pybind.cc 107.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
74 75
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
76
#include "paddle/fluid/prim/utils/utils.h"
77 78 79
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
80
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
81
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
82
#include "paddle/fluid/operators/common_infer_shape_functions.h"
83
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
84
#include "paddle/fluid/operators/py_func_op.h"
85
#include "paddle/fluid/platform/cpu_helper.h"
86
#include "paddle/fluid/platform/device/device_wrapper.h"
87
#include "paddle/fluid/platform/device_context.h"
88
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/platform/enforce.h"
90
#include "paddle/fluid/platform/init.h"
91
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
92
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
95 96 97
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
98
#include "paddle/fluid/pybind/cuda_streams_py.h"
99
#include "paddle/fluid/pybind/custom_device_py.h"
100
#include "paddle/fluid/pybind/distributed_py.h"
101
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
102
#include "paddle/fluid/pybind/imperative.h"
103
#include "paddle/fluid/pybind/io.h"
104
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
105
#include "paddle/fluid/pybind/xpu_streams_py.h"
106
#include "paddle/phi/backends/cpu/cpu_info.h"
107 108
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
109
#include "paddle/utils/none.h"
110 111 112
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
113
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
114
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
115
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
116
#include "paddle/fluid/pybind/box_helper_py.h"
117
#include "paddle/fluid/pybind/communication.h"
118
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
119
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
120
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
121
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
122
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
123
#include "paddle/fluid/pybind/generator_py.h"
124
#include "paddle/fluid/pybind/global_value_getter_setter.h"
125
#include "paddle/fluid/pybind/gloo_context_py.h"
126
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
127
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
128
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
129
#include "paddle/fluid/pybind/ir.h"
130
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
131
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
132
#include "paddle/fluid/pybind/pybind_variant_caster.h"
133
#include "paddle/phi/backends/device_manager.h"
134

135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
136
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
137
#endif
138
#include "paddle/fluid/framework/data_type.h"
139 140
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
141 142
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
143
#include "paddle/fluid/pybind/reader_py.h"
144
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
145
#include "paddle/fluid/pybind/tensor_py.h"
146
#include "paddle/fluid/string/to_string.h"
147 148
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
149
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
150
#endif
151
#ifndef PADDLE_WITH_HIP
152
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
153
#endif
154
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
155 156
#endif

157
#ifdef PADDLE_WITH_XPU
158
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
159
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
160 161
#endif

162
#ifdef PADDLE_WITH_CUSTOM_DEVICE
163
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
164 165 166
#include "paddle/phi/capi/capi.h"
#endif

167
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
168

J
jianghaicheng 已提交
169
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
170 171
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
172
#endif
173

Y
Yanghello 已提交
174 175 176 177
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
178
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
179 180 181
#include "paddle/fluid/pybind/fleet_py.h"
#endif

182 183 184 185
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
186
#if defined(PADDLE_WITH_RPC)
187 188 189
#include "paddle/fluid/pybind/rpc.h"
#endif

190
#include "paddle/fluid/eager/api/utils/global_utils.h"
191
#include "paddle/fluid/eager/nan_inf_utils.h"
192
#include "paddle/fluid/imperative/layout_autotune.h"
193 194
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
199 200
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
201 202
#include "pybind11/stl.h"

203
DECLARE_bool(use_mkldnn);
204

Q
Qiao Longfei 已提交
205 206
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
207 208 209
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
210

211
DECLARE_FILE_SYMBOLS(init_phi);
212
namespace paddle {
213
namespace pybind {
214

0
0x45f 已提交
215
PyTypeObject *g_framework_scope_pytype = nullptr;
216
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
217
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
218

219 220 221 222 223 224 225 226
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

227
bool IsCompiledWithCUDA() {
228 229 230 231 232 233 234
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

235 236 237 238 239 240 241 242
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

260 261
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
262 263 264 265 266 267
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
290 291 292 293 294 295 296 297
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

298 299 300 301 302 303 304 305
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

306 307 308 309 310 311 312 313
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

314 315 316 317 318 319 320 321
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

322 323 324 325
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
326
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
327 328 329 330 331 332
    return true;
  else
    return false;
#endif
}

333 334 335 336
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
337
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
338 339 340 341 342 343
    return true;
  else
    return false;
#endif
}

344 345 346 347
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
348 349
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
350 351 352 353 354 355 356
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
357 358
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
359 360 361
#endif
}

362
bool IsCompiledWithBrpc() {
363
#ifndef PADDLE_WITH_DISTRIBUTE
364
  return false;
365
#else
366
  return true;
367
#endif
368 369
}

Y
update  
Yancey1989 已提交
370
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
371
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
372 373 374 375 376 377
  return true;
#else
  return false;
#endif
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
513 514
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
515 516
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
530 531
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
532 533
    }
    vec_res.emplace_back(
534
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
535 536 537 538 539 540 541 542 543 544 545 546
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
547 548
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
549 550 551 552 553 554 555 556 557 558 559 560
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
561 562 563
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
564 565 566 567
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
568 569
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
570 571 572 573
  }
  return vec_res;
}

O
OccupyMars2025 已提交
574
static void inline CreateVariableIfNotExist(
575 576
    const py::handle &py_handle,
    const framework::Scope &scope,
577 578 579 580 581 582
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
583 584
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
585 586 587 588 589 590 591 592 593 594 595 596 597
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
598 599 600
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
601 602 603 604 605
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
606 607 608 609 610
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
611 612
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
613
        PADDLE_ENFORCE_NOT_NULL(
614 615 616
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
617 618 619
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
620
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
621
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
622 623
        tensor_temp->mutable_data(
            exe->GetPlace(),
624
            framework::TransToPhiDataType(var_desc.GetDataType()));
625 626 627
      }
    }
  } else {
628 629
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
630 631 632 633 634
  }

  return;
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
651 652
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
653 654 655 656 657 658 659
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
660 661 662 663
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
664
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
665 666 667 668 669 670 671 672
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

673
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
674
  BindImperative(&m);
675
  BindEager(&m);
J
Jack Zhou 已提交
676
  BindEagerStringTensor(&m);
677
  BindCudaStream(&m);
J
james 已提交
678
  BindXpuStream(&m);
679
  BindJit(&m);
680
  BindCustomDevicePy(&m);
681

Y
Yu Yang 已提交
682
  // Not used, just make sure cpu_info.cc is linked.
683
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
684

Y
Refine  
Yu Yang 已提交
685
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
686

687 688
  AssertStaticGraphAndDygraphGradMakerNoDiff();

689
  m.doc() = "C++ core of PaddlePaddle";
690

691 692 693 694
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

695
  BindException(&m);
Y
Yu Yang 已提交
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

735 736 737 738 739 740 741 742 743 744
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
745 746 747 748
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
749 750
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
751 752
  m.def("set_num_threads", &platform::SetNumThreads);

753 754
  m.def("disable_signal_handler", &DisableSignalHandler);

755 756 757 758 759 760 761 762
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

763
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
764
  m.def("cudnn_version", &platform::DnnVersion);
765 766 767 768 769 770
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
771
#endif
772

Z
Zeng Jinle 已提交
773 774 775 776
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

777 778
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
779
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
780 781 782 783 784 785
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
786
      .def_static("gen_new_memory_pool_id",
787 788 789 790 791
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
792 793
#endif

Z
Zeng Jinle 已提交
794 795 796 797
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
798 799 800
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
801 802

    PADDLE_ENFORCE_NOT_NULL(
803 804 805 806
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
807

6
633WHU 已提交
808 809
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
810
    phi::DenseTensor tensor;
6
633WHU 已提交
811

S
Siming Dai 已提交
812
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
813
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
814
    }
815
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
816
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
817
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
818 819 820 821
    }
#endif
    return tensor;
  });
H
hong 已提交
822

823
  m.def("_create_loaded_parameter",
824 825
        [](const py::handle &vec_var_list,
           const Scope &scope,
826
           const Executor *executor) {
O
OccupyMars2025 已提交
827
          CreateVariableIfNotExist(vec_var_list, scope, executor);
828 829
        });

830 831 832 833 834 835
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
836 837
  });

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

863 864 865 866 867 868
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
869

S
sneaxiy 已提交
870
  m.def(
S
sneaxiy 已提交
871
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
872 873 874 875
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
876 877 878
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
895
            }
896
            all_kernels_info.emplace(op_type, kernel_types);
897
          }
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
914
                }
915 916
              } else {
                kernel_types.emplace_back(kernel_type_str);
917
              }
918
            }
919 920 921
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
922
          }
923
        }
924

925 926 927 928
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
929 930 931
           Return the registered kernels in paddle.

           Args:
932
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
933
           )DOC");
934

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

987 988 989 990 991 992
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
993 994 995 996 997
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
998

S
sneaxiy 已提交
999 1000 1001
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1002
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1003

1004
  m.def("_set_fuse_parameter_group_size",
1005
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1006
  m.def("_set_fuse_parameter_memory_size",
1007
        &paddle::framework::ir::SetFuseParameterMemorySize);
1008

S
sneaxiy 已提交
1009 1010 1011
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1012 1013
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1014 1015
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1016 1017 1018
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
1030 1031 1032
             } else if (obj == Py_None) {
               // Check optional Tensor, use one un-initialized tensor to
               // indicate both Tensor and vector<Tensor> inputs
1033
               self.EmplaceBackInput(std::move(paddle::Tensor()));
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
1077 1078 1079 1080 1081
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
1082

1083
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1084 1085 1086

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1087
      .def(py::init<>())
1088
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1089
      .def("set_int",
1090 1091
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1092 1093 1094 1095 1096 1097 1098
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1099 1100
      .def(
          "get_tensor",
1101 1102
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1103 1104
          },
          py::return_value_policy::reference)
1105 1106
      .def("get_bytes",
           [](Variable &self) {
1107 1108 1109 1110 1111 1112
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1113
           })
S
Steffy-zxf 已提交
1114
      .def("set_string_list",
1115
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1116 1117
             *self.GetMutable<Strings>() = str_list;
           })
1118
      .def("set_vocab",
1119 1120
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1121 1122
             *self.GetMutable<Vocab>() = vocab;
           })
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1149
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1150 1151 1152 1153 1154 1155
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1156
#endif
1157 1158 1159
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1160 1161
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1172 1173
                scope_vec->size(),
                0,
1174 1175 1176 1177 1178
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1179 1180 1181 1182
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1183

S
sneaxiy 已提交
1184
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1185

0
0x45f 已提交
1186
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1200
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1201 1202 1203 1204 1205
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1206 1207 1208
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1209 1210
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1211 1212 1213 1214 1215 1216 1217
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1218
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1219

1220
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1221
           current scope, the variable would be created. Otherwise,
1222
           return the existing variable.
S
sneaxiy 已提交
1223 1224

           Args:
1225 1226
               name (str): the variable name.

S
sneaxiy 已提交
1227
           Returns:
1228
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1229
           )DOC",
1230
          py::return_value_policy::reference)
1231 1232 1233
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1234
           R"DOC(
1235
           Find variable named :code:`name` in the current scope or
1236
           its parent scope. Return None if not found.
1237

S
sneaxiy 已提交
1238 1239
           Args:
               name (str): the variable name.
1240

S
sneaxiy 已提交
1241
           Returns:
1242
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1243
           )DOC",
1244
           py::return_value_policy::reference)
1245
      .def("size", &Scope::Size)
1246 1247 1248
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1249 1250
           R"DOC(
           Find variable named :code:`name` in the current scope or
1251
           its parent scope. Return None if not found.
1252 1253 1254 1255 1256 1257 1258 1259

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1260
      .def(
1261 1262
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1263
          R"DOC(
S
sneaxiy 已提交
1264 1265 1266 1267 1268
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1269
          py::return_value_policy::reference)
1270 1271
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1272 1273
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1274
           )DOC")
1275 1276
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1277

1278 1279 1280 1281 1282 1283 1284 1285
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1286
        Create a new scope.
1287

S
sneaxiy 已提交
1288 1289 1290
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1291
      py::return_value_policy::reference);
S
sneaxiy 已提交
1292

Y
Yu Yang 已提交
1293 1294
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1295 1296
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1297 1298 1299 1300
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1301
        PADDLE_ENFORCE_EQ(
1302 1303
            info.Proto().SerializeToString(&str),
            true,
1304 1305
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1306 1307 1308
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1309 1310
    return ret_values;
  });
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1349 1350 1351 1352 1353 1354 1355 1356
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1357
              res = op_checker->GetDefaultAttrsMap();
1358 1359 1360 1361
            }
          }
          return res;
        });
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1378 1379 1380
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1381 1382 1383 1384 1385
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1386 1387 1388

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1389
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1390 1391 1392 1393 1394 1395 1396

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1397
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1398 1399 1400 1401 1402 1403 1404 1405
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1406
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1407 1408
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1409
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1410 1411
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1412 1413 1414
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1415
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1416
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1417
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1440 1441 1442 1443 1444 1445 1446 1447
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1448 1449 1450
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1451 1452 1453
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1454 1455 1456 1457 1458
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1459 1460 1461
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1462
  m.def("infer_no_need_buffer_slots",
1463 1464
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1492 1493 1494 1495 1496 1497
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1498 1499
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1500

1501
            Args:
1502 1503 1504
                   program (ProgramDesc): The original program.

             Returns:
1505
                   tuple(ProgramDesc, map<int, int>): The first part is
1506 1507 1508 1509
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1510 1511 1512 1513
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1514 1515
    VLOG(4) << s;
    return s;
1516 1517 1518 1519 1520 1521
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1522
  });
1523 1524 1525 1526
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1527 1528 1529
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1530 1531
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1532

Y
Yu Yang 已提交
1533
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1534
      .def_static("create",
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1550 1551 1552 1553
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1554
                    return context;
Q
qijun 已提交
1555
                  })
1556 1557 1558 1559
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1560
#ifndef PADDLE_WITH_XPU
1561 1562 1563
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1564
#else
W
Wilber 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1578 1579 1580 1581
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1582
      return context;
1583
#endif
1584 1585 1586 1587
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1588
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1589 1590 1591 1592
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1593 1594
#else
                return new paddle::platform::CustomDeviceContext(place);
1595
#endif
1596 1597 1598 1599 1600
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1601
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1602 1603 1604
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1605
#else
L
Leo Chen 已提交
1606
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1619 1620 1621 1622
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1623 1624 1625 1626
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1627 1628
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1629
#endif
1630 1631 1632 1633 1634
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1635
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1636 1637 1638
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1639 1640 1641
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1642
          });
1643
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1644 1645
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1646 1647 1648
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1649
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1650
#else
R
ronnywang 已提交
1651
          VLOG(1) << string::Sprintf(
1652 1653 1654 1655
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1656
              "PaddlePaddle by: pip install paddlepaddle\n");
1657 1658 1659 1660 1661 1662
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1663
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1664
#else
R
ronnywang 已提交
1665
          VLOG(1) << string::Sprintf(
1666 1667 1668 1669
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1670
              "PaddlePaddle by: pip install paddlepaddle\n");
1671 1672 1673 1674 1675 1676
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1677
    devices = phi::DeviceManager::GetAllDeviceList();
1678
#else
R
ronnywang 已提交
1679
          VLOG(1) << string::Sprintf(
1680 1681 1682 1683
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1684
              "PaddlePaddle by: pip install paddlepaddle\n");
1685 1686 1687 1688 1689 1690
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1691
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1692
#else
R
ronnywang 已提交
1693
          VLOG(1) << string::Sprintf(
1694 1695 1696 1697 1698 1699
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1700
              "PaddlePaddle by: pip install paddlepaddle\n");
1701 1702 1703
#endif
    return devices;
  });
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1723

Y
Yu Yang 已提交
1724
  py::class_<OperatorBase>(m, "Operator")
1725 1726 1727 1728 1729 1730 1731
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1732 1733
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1734 1735 1736 1737 1738 1739
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1740
      .def("run",
1741 1742
           [](OperatorBase &self,
              const Scope &scope,
1743 1744 1745 1746
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1747
      .def("run",
1748 1749
           [](OperatorBase &self,
              const Scope &scope,
1750 1751 1752 1753
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1754
      .def("run",
1755 1756
           [](OperatorBase &self,
              const Scope &scope,
1757 1758 1759 1760
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1761
      .def("run",
1762 1763
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1764
              const platform::CUDAPinnedPlace &place) {
1765
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1766 1767
             self.Run(scope, place);
           })
R
ronnywang 已提交
1768
      .def("run",
1769 1770
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1771 1772 1773 1774
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1775 1776 1777 1778 1779
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1780 1781
             return op.Outputs();
           })
Q
qijun 已提交
1782 1783
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1784
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1785
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1786 1787 1788 1789
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1790

1791 1792 1793
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1794 1795
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1796 1797 1798 1799 1800 1801
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1802 1803
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1804

1805 1806
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1807
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1808
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1809
      .def("close", &Executor::Close)
1810 1811
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1812
           py::call_guard<py::gil_scoped_release>())
1813 1814
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1815
           py::call_guard<py::gil_scoped_release>())
1816
      .def("init_for_dataset",
1817 1818 1819 1820
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1821
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1822
             pybind11::gil_scoped_release release;
1823 1824 1825 1826 1827 1828 1829
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1830
      .def("run_prepared_ctx",
1831 1832 1833
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1834
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1835
              std::map<std::string, FetchType *> *fetch_targets,
1836 1837
              bool create_local_scope = true,
              bool create_vars = true,
1838 1839 1840
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1841 1842 1843 1844 1845 1846 1847 1848
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1849
           })
1850
      .def("run_prepared_ctx",
1851 1852 1853 1854 1855
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1856 1857
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1858 1859
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1860
           })
1861
      .def("prepare",
1862 1863 1864
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1865 1866 1867 1868
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1869 1870
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1871 1872
           })
      .def("create_variables", &Executor::CreateVariables)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1889

1890
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1891
      .def(py::init<>())
1892 1893 1894 1895 1896
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1897

1898
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1899
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1900
      .def("run",
1901
           [](StandaloneExecutor &self,
1902
              Scope *scope,
1903
              std::vector<std::string> feed_names,
1904 1905 1906 1907
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1908
               ret = self.Run(scope, feed_names, fetch_names);
1909 1910 1911
             }
             return py::cast(std::move(ret));
           })
1912 1913
      .def("dry_run",
           [](StandaloneExecutor &self,
1914
              Scope *scope,
1915
              const std::unordered_map<std::string, py::array> &input_dict) {
1916
             std::vector<phi::DenseTensor> feed_tensors;
1917 1918 1919
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1920
               phi::DenseTensor t;
1921 1922 1923 1924 1925 1926
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1927
             framework::interpreter::CostInfo cost_info;
1928 1929
             {
               pybind11::gil_scoped_release release;
1930
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1931 1932
             }
             return cost_info;
H
hong 已提交
1933 1934
           });

D
dzhwinter 已提交
1935
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1936
  m.def("init_glog", framework::InitGLOG);
1937
  m.def("init_memory_method", framework::InitMemoryMethod);
1938 1939 1940 1941
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1942 1943 1944 1945 1946 1947 1948 1949
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1950 1951
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1952 1953 1954 1955 1956 1957 1958 1959 1960
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1961
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1962
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1963
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1964
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1965
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1966
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1967
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1968
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1969 1970
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1971
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1972
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1973
  m.def("supports_bfloat16", SupportsBfloat16);
1974
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1975 1976
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1977
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1978
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1979
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1980 1981 1982
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2002 2003 2004
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
2005 2006
  m.def(
      "run_cmd",
2007 2008
      [](const std::string &cmd,
         int time_out = -1,
2009
         int sleep_inter = -1) -> const std::string {
2010 2011
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2012
      },
2013 2014 2015
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2016 2017
  m.def(
      "shell_execute_cmd",
2018 2019 2020
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2021
         bool redirect_stderr = false) -> std::vector<std::string> {
2022 2023
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2024
      },
2025 2026 2027
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2028
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2029

2030
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2031 2032
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2033
    return platform::GetGPUComputeCapability(place.device) >= 53;
2034
  });
2035 2036 2037 2038
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
2039
#endif
2040

S
Steffy-zxf 已提交
2041
  m.def("set_feed_variable",
2042 2043
        static_cast<void (*)(  // NOLINT
            Scope *,
2044
            const phi::DenseTensor &,
2045 2046
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2047
  m.def("set_feed_variable",
2048 2049
        static_cast<void (*)(  // NOLINT
            Scope *,
2050
            const std::vector<std::string> &,
2051 2052
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2053
  m.def("get_fetch_variable",
2054 2055
        [](const Scope &scope,
           const std::string &var_name,
2056 2057 2058
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2059
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2060
          } else {
R
Ruibiao Chen 已提交
2061
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2062 2063
          }
        });
2064
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2065

X
Xin Pan 已提交
2066 2067
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2068 2069 2070 2071
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2072
  BindCostModel(&m);
2073
  BindConstValue(&m);
2074
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2075
  BindFleetExecutor(&m);
2076
  BindTCPStore(&m);
2077
  BindCommContextManager(&m);
2078
  BindAutoParallel(&m);
2079
  BindJitProperty(&m);
Y
Yu Yang 已提交
2080

Y
Yu Yang 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2090
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2091
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2092 2093 2094

    Examples:
        .. code-block:: python
2095

Z
Zeng Jinle 已提交
2096 2097 2098
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2099 2100 2101 2102
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2103 2104
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2105 2106 2107 2108
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2109 2110
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2111
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2112 2113
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2114 2115 2116
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2117 2118 2119
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2120 2121
      .def(
          "append",
2122
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2123 2124 2125 2126
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2127 2128
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2129
             Append a LoDensor to LoDTensorArray.
2130

2131 2132 2133 2134 2135
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2147
           )DOC")
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2159

2160
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2161
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2162
        )DOC")
2163 2164 2165 2166 2167 2168
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2169
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2170
                res[i] = py::cast(std::move(data));
2171 2172 2173
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2174
              } else {
R
Ruibiao Chen 已提交
2175
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2187

2188 2189
      .def(
          "append",
2190
          [](FetchList &self, const phi::DenseTensor &t) {
2191
            self.emplace_back();
2192
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2193 2194 2195 2196 2197 2198 2199 2200 2201
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2202
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2203 2204 2205 2206 2207 2208
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2209 2210

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2211
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2212
        )DOC")
2213 2214 2215 2216 2217 2218 2219 2220
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2221
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2222 2223
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2224
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2239

Y
Yu Yang 已提交
2240
  m.def("op_support_gpu", OpSupportGPU);
2241
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2242
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2243
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2244 2245 2246 2247 2248 2249 2250 2251
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2252 2253 2254 2255 2256 2257
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2258 2259

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2285
      });
D
dangqingqing 已提交
2286

2287
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2288 2289 2290
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2291 2292 2293
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2294 2295 2296
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2297
#endif
P
peizhilin 已提交
2298
#endif
Y
Yu Yang 已提交
2299

J
jianghaicheng 已提交
2300 2301 2302 2303
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2304 2305 2306 2307 2308 2309
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2310 2311 2312 2313
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2314
      .value("kAll", platform::ProfilerState::kAll)
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2326
  m.def("set_tracer_option", platform::SetTracerOption);
2327 2328
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2329
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2330
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2331
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2332
    PADDLE_ENFORCE_EQ(
2333 2334
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2335 2336 2337
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2338
    callable.inc_ref();
2339 2340 2341 2342 2343 2344 2345 2346
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2347
  });
2348
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2349 2350 2351
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2352

2353
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2354 2355
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2356 2357
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2358 2359
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2360 2361 2362 2363 2364 2365 2366 2367 2368
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2433 2434
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2435 2436 2437 2438
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2439 2440 2441
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2442 2443 2444 2445 2446
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2447 2448 2449
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2450 2451

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2452 2453
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2454
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2455
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2456 2457
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2458 2459 2460 2461 2462 2463
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2487 2488 2489 2490 2491 2492 2493 2494
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2513 2514
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2515 2516
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2517

2518
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2519 2520 2521 2522
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2523
#endif  // PADDLE_WITH_CUDA
2524 2525 2526 2527 2528 2529 2530 2531
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2532

J
jianghaicheng 已提交
2533 2534
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2535 2536 2537
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2538 2539 2540 2541 2542 2543 2544
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2545
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2546 2547
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2548
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2559 2560 2561 2562
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2585 2586
                         option.get_type(),
                         option_name));
2587 2588 2589 2590 2591 2592 2593
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2594 2595
                         option_name,
                         option.first.cast<std::string>(),
2596 2597
                         option.second.cast<std::uint64_t>());
                   }
2598 2599 2600 2601 2602 2603
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2649 2650
                           option.second.get_type(),
                           option_key));
2651
                     }
2652 2653
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2654 2655 2656 2657 2658 2659
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2660 2661
                     element.second.get_type(),
                     option_name));
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2692 2693
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2694 2695 2696
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2697 2698
#endif

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2716 2717 2718 2719 2720 2721 2722 2723
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2724
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2725 2726 2727 2728 2729 2730 2731 2732 2733
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2734
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2735 2736 2737 2738 2739 2740 2741
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2742 2743
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2744

2745 2746
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2747

2748 2749
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2750 2751 2752
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2753

2754 2755 2756 2757 2758 2759
  m.def("check_numerics",
        [](const std::string &op_name, const paddle::Tensor &tensor) {
          VLOG(4) << "Check tensor whether has nan or inf.";
          egr::CheckTensorHasNanOrInf(op_name, tensor);
        });

D
dongdaxiang 已提交
2760
  BindFleetWrapper(&m);
2761
  BindIO(&m);
2762 2763 2764
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2765

T
Thunderbrook 已提交
2766
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2767
  BindHeterWrapper(&m);
2768
  BindMetrics(&m);
T
Thunderbrook 已提交
2769
#endif
T
Thunderbrook 已提交
2770
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2771
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2772 2773 2774
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2775
#endif
2776
  BindGlooWrapper(&m);
H
hutuxian 已提交
2777
  BindBoxHelper(&m);
H
hutuxian 已提交
2778 2779 2780
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2781
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2782
  BindNCCLWrapper(&m);
2783 2784 2785
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2786
#endif
F
flame 已提交
2787 2788
  BindGraph(&m);
  BindNode(&m);
2789
  BindPass(&m);
F
flame 已提交
2790
  BindInferenceApi(&m);
2791
  BindCompatible(&m);
2792
  BindDataset(&m);
Y
yaoxuefeng 已提交
2793
  BindGenerator(&m);
2794
#ifndef PADDLE_NO_PYTHON
2795 2796
  BindDistributed(&m);
#endif
2797 2798 2799
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2800
  BindAscendDevice(&m);
2801
#endif
Y
Yanghello 已提交
2802 2803 2804
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2805

T
tangwei12 已提交
2806
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2807 2808
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2809
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2810 2811
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2812 2813 2814 2815 2816
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2817 2818 2819 2820
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2821
#ifdef PADDLE_WITH_HETERPS
2822 2823
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2824 2825 2826
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2827
#endif
X
Xinger 已提交
2828
#if defined(PADDLE_WITH_RPC)
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2841
}
2842
}  // namespace pybind
2843
}  // namespace paddle