pybind.cc 110.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
74 75
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
76
#include "paddle/fluid/prim/utils/utils.h"
77 78 79
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
80
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
81
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
82
#include "paddle/fluid/operators/common_infer_shape_functions.h"
83
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
84
#include "paddle/fluid/operators/py_func_op.h"
85
#include "paddle/fluid/platform/cpu_helper.h"
86
#include "paddle/fluid/platform/device/device_wrapper.h"
87
#include "paddle/fluid/platform/device_context.h"
88
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/platform/enforce.h"
90
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
91
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
92 93
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
94 95 96
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
97
#include "paddle/fluid/pybind/cuda_streams_py.h"
98
#include "paddle/fluid/pybind/custom_device_py.h"
99
#include "paddle/fluid/pybind/distributed_py.h"
100
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
101
#include "paddle/fluid/pybind/imperative.h"
102
#include "paddle/fluid/pybind/io.h"
103
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
104
#include "paddle/fluid/pybind/xpu_streams_py.h"
105
#include "paddle/phi/backends/cpu/cpu_info.h"
106 107
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
108
#include "paddle/utils/none.h"
109 110 111
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
112
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
113
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
114
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
115
#include "paddle/fluid/pybind/box_helper_py.h"
116
#include "paddle/fluid/pybind/communication.h"
117
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
118
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
119
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
120
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
122
#include "paddle/fluid/pybind/generator_py.h"
123
#include "paddle/fluid/pybind/global_value_getter_setter.h"
124
#include "paddle/fluid/pybind/gloo_context_py.h"
125
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
126
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
127
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
128
#include "paddle/fluid/pybind/ir.h"
129
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
130
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
131
#include "paddle/fluid/pybind/pybind_variant_caster.h"
132
#include "paddle/phi/backends/device_manager.h"
133

134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
135
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
136
#endif
137
#include "paddle/fluid/framework/data_type.h"
138 139
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
140 141
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
142
#include "paddle/fluid/pybind/reader_py.h"
143
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
144
#include "paddle/fluid/pybind/tensor_py.h"
145
#include "paddle/fluid/string/to_string.h"
146 147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
148
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
149
#endif
150
#ifndef PADDLE_WITH_HIP
151
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
152
#endif
153
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
154 155
#endif

156
#ifdef PADDLE_WITH_ASCEND_CL
157
#include "paddle/fluid/platform/collective_helper.h"
158 159
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
160 161
#endif

162
#ifdef PADDLE_WITH_XPU
163
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
164
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
165 166
#endif

167
#ifdef PADDLE_WITH_CUSTOM_DEVICE
168
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

179 180 181 182
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
183 184 185 186
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
187
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
188 189 190
#include "paddle/fluid/pybind/fleet_py.h"
#endif

191 192 193 194
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
195
#if defined(PADDLE_WITH_RPC)
196 197 198
#include "paddle/fluid/pybind/rpc.h"
#endif

199
#include "paddle/fluid/eager/api/utils/global_utils.h"
200
#include "paddle/fluid/imperative/layout_autotune.h"
201 202
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
203 204
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
205 206
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
207 208
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
209 210
#include "pybind11/stl.h"

211
DECLARE_bool(use_mkldnn);
212

Q
Qiao Longfei 已提交
213 214
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
215 216 217
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
218

219
namespace paddle {
220
namespace pybind {
221

0
0x45f 已提交
222
PyTypeObject *g_framework_scope_pytype = nullptr;
223
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
224
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
225

226 227 228 229 230 231 232 233
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

234
bool IsCompiledWithCUDA() {
235 236 237 238 239 240 241
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

242 243 244 245 246 247 248 249
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

267 268
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
269 270 271 272 273 274
  return false;
#else
  return true;
#endif
}

275 276 277 278 279 280 281 282
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

283 284 285 286 287 288 289 290
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

291 292 293 294 295 296 297 298
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
313 314 315 316 317 318 319 320
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

321 322 323 324 325 326 327 328
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

329 330 331 332 333 334 335 336
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

337 338 339 340 341 342 343 344
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

345 346 347 348 349 350 351 352
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

353 354 355 356
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
357
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
358 359 360 361 362 363
    return true;
  else
    return false;
#endif
}

364 365 366 367
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
368
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
369 370 371 372 373 374
    return true;
  else
    return false;
#endif
}

375 376 377 378
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
379 380
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
381 382 383 384 385 386 387
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
388 389
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
390 391 392
#endif
}

393
bool IsCompiledWithBrpc() {
394
#ifndef PADDLE_WITH_DISTRIBUTE
395
  return false;
396
#else
397
  return true;
398
#endif
399 400
}

Y
update  
Yancey1989 已提交
401
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
402
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
403 404 405 406 407 408
  return true;
#else
  return false;
#endif
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
544 545
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
546 547
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
561 562
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
563 564
    }
    vec_res.emplace_back(
565
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
566 567 568 569 570 571 572 573 574 575 576 577
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
578 579
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
580 581 582 583 584 585 586 587 588 589 590 591
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
592 593 594
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
595 596 597 598
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
599 600
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
601 602 603 604
  }
  return vec_res;
}

O
OccupyMars2025 已提交
605
static void inline CreateVariableIfNotExist(
606 607
    const py::handle &py_handle,
    const framework::Scope &scope,
608 609 610 611 612 613
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
614 615
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
616 617 618 619 620 621 622 623 624 625 626 627 628
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
629 630 631
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
632 633 634 635 636
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
637 638 639 640 641
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
642 643
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
644
        PADDLE_ENFORCE_NOT_NULL(
645 646 647
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
648 649 650
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
651
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
652
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
653 654
        tensor_temp->mutable_data(
            exe->GetPlace(),
655
            framework::TransToPhiDataType(var_desc.GetDataType()));
656 657 658
      }
    }
  } else {
659 660
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
661 662 663 664 665
  }

  return;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
682 683
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
684 685 686 687 688 689 690
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
691 692 693 694
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
695
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
696 697 698 699 700 701 702 703
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

704
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
705
  BindImperative(&m);
706
  BindEager(&m);
J
Jack Zhou 已提交
707
  BindEagerStringTensor(&m);
708
  BindCudaStream(&m);
J
james 已提交
709
  BindXpuStream(&m);
710
  BindJit(&m);
711
  BindCustomDevicePy(&m);
712

Y
Yu Yang 已提交
713
  // Not used, just make sure cpu_info.cc is linked.
714
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
715

Y
Refine  
Yu Yang 已提交
716
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
717

718 719
  AssertStaticGraphAndDygraphGradMakerNoDiff();

720
  m.doc() = "C++ core of PaddlePaddle";
721

722 723 724 725
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

726
  BindException(&m);
Y
Yu Yang 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

766 767 768 769 770 771 772 773 774 775
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
776 777 778 779
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
780 781
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
782 783
  m.def("set_num_threads", &platform::SetNumThreads);

784 785
  m.def("disable_signal_handler", &DisableSignalHandler);

786 787 788 789 790 791 792 793
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

794
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
795
  m.def("cudnn_version", &platform::DnnVersion);
796 797 798 799 800 801
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
802
#endif
803

Z
Zeng Jinle 已提交
804 805 806 807
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

808 809
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
810
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
811 812 813 814 815 816
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
817
      .def_static("gen_new_memory_pool_id",
818 819 820 821 822
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
823 824
#endif

Z
Zeng Jinle 已提交
825 826 827 828
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
829 830 831
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
832 833

    PADDLE_ENFORCE_NOT_NULL(
834 835 836 837
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
838

6
633WHU 已提交
839 840
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
841
    phi::DenseTensor tensor;
6
633WHU 已提交
842

S
Siming Dai 已提交
843
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
844
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
845
    }
846
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
847
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
848
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
849 850 851 852
    }
#endif
    return tensor;
  });
H
hong 已提交
853

854
  m.def("_create_loaded_parameter",
855 856
        [](const py::handle &vec_var_list,
           const Scope &scope,
857
           const Executor *executor) {
O
OccupyMars2025 已提交
858
          CreateVariableIfNotExist(vec_var_list, scope, executor);
859 860
        });

861 862 863 864 865 866
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
867 868
  });

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

894 895 896 897 898 899
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
900

S
sneaxiy 已提交
901
  m.def(
S
sneaxiy 已提交
902
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
903 904 905 906
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
907 908 909
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
926
            }
927
            all_kernels_info.emplace(op_type, kernel_types);
928
          }
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
945
                }
946 947
              } else {
                kernel_types.emplace_back(kernel_type_str);
948
              }
949
            }
950 951 952
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
953
          }
954
        }
955

956 957 958 959
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
960 961 962
           Return the registered kernels in paddle.

           Args:
963
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
964
           )DOC");
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1018 1019 1020 1021 1022 1023
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1024 1025 1026 1027 1028
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
1029

S
sneaxiy 已提交
1030 1031 1032
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1033
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1034

1035
  m.def("_set_fuse_parameter_group_size",
1036
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1037
  m.def("_set_fuse_parameter_memory_size",
1038
        &paddle::framework::ir::SetFuseParameterMemorySize);
1039

S
sneaxiy 已提交
1040 1041 1042
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1043 1044
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1045 1046
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1047 1048 1049
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
1104 1105 1106 1107 1108
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
1109

1110
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1111 1112 1113

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1114
      .def(py::init<>())
1115
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1116
      .def("set_int",
1117 1118
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1119 1120 1121 1122 1123 1124 1125
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1126 1127
      .def(
          "get_tensor",
1128 1129
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1130 1131
          },
          py::return_value_policy::reference)
1132 1133
      .def("get_bytes",
           [](Variable &self) {
1134 1135 1136 1137 1138 1139
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1140
           })
S
Steffy-zxf 已提交
1141
      .def("set_string_list",
1142
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1143 1144
             *self.GetMutable<Strings>() = str_list;
           })
1145
      .def("set_vocab",
1146 1147
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1148 1149
             *self.GetMutable<Vocab>() = vocab;
           })
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1176
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1177 1178 1179 1180 1181 1182
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1183
#endif
1184 1185 1186
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1187 1188
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1199 1200
                scope_vec->size(),
                0,
1201 1202 1203 1204 1205
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1206 1207 1208 1209
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1210

S
sneaxiy 已提交
1211
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1212

0
0x45f 已提交
1213
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1227
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1228 1229 1230 1231 1232
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1233 1234 1235
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1236 1237
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1238 1239 1240 1241 1242 1243 1244
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1245
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1246

1247
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1248
           current scope, the variable would be created. Otherwise,
1249
           return the existing variable.
S
sneaxiy 已提交
1250 1251

           Args:
1252 1253
               name (str): the variable name.

S
sneaxiy 已提交
1254
           Returns:
1255
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1256
           )DOC",
1257
          py::return_value_policy::reference)
1258 1259 1260
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1261
           R"DOC(
1262
           Find variable named :code:`name` in the current scope or
1263
           its parent scope. Return None if not found.
1264

S
sneaxiy 已提交
1265 1266
           Args:
               name (str): the variable name.
1267

S
sneaxiy 已提交
1268
           Returns:
1269
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1270
           )DOC",
1271
           py::return_value_policy::reference)
1272
      .def("size", &Scope::Size)
1273 1274 1275
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1276 1277
           R"DOC(
           Find variable named :code:`name` in the current scope or
1278
           its parent scope. Return None if not found.
1279 1280 1281 1282 1283 1284 1285 1286

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1287
      .def(
1288 1289
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1290
          R"DOC(
S
sneaxiy 已提交
1291 1292 1293 1294 1295
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1296
          py::return_value_policy::reference)
1297 1298
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1299 1300
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1301
           )DOC")
1302 1303
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1304

1305 1306 1307 1308 1309 1310 1311 1312
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1313
        Create a new scope.
1314

S
sneaxiy 已提交
1315 1316 1317
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1318
      py::return_value_policy::reference);
S
sneaxiy 已提交
1319

Y
Yu Yang 已提交
1320 1321
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1322 1323
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1324 1325 1326 1327
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1328
        PADDLE_ENFORCE_EQ(
1329 1330
            info.Proto().SerializeToString(&str),
            true,
1331 1332
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1333 1334 1335
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1336 1337
    return ret_values;
  });
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1376 1377 1378 1379 1380 1381 1382 1383
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1384
              res = op_checker->GetDefaultAttrsMap();
1385 1386 1387 1388
            }
          }
          return res;
        });
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1405 1406 1407
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1408 1409 1410 1411 1412
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1413 1414 1415

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1416
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1417 1418 1419 1420 1421 1422 1423

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1424
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1425 1426 1427 1428 1429 1430 1431 1432
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1433
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1434 1435
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1436
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1437 1438
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1439 1440 1441
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1442
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1443
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1444
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1467 1468 1469 1470 1471 1472 1473 1474
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1475 1476 1477
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1478 1479 1480 1481 1482
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1483 1484 1485
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1486
  m.def("infer_no_need_buffer_slots",
1487 1488
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1516 1517 1518 1519 1520 1521
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1522 1523
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1524

1525
            Args:
1526 1527 1528
                   program (ProgramDesc): The original program.

             Returns:
1529
                   tuple(ProgramDesc, map<int, int>): The first part is
1530 1531 1532 1533
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1534 1535 1536 1537
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1538 1539
    VLOG(4) << s;
    return s;
1540 1541 1542 1543 1544 1545
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1546
  });
1547 1548 1549 1550
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1551 1552 1553
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1554 1555
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1556

Y
Yu Yang 已提交
1557
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1558
      .def_static("create",
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1574 1575 1576 1577
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1578
                    return context;
Q
qijun 已提交
1579
                  })
1580 1581 1582 1583
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1584
#ifndef PADDLE_WITH_XPU
1585 1586 1587
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1588
#else
W
Wilber 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1602 1603 1604 1605
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1606
      return context;
1607
#endif
1608 1609 1610 1611 1612
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1613
#ifndef PADDLE_WITH_MLU
1614 1615 1616
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1617 1618
#else
                    return new paddle::platform::MLUDeviceContext(place);
1619
#endif
1620 1621 1622 1623 1624
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1625
#ifndef PADDLE_WITH_ASCEND_CL
1626 1627 1628
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1629 1630
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1631
#endif
1632 1633 1634 1635
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1636
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1637 1638 1639 1640
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1641 1642
#else
                return new paddle::platform::CustomDeviceContext(place);
1643
#endif
1644 1645 1646 1647 1648
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1649
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1650 1651 1652
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1653
#else
L
Leo Chen 已提交
1654
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1667 1668 1669 1670
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1671 1672 1673 1674
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1675 1676
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1677
#endif
1678 1679 1680 1681 1682
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1683
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1684 1685 1686
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1687 1688 1689
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1690
          });
1691
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1692 1693
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1694 1695 1696
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1697
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1698
#else
R
ronnywang 已提交
1699
          VLOG(1) << string::Sprintf(
1700 1701 1702 1703
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1704
              "PaddlePaddle by: pip install paddlepaddle\n");
1705 1706 1707 1708 1709 1710
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1711
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1712
#else
R
ronnywang 已提交
1713
          VLOG(1) << string::Sprintf(
1714 1715 1716 1717
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1718
              "PaddlePaddle by: pip install paddlepaddle\n");
1719 1720 1721 1722 1723 1724
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1725
    devices = phi::DeviceManager::GetAllDeviceList();
1726
#else
R
ronnywang 已提交
1727
          VLOG(1) << string::Sprintf(
1728 1729 1730 1731
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1732
              "PaddlePaddle by: pip install paddlepaddle\n");
1733 1734 1735 1736 1737 1738
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1739
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1740
#else
R
ronnywang 已提交
1741
          VLOG(1) << string::Sprintf(
1742 1743 1744 1745 1746 1747
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1748
              "PaddlePaddle by: pip install paddlepaddle\n");
1749 1750 1751
#endif
    return devices;
  });
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1771

Y
Yu Yang 已提交
1772
  py::class_<OperatorBase>(m, "Operator")
1773 1774 1775 1776 1777 1778 1779
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1780 1781
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1782 1783 1784 1785 1786 1787
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1788
      .def("run",
1789 1790
           [](OperatorBase &self,
              const Scope &scope,
1791 1792 1793 1794
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1795
      .def("run",
1796 1797
           [](OperatorBase &self,
              const Scope &scope,
1798 1799 1800 1801
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1802
      .def("run",
1803 1804
           [](OperatorBase &self,
              const Scope &scope,
1805 1806 1807 1808
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1809
      .def("run",
1810 1811
           [](OperatorBase &self,
              const Scope &scope,
1812 1813 1814 1815
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1816
      .def("run",
1817 1818
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1819
              const platform::CUDAPinnedPlace &place) {
1820
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1821 1822
             self.Run(scope, place);
           })
1823
      .def("run",
1824 1825
           [](OperatorBase &self,
              const Scope &scope,
1826 1827 1828 1829
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1830
      .def("run",
1831 1832
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1833 1834 1835 1836
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1837 1838 1839 1840 1841
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1842 1843
             return op.Outputs();
           })
Q
qijun 已提交
1844 1845
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1846
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1847
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1848 1849 1850 1851
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1852

1853 1854 1855
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1856 1857
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1858 1859 1860 1861 1862 1863
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1864 1865
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1866

1867 1868
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1869
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1870
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1871
      .def("close", &Executor::Close)
1872 1873
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1874
           py::call_guard<py::gil_scoped_release>())
1875 1876
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1877
           py::call_guard<py::gil_scoped_release>())
1878
      .def("init_for_dataset",
1879 1880 1881 1882
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1883
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1884
             pybind11::gil_scoped_release release;
1885 1886 1887 1888 1889 1890 1891
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1892
      .def("run_prepared_ctx",
1893 1894 1895
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1896
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1897
              std::map<std::string, FetchType *> *fetch_targets,
1898 1899
              bool create_local_scope = true,
              bool create_vars = true,
1900 1901 1902
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1903 1904 1905 1906 1907 1908 1909 1910
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1911
           })
1912
      .def("run_prepared_ctx",
1913 1914 1915 1916 1917
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1918 1919
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1920 1921
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1922
           })
1923
      .def("prepare",
1924 1925 1926
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1927 1928 1929 1930
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1931 1932
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1933 1934
           })
      .def("create_variables", &Executor::CreateVariables)
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1951

1952
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1953
      .def(py::init<>())
1954 1955 1956 1957 1958
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1959

1960
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1961
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1962
      .def("run",
1963
           [](StandaloneExecutor &self,
1964
              Scope *scope,
1965
              std::vector<std::string> feed_names,
1966 1967 1968 1969
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1970
               ret = self.Run(scope, feed_names, fetch_names);
1971 1972 1973
             }
             return py::cast(std::move(ret));
           })
1974 1975
      .def("dry_run",
           [](StandaloneExecutor &self,
1976
              Scope *scope,
1977
              const std::unordered_map<std::string, py::array> &input_dict) {
1978
             std::vector<phi::DenseTensor> feed_tensors;
1979 1980 1981
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1982
               phi::DenseTensor t;
1983 1984 1985 1986 1987 1988
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1989
             framework::interpreter::CostInfo cost_info;
1990 1991
             {
               pybind11::gil_scoped_release release;
1992
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1993 1994
             }
             return cost_info;
H
hong 已提交
1995 1996
           });

D
dzhwinter 已提交
1997
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1998
  m.def("init_glog", framework::InitGLOG);
1999
  m.def("init_memory_method", framework::InitMemoryMethod);
2000 2001 2002 2003
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2004 2005 2006 2007 2008 2009 2010 2011
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
2012 2013
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2014 2015 2016 2017 2018 2019 2020 2021 2022
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
2023
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2024
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2025
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2026
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2027
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2028
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2029
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2030
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2031
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2032
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2033 2034
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2035
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2036
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2037
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2038
  m.def("supports_bfloat16", SupportsBfloat16);
2039
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2040 2041
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2042
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2043
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2044
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2045 2046 2047
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2067 2068 2069
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
2070 2071
  m.def(
      "run_cmd",
2072 2073
      [](const std::string &cmd,
         int time_out = -1,
2074
         int sleep_inter = -1) -> const std::string {
2075 2076
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2077
      },
2078 2079 2080
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2081 2082
  m.def(
      "shell_execute_cmd",
2083 2084 2085
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2086
         bool redirect_stderr = false) -> std::vector<std::string> {
2087 2088
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2089
      },
2090 2091 2092
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2093
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2094

2095
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2096 2097
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2098
    return platform::GetGPUComputeCapability(place.device) >= 53;
2099
  });
2100 2101 2102 2103
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
2104
#endif
2105

S
Steffy-zxf 已提交
2106
  m.def("set_feed_variable",
2107 2108
        static_cast<void (*)(  // NOLINT
            Scope *,
2109
            const phi::DenseTensor &,
2110 2111
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2112
  m.def("set_feed_variable",
2113 2114
        static_cast<void (*)(  // NOLINT
            Scope *,
2115
            const std::vector<std::string> &,
2116 2117
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2118
  m.def("get_fetch_variable",
2119 2120
        [](const Scope &scope,
           const std::string &var_name,
2121 2122 2123
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2124
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2125
          } else {
R
Ruibiao Chen 已提交
2126
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2127 2128
          }
        });
2129
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2130

X
Xin Pan 已提交
2131 2132
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2133 2134 2135 2136
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2137
  BindCostModel(&m);
2138
  BindConstValue(&m);
2139
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2140
  BindFleetExecutor(&m);
2141
  BindTCPStore(&m);
2142
  BindCommContextManager(&m);
2143
  BindAutoParallel(&m);
2144
  BindJitProperty(&m);
Y
Yu Yang 已提交
2145

Y
Yu Yang 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2155
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2156
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2157 2158 2159

    Examples:
        .. code-block:: python
2160

Z
Zeng Jinle 已提交
2161 2162 2163
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2164 2165 2166 2167
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2168 2169
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2170 2171 2172 2173
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2174 2175
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2176
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2177 2178
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2179 2180 2181
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2182 2183 2184
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2185 2186
      .def(
          "append",
2187
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2188 2189 2190 2191
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2192 2193
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2194
             Append a LoDensor to LoDTensorArray.
2195

2196 2197 2198 2199 2200
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2212
           )DOC")
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2224

2225
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2226
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2227
        )DOC")
2228 2229 2230 2231 2232 2233
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2234
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2235
                res[i] = py::cast(std::move(data));
2236 2237 2238
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2239
              } else {
R
Ruibiao Chen 已提交
2240
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2252

2253 2254
      .def(
          "append",
2255
          [](FetchList &self, const phi::DenseTensor &t) {
2256
            self.emplace_back();
2257
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2258 2259 2260 2261 2262 2263 2264 2265 2266
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2267
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2268 2269 2270 2271 2272 2273
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2274 2275

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2276
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2277
        )DOC")
2278 2279 2280 2281 2282 2283 2284 2285
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2286
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2287 2288
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2289
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2304

Y
Yu Yang 已提交
2305
  m.def("op_support_gpu", OpSupportGPU);
2306
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2307
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2308
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2309 2310 2311 2312 2313 2314 2315 2316
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2317 2318 2319 2320 2321 2322
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2323 2324

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2350
      });
D
dangqingqing 已提交
2351

2352
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2353 2354 2355
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2356 2357 2358
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2359 2360 2361
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2362
#endif
P
peizhilin 已提交
2363
#endif
Y
Yu Yang 已提交
2364

2365 2366
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2367
  m.def("npu_finalize", []() {
2368 2369
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2370 2371 2372
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2373
      platform::NPUDeviceGuard guard(devices[i]);
2374 2375 2376 2377
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2398 2399 2400 2401
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2402 2403 2404 2405
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2406 2407 2408 2409 2410 2411
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2412 2413 2414 2415
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2416
      .value("kAll", platform::ProfilerState::kAll)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2428
  m.def("set_tracer_option", platform::SetTracerOption);
2429 2430
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2431
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2432
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2433
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2434
    PADDLE_ENFORCE_EQ(
2435 2436
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2437 2438 2439
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2440
    callable.inc_ref();
2441 2442 2443 2444 2445 2446 2447 2448
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2449
  });
2450
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2451 2452 2453
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2454

2455
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2456 2457
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2458 2459
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2460 2461
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2462 2463 2464 2465 2466 2467 2468 2469 2470
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2471

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2535 2536
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2537 2538 2539 2540
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2541 2542 2543
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2544 2545 2546 2547 2548
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2549 2550 2551
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2552 2553

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2554 2555
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2556
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2557
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2558 2559
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2560 2561 2562 2563 2564 2565
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2589 2590 2591 2592 2593 2594 2595 2596
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2615 2616
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2617 2618
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2619

2620
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2621 2622 2623 2624
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2625
#endif  // PADDLE_WITH_CUDA
2626 2627 2628 2629 2630 2631 2632 2633
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2634

J
jianghaicheng 已提交
2635 2636
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2637 2638 2639
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2640 2641 2642 2643 2644 2645 2646
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2647
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2648 2649
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2650
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2661 2662 2663 2664
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2687 2688
                         option.get_type(),
                         option_name));
2689 2690 2691 2692 2693 2694 2695
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2696 2697
                         option_name,
                         option.first.cast<std::string>(),
2698 2699
                         option.second.cast<std::uint64_t>());
                   }
2700 2701 2702 2703 2704 2705
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2751 2752
                           option.second.get_type(),
                           option_key));
2753
                     }
2754 2755
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2756 2757 2758 2759 2760 2761
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2762 2763
                     element.second.get_type(),
                     option_name));
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2794 2795
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2796 2797 2798
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2799 2800
#endif

2801 2802 2803 2804 2805 2806 2807 2808
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2809
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2810 2811 2812 2813 2814 2815 2816
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2817
  m.def("get_low_precision_op_list", [] {
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2829 2830
  });

2831 2832
  m.def("autotune_status", [] {
    py::dict res;
2833
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2834 2835 2836 2837 2838 2839 2840
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2841 2842
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2843

2844 2845
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2846

2847 2848
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2849 2850 2851
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2852

D
dongdaxiang 已提交
2853
  BindFleetWrapper(&m);
2854
  BindIO(&m);
2855 2856 2857
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2858

T
Thunderbrook 已提交
2859
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2860
  BindHeterWrapper(&m);
2861
  BindMetrics(&m);
T
Thunderbrook 已提交
2862
#endif
T
Thunderbrook 已提交
2863
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2864
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2865 2866 2867
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2868
#endif
2869
  BindGlooWrapper(&m);
H
hutuxian 已提交
2870
  BindBoxHelper(&m);
H
hutuxian 已提交
2871 2872 2873
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2874
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2875
  BindNCCLWrapper(&m);
2876 2877 2878
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2879
#endif
F
flame 已提交
2880 2881
  BindGraph(&m);
  BindNode(&m);
2882
  BindPass(&m);
F
flame 已提交
2883
  BindInferenceApi(&m);
2884
  BindCompatible(&m);
2885
  BindDataset(&m);
Y
yaoxuefeng 已提交
2886
  BindGenerator(&m);
2887
#ifndef PADDLE_NO_PYTHON
2888 2889
  BindDistributed(&m);
#endif
2890 2891 2892
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2893
  BindAscendDevice(&m);
2894
#endif
Y
Yanghello 已提交
2895 2896 2897
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2898

T
tangwei12 已提交
2899
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2900 2901
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2902
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2903 2904
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2905 2906 2907 2908 2909
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2910 2911 2912 2913
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2914
#ifdef PADDLE_WITH_HETERPS
2915 2916
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2917 2918 2919
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2920
#endif
X
Xinger 已提交
2921
#if defined(PADDLE_WITH_RPC)
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2934
}
2935
}  // namespace pybind
2936
}  // namespace paddle