errors::NotFound(
1344
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1345 1346 1347 1348 1349 1350 1351 1352
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1353
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1354 1355
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1356
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1357 1358
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1359 1360 1361
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1362
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1363
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1364 1365
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1377
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1378
                      << op_desc.Type();
J
Jiabin Yang 已提交
1379 1380 1381
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1382
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1383
                      << op_desc.Type();
J
Jiabin Yang 已提交
1384 1385 1386 1387 1388 1389 1390 1391
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1392 1393 1394 1395 1396 1397 1398 1399
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1400 1401 1402
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1403 1404 1405
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1406 1407 1408 1409 1410
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1411 1412 1413
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1414 1415 1416
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1417
  m.def("infer_no_need_buffer_slots",
1418 1419
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1447 1448 1449 1450 1451 1452
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1453 1454
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1455

1456
            Args:
1457 1458 1459
                   program (ProgramDesc): The original program.

             Returns:
1460
                   tuple(ProgramDesc, map<int, int>): The first part is
1461 1462 1463 1464
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1465 1466 1467 1468
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1469 1470
    VLOG(4) << s;
    return s;
1471 1472 1473 1474 1475 1476
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1477
  });
1478 1479 1480 1481
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1482 1483 1484
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1485 1486
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1487

Y
Yu Yang 已提交
1488
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1489
      .def_static("create",
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1505 1506 1507 1508
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1509
                    return context;
Q
qijun 已提交
1510
                  })
1511 1512 1513 1514
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1515
#ifndef PADDLE_WITH_XPU
1516 1517 1518
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1519
#else
W
Wilber 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1533 1534 1535 1536
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1537
      return context;
1538
#endif
1539 1540 1541 1542
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1543
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1544 1545 1546 1547
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1548 1549
#else
                return new paddle::platform::CustomDeviceContext(place);
1550
#endif
1551 1552 1553 1554 1555
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1556
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1557 1558 1559
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1560
#else
L
Leo Chen 已提交
1561
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1574 1575 1576 1577
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1578 1579 1580 1581
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1582 1583
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1584
#endif
1585 1586 1587 1588 1589
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1590
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1591 1592 1593
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1594 1595 1596
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1597
          });
1598
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1599 1600
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1601 1602 1603
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1604
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1605
#else
R
ronnywang 已提交
1606
          VLOG(1) << string::Sprintf(
1607 1608 1609 1610
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1611
              "PaddlePaddle by: pip install paddlepaddle\n");
1612 1613 1614 1615 1616 1617
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1618
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1619
#else
R
ronnywang 已提交
1620
          VLOG(1) << string::Sprintf(
1621 1622 1623 1624
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1625
              "PaddlePaddle by: pip install paddlepaddle\n");
1626 1627 1628 1629 1630 1631
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1632
    devices = phi::DeviceManager::GetAllDeviceList();
1633
#else
R
ronnywang 已提交
1634
          VLOG(1) << string::Sprintf(
1635 1636 1637 1638
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1639
              "PaddlePaddle by: pip install paddlepaddle\n");
1640 1641 1642 1643 1644 1645
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1646
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1647
#else
R
ronnywang 已提交
1648
          VLOG(1) << string::Sprintf(
1649 1650 1651 1652 1653 1654
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1655
              "PaddlePaddle by: pip install paddlepaddle\n");
1656 1657 1658
#endif
    return devices;
  });
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1678

Y
Yu Yang 已提交
1679
  py::class_<OperatorBase>(m, "Operator")
1680 1681 1682 1683 1684 1685 1686
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1687 1688
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1689 1690 1691 1692 1693 1694
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1695
      .def("run",
1696 1697
           [](OperatorBase &self,
              const Scope &scope,
1698 1699 1700 1701
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1702
      .def("run",
1703 1704
           [](OperatorBase &self,
              const Scope &scope,
1705 1706 1707 1708
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1709
      .def("run",
1710 1711
           [](OperatorBase &self,
              const Scope &scope,
1712 1713 1714 1715
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1716
      .def("run",
1717 1718
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1719
              const platform::CUDAPinnedPlace &place) {
1720
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1721 1722
             self.Run(scope, place);
           })
R
ronnywang 已提交
1723
      .def("run",
1724 1725
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1726 1727 1728 1729
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1730 1731 1732 1733 1734
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1735 1736
             return op.Outputs();
           })
Q
qijun 已提交
1737 1738
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1739
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1740
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1741 1742 1743 1744
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1745

1746 1747 1748
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1749 1750
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1751 1752 1753 1754 1755 1756
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1757 1758
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1759

1760 1761
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1762
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1763
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1764
      .def("close", &Executor::Close)
1765 1766
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1767
           py::call_guard<py::gil_scoped_release>())
1768 1769
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1770
           py::call_guard<py::gil_scoped_release>())
1771
      .def("init_for_dataset",
1772 1773 1774 1775
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1776
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1777
             pybind11::gil_scoped_release release;
1778 1779 1780 1781 1782 1783 1784
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1785
      .def("run_prepared_ctx",
1786 1787 1788
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1789
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1790
              std::map<std::string, FetchType *> *fetch_targets,
1791 1792
              bool create_local_scope = true,
              bool create_vars = true,
1793 1794 1795
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1796 1797 1798 1799 1800 1801 1802 1803
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1804
           })
1805
      .def("run_prepared_ctx",
1806 1807 1808 1809 1810
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1811 1812
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1813 1814
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1815
           })
1816
      .def("prepare",
1817 1818 1819
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1820 1821 1822 1823
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1824 1825
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1826 1827
           })
      .def("create_variables", &Executor::CreateVariables)
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1844

1845
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1846
      .def(py::init<>())
1847 1848 1849 1850 1851
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1852

1853
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1854 1855
      .def(
          py::init<const platform::Place &, const std::vector<ProgramDesc> &>())
1856
      .def("run",
1857
           [](StandaloneExecutor &self,
1858
              Scope *scope,
1859
              std::vector<std::string> feed_names,
1860 1861 1862 1863
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1864
               ret = self.Run(scope, feed_names, fetch_names);
1865 1866
             }
             return py::cast(std::move(ret));
H
hong 已提交
1867 1868
           });

L
LiYuRio 已提交
1869
  py::class_<framework::Job, std::shared_ptr<framework::Job>>(m, "job")
L
LiYuRio 已提交
1870 1871 1872 1873 1874 1875
      .def(py::init<const std::string &>(), py::arg("type"))
      .def("type", &framework::Job::GetJobType)
      .def("micro_batch_id", &framework::Job::GetMicroBatchId)
      .def("set_micro_batch_id", &framework::Job::SetMicroBatchId);

  py::class_<framework::Plan>(m, "plan")
L
LiYuRio 已提交
1876
      .def(py::init<const std::vector<std::shared_ptr<framework::Job>> &,
L
LiYuRio 已提交
1877 1878 1879 1880 1881 1882 1883
                    const std::unordered_map<std::string,
                                             framework::ProgramDesc *> &>(),
           py::arg("job_list"),
           py::arg("type_to_program"))
      .def("job_list", &framework::Plan::GetJobList)
      .def("type_to_program", &framework::Plan::GetTypeToProgram);

D
dzhwinter 已提交
1884
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1885
  m.def("init_glog", framework::InitGLOG);
1886
  m.def("init_memory_method", framework::InitMemoryMethod);
1887 1888 1889 1890
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1891 1892 1893 1894 1895 1896 1897 1898
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1899 1900
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1901 1902 1903 1904 1905 1906 1907 1908 1909
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1910
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1911
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1912
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1913
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1914
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1915
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1916
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1917
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1918 1919
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1920
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1921
  m.def("is_run_with_cinn", IsRunWithCINN);
1922
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1923
  m.def("supports_bfloat16", SupportsBfloat16);
1924
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1925 1926
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1927
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1928
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1929
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1930 1931 1932
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1933 1934 1935 1936 1937
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1957 1958 1959
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1960 1961
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1962 1963
  m.def(
      "run_cmd",
1964 1965
      [](const std::string &cmd,
         int time_out = -1,
1966
         int sleep_inter = -1) -> const std::string {
1967 1968
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1969
      },
1970 1971 1972
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1973 1974
  m.def(
      "shell_execute_cmd",
1975 1976 1977
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1978
         bool redirect_stderr = false) -> std::vector<std::string> {
1979 1980
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1981
      },
1982 1983 1984
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1985
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1986

S
Steffy-zxf 已提交
1987
  m.def("set_feed_variable",
1988 1989
        static_cast<void (*)(  // NOLINT
            Scope *,
1990
            const phi::DenseTensor &,
1991 1992
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1993
  m.def("set_feed_variable",
1994 1995
        static_cast<void (*)(  // NOLINT
            Scope *,
1996
            const std::vector<std::string> &,
1997 1998
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1999
  m.def("get_fetch_variable",
2000 2001
        [](const Scope &scope,
           const std::string &var_name,
2002 2003 2004
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2005
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2006
          } else {
R
Ruibiao Chen 已提交
2007
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2008 2009
          }
        });
2010
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2011

X
Xin Pan 已提交
2012 2013
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2014 2015 2016 2017
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2018
  BindCostModel(&m);
2019
  BindConstValue(&m);
2020
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2021
  BindFleetExecutor(&m);
2022
  BindTCPStore(&m);
2023
  BindCommContextManager(&m);
2024
  BindAutoParallel(&m);
2025
  BindJitProperty(&m);
Y
Yu Yang 已提交
2026

Y
Yu Yang 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2036
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2037
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2038 2039 2040

    Examples:
        .. code-block:: python
2041

Z
Zeng Jinle 已提交
2042 2043 2044
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2045 2046 2047 2048
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2049 2050
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2051 2052 2053 2054
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2055 2056
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2057
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2058 2059
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2060 2061 2062
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2063 2064 2065
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2066 2067
      .def(
          "append",
2068
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2069 2070 2071 2072
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2073 2074
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2075
             Append a LoDensor to LoDTensorArray.
2076

2077 2078 2079 2080 2081
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2093
           )DOC")
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2105

2106
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2107
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2108
        )DOC")
2109 2110 2111 2112 2113 2114
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2115
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2116
                res[i] = py::cast(std::move(data));
2117 2118 2119
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2120
              } else {
R
Ruibiao Chen 已提交
2121
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2133

2134 2135
      .def(
          "append",
2136
          [](FetchList &self, const phi::DenseTensor &t) {
2137
            self.emplace_back();
2138
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2139 2140 2141 2142 2143 2144 2145 2146 2147
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2148
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2149 2150 2151 2152 2153 2154
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2155 2156

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2157
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2158
        )DOC")
2159 2160 2161 2162 2163 2164 2165 2166
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2167
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2168 2169
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2170
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2185

Y
Yu Yang 已提交
2186
  m.def("op_support_gpu", OpSupportGPU);
2187
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2188
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2189
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2190 2191 2192 2193 2194 2195 2196 2197
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2198 2199 2200 2201 2202 2203
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2204 2205

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2231
      });
D
dangqingqing 已提交
2232

2233
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2234 2235 2236
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2237 2238 2239
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2240 2241 2242
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2243
#endif
P
peizhilin 已提交
2244
#endif
Y
Yu Yang 已提交
2245

J
jianghaicheng 已提交
2246 2247 2248 2249
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2250 2251 2252 2253 2254 2255
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2256 2257 2258 2259
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2260
      .value("kAll", platform::ProfilerState::kAll)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2272
  m.def("set_tracer_option", platform::SetTracerOption);
2273 2274
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2275
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2276
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2277
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2278
    PADDLE_ENFORCE_EQ(
2279 2280
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2281 2282 2283
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2284
    callable.inc_ref();
2285 2286 2287 2288
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2289 2290
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2291 2292
          return pass;
        });
2293
  });
2294
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2295 2296 2297
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2298

2299
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2300 2301
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2302 2303
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2304 2305
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2306 2307 2308 2309 2310 2311 2312 2313 2314
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2379 2380
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2381 2382 2383 2384
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2385 2386 2387
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2388 2389 2390 2391 2392
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2393 2394 2395
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2396 2397

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2398 2399
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2400
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2401
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2402 2403
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2404 2405 2406 2407 2408 2409
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2433 2434 2435 2436 2437 2438 2439 2440
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2459 2460
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2461 2462
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2463

2464
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2465 2466 2467 2468
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2469
#endif  // PADDLE_WITH_CUDA
2470 2471 2472 2473 2474 2475 2476 2477
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2478

J
jianghaicheng 已提交
2479 2480
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2481 2482 2483
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2484 2485 2486 2487 2488 2489 2490
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2491
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2492 2493
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2494
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2505 2506 2507 2508
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2531 2532
                         option.get_type(),
                         option_name));
2533 2534 2535 2536 2537 2538 2539
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2540 2541
                         option_name,
                         option.first.cast<std::string>(),
2542 2543
                         option.second.cast<std::uint64_t>());
                   }
2544 2545 2546 2547 2548 2549
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2595 2596
                           option.second.get_type(),
                           option_key));
2597
                     }
2598 2599
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2600 2601 2602 2603 2604 2605
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2606 2607
                     element.second.get_type(),
                     option_name));
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2638 2639
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2640 2641 2642
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2643 2644
#endif

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2662 2663 2664 2665 2666 2667 2668 2669
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2670
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2671 2672 2673 2674 2675 2676 2677 2678 2679
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2680
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2681 2682 2683 2684 2685 2686 2687
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2688 2689
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2690

2691 2692
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2693

2694 2695
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2696
  // Add the api for nan op debug
2697 2698 2699 2700
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2701 2702
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2703

2704 2705 2706 2707 2708 2709 2710 2711
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });

D
dongdaxiang 已提交
2712
  BindFleetWrapper(&m);
2713
  BindIO(&m);
2714 2715 2716
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2717

T
Thunderbrook 已提交
2718
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2719
  BindHeterWrapper(&m);
2720
  BindMetrics(&m);
T
Thunderbrook 已提交
2721
#endif
T
Thunderbrook 已提交
2722
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2723
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2724 2725 2726
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2727
#endif
2728
  BindGlooWrapper(&m);
H
hutuxian 已提交
2729
  BindBoxHelper(&m);
H
hutuxian 已提交
2730 2731 2732
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2733
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2734
  BindNCCLWrapper(&m);
2735 2736 2737
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2738
#endif
F
flame 已提交
2739 2740
  BindGraph(&m);
  BindNode(&m);
2741
  BindPass(&m);
F
flame 已提交
2742
  BindInferenceApi(&m);
2743
  BindCompatible(&m);
2744
  BindDataset(&m);
Y
yaoxuefeng 已提交
2745
  BindGenerator(&m);
2746
#ifndef PADDLE_NO_PYTHON
2747 2748
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2749 2750 2751
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2752

T
tangwei12 已提交
2753
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2754 2755
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2756
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2757 2758
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2759 2760 2761 2762 2763
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2764 2765 2766 2767
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2768
#ifdef PADDLE_WITH_HETERPS
2769 2770
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2771 2772 2773
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2774
#endif
X
Xinger 已提交
2775
#if defined(PADDLE_WITH_RPC)
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2788
}
2789
}  // namespace pybind
2790
}  // namespace paddle