pybind.cc 101.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
58
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
69
#include "paddle/fluid/prim/utils/utils.h"
70 71 72
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
73
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
74
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/operators/common_infer_shape_functions.h"
76
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
77
#include "paddle/fluid/operators/py_func_op.h"
78
#include "paddle/fluid/platform/cpu_helper.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/distributed_py.h"
92
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
93
#include "paddle/fluid/pybind/imperative.h"
94
#include "paddle/fluid/pybind/io.h"
95
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
96
#include "paddle/fluid/pybind/xpu_streams_py.h"
97
#include "paddle/phi/backends/cpu/cpu_info.h"
98 99
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
100
#include "paddle/utils/none.h"
101 102 103
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
104
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
105
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
106
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
107
#include "paddle/fluid/pybind/box_helper_py.h"
108
#include "paddle/fluid/pybind/communication.h"
109
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
119
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/ir.h"
121
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
122
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
123
#include "paddle/fluid/pybind/pybind_variant_caster.h"
124
#include "paddle/phi/backends/device_manager.h"
125

126
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
127
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
128
#endif
129
#include "paddle/fluid/framework/data_type.h"
130 131
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
132 133
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
134
#include "paddle/fluid/pybind/reader_py.h"
135
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
136
#include "paddle/fluid/pybind/tensor_py.h"
137
#include "paddle/fluid/string/to_string.h"
138 139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
140
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
141
#endif
142
#ifndef PADDLE_WITH_HIP
143
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
144
#endif
145
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
146 147
#endif

148
#ifdef PADDLE_WITH_ASCEND_CL
149
#include "paddle/fluid/platform/collective_helper.h"
150 151
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
152 153
#endif

154
#ifdef PADDLE_WITH_XPU
155
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
156
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
157 158
#endif

159
#ifdef PADDLE_WITH_CUSTOM_DEVICE
160
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
161 162 163
#include "paddle/phi/capi/capi.h"
#endif

164
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
165

J
jianghaicheng 已提交
166
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
167 168
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
169
#endif
170

171 172 173 174
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
175 176 177 178
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
179
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
180 181 182
#include "paddle/fluid/pybind/fleet_py.h"
#endif

183 184 185 186
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
187
#if defined(PADDLE_WITH_RPC)
188 189 190
#include "paddle/fluid/pybind/rpc.h"
#endif

191
#include "paddle/fluid/eager/api/utils/global_utils.h"
192
#include "paddle/fluid/imperative/layout_autotune.h"
193 194
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
195 196
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
197 198
#include "pybind11/stl.h"

199
DECLARE_bool(use_mkldnn);
200

Q
Qiao Longfei 已提交
201 202
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
203 204 205
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
206

207
namespace paddle {
208
namespace pybind {
209

0
0x45f 已提交
210
PyTypeObject *g_framework_scope_pytype = nullptr;
211
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
212
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
213

214 215 216 217 218 219 220 221
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

222
bool IsCompiledWithCUDA() {
223 224 225 226 227 228 229
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

230 231 232 233 234 235 236 237
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

255 256
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
257 258 259 260 261 262
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

279 280 281 282 283 284 285 286
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
287 288 289 290 291 292 293 294
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

295 296 297 298 299 300 301 302
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

303 304 305 306 307 308 309 310
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

311 312 313 314 315 316 317 318
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

319 320 321 322 323 324 325 326
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

327 328 329 330
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
331
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
332 333 334 335 336 337
    return true;
  else
    return false;
#endif
}

338 339 340 341
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
342
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
343 344 345 346 347 348
    return true;
  else
    return false;
#endif
}

349 350 351 352
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
353 354
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
355 356 357 358 359 360 361
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
362 363
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
364 365 366
#endif
}

367
bool IsCompiledWithBrpc() {
368
#ifndef PADDLE_WITH_DISTRIBUTE
369
  return false;
370
#else
371
  return true;
372
#endif
373 374
}

Y
update  
Yancey1989 已提交
375
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
376
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
377 378 379 380 381 382
  return true;
#else
  return false;
#endif
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
451 452
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
453 454
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
468 469
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
470 471
    }
    vec_res.emplace_back(
472
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
473 474 475 476 477 478 479 480 481 482 483 484
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
485 486
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
487 488 489 490 491 492 493 494 495 496 497 498
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
499 500 501
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
502 503 504 505
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
506 507
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
508 509 510 511
  }
  return vec_res;
}

O
OccupyMars2025 已提交
512
static void inline CreateVariableIfNotExist(
513 514
    const py::handle &py_handle,
    const framework::Scope &scope,
515 516 517 518 519 520
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
521 522
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
523 524 525 526 527 528 529 530 531 532 533 534 535
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
536 537 538
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
539 540 541 542 543
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
544 545 546 547 548
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
549 550
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
551
        PADDLE_ENFORCE_NOT_NULL(
552 553 554
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
555 556 557
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
558
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
559
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
560 561
        tensor_temp->mutable_data(
            exe->GetPlace(),
562
            framework::TransToPhiDataType(var_desc.GetDataType()));
563 564 565
      }
    }
  } else {
566 567
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
568 569 570 571 572
  }

  return;
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
589 590
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
591 592 593 594 595 596 597
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
598 599 600 601
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
602
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
603 604 605 606 607 608 609 610
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

611
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
612
  BindImperative(&m);
613
  BindEager(&m);
J
Jack Zhou 已提交
614
  BindEagerStringTensor(&m);
615
  BindCudaStream(&m);
J
james 已提交
616
  BindXpuStream(&m);
617
  BindJit(&m);
618

Y
Yu Yang 已提交
619
  // Not used, just make sure cpu_info.cc is linked.
620
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
621

Y
Refine  
Yu Yang 已提交
622
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
623

624 625
  AssertStaticGraphAndDygraphGradMakerNoDiff();

626
  m.doc() = "C++ core of PaddlePaddle";
627

628 629 630 631
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

632
  BindException(&m);
Y
Yu Yang 已提交
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

J
Jiabin Yang 已提交
649 650
  m.def("set_prim_enabled", &paddle::prim::PrimCommonUtils::SetPrimEnabled);
  m.def("is_prim_enabled", &paddle::prim::PrimCommonUtils::IsPrimEnabled);
651 652
  m.def("set_num_threads", &platform::SetNumThreads);

653 654
  m.def("disable_signal_handler", &DisableSignalHandler);

655 656 657 658 659 660 661 662
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

663
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
664
  m.def("cudnn_version", &platform::DnnVersion);
665 666 667 668 669 670
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
671
#endif
672

Z
Zeng Jinle 已提交
673 674 675 676
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

677 678
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
679
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
680 681 682 683 684 685
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
686
      .def_static("gen_new_memory_pool_id",
687 688 689 690 691
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
692 693
#endif

Z
Zeng Jinle 已提交
694 695 696 697
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
698 699 700
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
701 702

    PADDLE_ENFORCE_NOT_NULL(
703 704 705 706
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
707

6
633WHU 已提交
708 709
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
710
    phi::DenseTensor tensor;
6
633WHU 已提交
711

S
Siming Dai 已提交
712
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
713
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
714
    }
715
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
716
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
717
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
718 719 720 721
    }
#endif
    return tensor;
  });
H
hong 已提交
722

723
  m.def("_create_loaded_parameter",
724 725
        [](const py::handle &vec_var_list,
           const Scope &scope,
726
           const Executor *executor) {
O
OccupyMars2025 已提交
727
          CreateVariableIfNotExist(vec_var_list, scope, executor);
728 729
        });

730 731 732 733 734 735
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
736 737
  });

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

763 764 765 766 767 768
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
769

S
sneaxiy 已提交
770
  m.def(
S
sneaxiy 已提交
771
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
772 773 774 775
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
776 777 778
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
795
            }
796
            all_kernels_info.emplace(op_type, kernel_types);
797
          }
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
814
                }
815 816
              } else {
                kernel_types.emplace_back(kernel_type_str);
817
              }
818
            }
819 820 821
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
822
          }
823
        }
824

825 826 827 828
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
829 830 831
           Return the registered kernels in paddle.

           Args:
832
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
833
           )DOC");
834

835 836 837 838 839 840
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
841 842 843 844 845
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
846

S
sneaxiy 已提交
847 848 849
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
850
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
851

852
  m.def("_set_fuse_parameter_group_size",
853
        &paddle::framework::ir::SetFuseParameterGroupsSize);
854
  m.def("_set_fuse_parameter_memory_size",
855
        &paddle::framework::ir::SetFuseParameterMemorySize);
856

S
sneaxiy 已提交
857 858 859
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

860 861
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
862 863
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

864 865 866
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
908 909 910 911 912 913 914 915 916 917 918 919 920
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
921 922 923 924 925
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
926

927
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
928 929 930

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
931
      .def(py::init<>())
932
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
933
      .def("set_int",
934 935
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
936 937 938 939 940 941 942
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
943 944
      .def(
          "get_tensor",
945 946
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
947 948
          },
          py::return_value_policy::reference)
949 950
      .def("get_bytes",
           [](Variable &self) {
951 952 953 954 955 956
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
957
           })
S
Steffy-zxf 已提交
958 959 960 961
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
962
      .def("set_vocab",
963 964
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
965 966
             *self.GetMutable<Vocab>() = vocab;
           })
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
993
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
994 995 996 997 998 999
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1000
#endif
1001 1002 1003
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1004 1005
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1016 1017
                scope_vec->size(),
                0,
1018 1019 1020 1021 1022
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1023 1024 1025 1026
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1027

S
sneaxiy 已提交
1028
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1029

0
0x45f 已提交
1030
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1044
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1045 1046 1047 1048 1049
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1050 1051 1052
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1053 1054
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1055 1056 1057 1058 1059 1060 1061
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1062
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1063

1064
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1065
           current scope, the variable would be created. Otherwise,
1066
           return the existing variable.
S
sneaxiy 已提交
1067 1068

           Args:
1069 1070
               name (str): the variable name.

S
sneaxiy 已提交
1071
           Returns:
1072
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1073
           )DOC",
1074
          py::return_value_policy::reference)
1075 1076 1077
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1078
           R"DOC(
1079
           Find variable named :code:`name` in the current scope or
1080
           its parent scope. Return None if not found.
1081

S
sneaxiy 已提交
1082 1083
           Args:
               name (str): the variable name.
1084

S
sneaxiy 已提交
1085
           Returns:
1086
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1087
           )DOC",
1088
           py::return_value_policy::reference)
1089
      .def("size", &Scope::Size)
1090 1091 1092
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1093 1094
           R"DOC(
           Find variable named :code:`name` in the current scope or
1095
           its parent scope. Return None if not found.
1096 1097 1098 1099 1100 1101 1102 1103

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1104
      .def(
1105 1106
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1107
          R"DOC(
S
sneaxiy 已提交
1108 1109 1110 1111 1112
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1113
          py::return_value_policy::reference)
1114 1115
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1116 1117
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1118
           )DOC")
1119 1120
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1121

1122 1123 1124 1125 1126 1127 1128 1129
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1130
        Create a new scope.
1131

S
sneaxiy 已提交
1132 1133 1134
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1135
      py::return_value_policy::reference);
S
sneaxiy 已提交
1136

Y
Yu Yang 已提交
1137 1138
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1139 1140
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1141 1142 1143 1144
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1145
        PADDLE_ENFORCE_EQ(
1146 1147
            info.Proto().SerializeToString(&str),
            true,
1148 1149
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1150 1151 1152
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1153 1154
    return ret_values;
  });
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1193 1194 1195 1196 1197 1198 1199 1200
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1201
              res = op_checker->GetDefaultAttrsMap();
1202 1203 1204 1205
            }
          }
          return res;
        });
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1222 1223 1224 1225 1226
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
          auto grad_comp_op_maker = op_info.GradCompOpMaker();

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
                "Neither operator %s's GradOpMaker nor GradCompOpMaker has "
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

          // In PrimEnabled mode, the priority of GradCompOpMaker is greater
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
          // priority of GradCompOpMaker is less than GradCompMaker for better
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
          if (paddle::prim::PrimCommonUtils::IsPrimEnabled()) {
            if (grad_comp_op_maker != nullptr) {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1277 1278 1279 1280 1281 1282 1283 1284
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1285 1286 1287
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1288 1289 1290 1291 1292
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1293 1294 1295
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1296
  m.def("infer_no_need_buffer_slots",
1297 1298
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1326 1327 1328 1329 1330 1331
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1332 1333
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1334

1335
            Args:
1336 1337 1338
                   program (ProgramDesc): The original program.

             Returns:
1339
                   tuple(ProgramDesc, map<int, int>): The first part is
1340 1341 1342 1343
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1344 1345 1346 1347
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1348 1349
    VLOG(4) << s;
    return s;
1350 1351 1352 1353 1354 1355
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1356
  });
1357 1358 1359 1360
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1361 1362 1363
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1364 1365
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1366

Y
Yu Yang 已提交
1367
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1368
      .def_static("create",
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1384 1385 1386 1387
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1388
                    return context;
Q
qijun 已提交
1389
                  })
1390 1391 1392 1393
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1394
#ifndef PADDLE_WITH_XPU
1395 1396 1397
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1398
#else
W
Wilber 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1412 1413 1414 1415
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1416
      return context;
1417
#endif
1418 1419 1420 1421 1422
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1423
#ifndef PADDLE_WITH_MLU
1424 1425 1426
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1427 1428
#else
                    return new paddle::platform::MLUDeviceContext(place);
1429
#endif
1430 1431 1432 1433 1434
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1435
#ifndef PADDLE_WITH_ASCEND_CL
1436 1437 1438
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1439 1440
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1441
#endif
1442 1443 1444 1445
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1446
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1447 1448 1449 1450
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1451 1452
#else
                return new paddle::platform::CustomDeviceContext(place);
1453
#endif
1454 1455 1456 1457 1458
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1459
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1460 1461 1462
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1463
#else
L
Leo Chen 已提交
1464
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1477 1478 1479 1480
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1481 1482 1483 1484
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1485 1486
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1487
#endif
1488 1489 1490 1491 1492
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1493
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1494 1495 1496
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1497 1498 1499
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1500
          });
1501
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1502 1503
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1504 1505 1506
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1507
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1508
#else
R
ronnywang 已提交
1509
          VLOG(1) << string::Sprintf(
1510 1511 1512 1513
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1514
              "PaddlePaddle by: pip install paddlepaddle\n");
1515 1516 1517 1518 1519 1520
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1521
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1522
#else
R
ronnywang 已提交
1523
          VLOG(1) << string::Sprintf(
1524 1525 1526 1527
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1528
              "PaddlePaddle by: pip install paddlepaddle\n");
1529 1530 1531 1532 1533 1534
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1535
    devices = phi::DeviceManager::GetAllDeviceList();
1536
#else
R
ronnywang 已提交
1537
          VLOG(1) << string::Sprintf(
1538 1539 1540 1541
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1542
              "PaddlePaddle by: pip install paddlepaddle\n");
1543 1544 1545 1546 1547 1548
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1549
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1550
#else
R
ronnywang 已提交
1551
          VLOG(1) << string::Sprintf(
1552 1553 1554 1555 1556 1557
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1558
              "PaddlePaddle by: pip install paddlepaddle\n");
1559 1560 1561
#endif
    return devices;
  });
Y
Yu Yang 已提交
1562

Y
Yu Yang 已提交
1563
  py::class_<OperatorBase>(m, "Operator")
1564 1565 1566 1567 1568 1569 1570
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1571 1572
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1573 1574 1575 1576 1577 1578
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1579
      .def("run",
1580 1581
           [](OperatorBase &self,
              const Scope &scope,
1582 1583 1584 1585
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1586
      .def("run",
1587 1588
           [](OperatorBase &self,
              const Scope &scope,
1589 1590 1591 1592
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1593
      .def("run",
1594 1595
           [](OperatorBase &self,
              const Scope &scope,
1596 1597 1598 1599
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1600
      .def("run",
1601 1602
           [](OperatorBase &self,
              const Scope &scope,
1603 1604 1605 1606
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1607
      .def("run",
1608 1609
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1610
              const platform::CUDAPinnedPlace &place) {
1611
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1612 1613
             self.Run(scope, place);
           })
1614
      .def("run",
1615 1616
           [](OperatorBase &self,
              const Scope &scope,
1617 1618 1619 1620
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1621
      .def("run",
1622 1623
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1624 1625 1626 1627
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1628 1629 1630 1631 1632
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1633 1634
             return op.Outputs();
           })
Q
qijun 已提交
1635 1636
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1637
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1638
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1639 1640 1641 1642
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1643

1644 1645 1646
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1647 1648
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1649 1650 1651 1652 1653 1654
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1655 1656
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1657

1658 1659
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1660
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1661
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1662
      .def("close", &Executor::Close)
1663 1664
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1665
           py::call_guard<py::gil_scoped_release>())
1666 1667
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1668
           py::call_guard<py::gil_scoped_release>())
1669
      .def("init_for_dataset",
1670 1671 1672 1673
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1674
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1675
             pybind11::gil_scoped_release release;
1676 1677 1678 1679 1680 1681 1682
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1683
      .def("run_prepared_ctx",
1684 1685 1686
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1687
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1688
              std::map<std::string, FetchType *> *fetch_targets,
1689 1690
              bool create_local_scope = true,
              bool create_vars = true,
1691 1692 1693
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1694 1695 1696 1697 1698 1699 1700 1701
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1702
           })
1703
      .def("run_prepared_ctx",
1704 1705 1706 1707 1708
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1709 1710
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1711 1712
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1713
           })
1714
      .def("prepare",
1715 1716 1717
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1718 1719 1720 1721
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1722 1723
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1724 1725
           })
      .def("create_variables", &Executor::CreateVariables)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1742

1743
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1744
      .def(py::init<>())
1745 1746 1747 1748 1749
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1750

1751
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1752
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1753
      .def("run",
1754
           [](StandaloneExecutor &self,
1755
              Scope *scope,
1756
              std::vector<std::string> feed_names,
1757 1758 1759 1760
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1761
               ret = self.Run(scope, feed_names, fetch_names);
1762 1763 1764
             }
             return py::cast(std::move(ret));
           })
1765 1766
      .def("dry_run",
           [](StandaloneExecutor &self,
1767
              Scope *scope,
1768
              const std::unordered_map<std::string, py::array> &input_dict) {
1769
             std::vector<phi::DenseTensor> feed_tensors;
1770 1771 1772
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1773
               phi::DenseTensor t;
1774 1775 1776 1777 1778 1779
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1780
             framework::interpreter::CostInfo cost_info;
1781 1782
             {
               pybind11::gil_scoped_release release;
1783
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1784 1785
             }
             return cost_info;
H
hong 已提交
1786 1787
           });

D
dzhwinter 已提交
1788
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1789
  m.def("init_glog", framework::InitGLOG);
1790 1791 1792 1793
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1794 1795 1796 1797 1798 1799 1800 1801
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1802 1803
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1804
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1805
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1806
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1807
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1808
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1809
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1810
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1811
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1812
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1813 1814
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1815
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1816
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1817
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1818
  m.def("supports_bfloat16", SupportsBfloat16);
1819
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1820 1821
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1822
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1823
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1824
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1825 1826 1827
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1847 1848 1849
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1850 1851
  m.def(
      "run_cmd",
1852 1853
      [](const std::string &cmd,
         int time_out = -1,
1854
         int sleep_inter = -1) -> const std::string {
1855 1856
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1857
      },
1858 1859 1860
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1861 1862
  m.def(
      "shell_execute_cmd",
1863 1864 1865
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1866
         bool redirect_stderr = false) -> std::vector<std::string> {
1867 1868
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1869
      },
1870 1871 1872
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1873
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1874

1875
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1876 1877
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1878
    return platform::GetGPUComputeCapability(place.device) >= 53;
1879
  });
1880 1881 1882 1883
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1884
#endif
1885

S
Steffy-zxf 已提交
1886
  m.def("set_feed_variable",
1887 1888
        static_cast<void (*)(  // NOLINT
            Scope *,
1889
            const phi::DenseTensor &,
1890 1891
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1892
  m.def("set_feed_variable",
1893 1894 1895 1896 1897
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1898
  m.def("get_fetch_variable",
1899 1900
        [](const Scope &scope,
           const std::string &var_name,
1901 1902 1903
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1904
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1905
          } else {
R
Ruibiao Chen 已提交
1906
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1907 1908
          }
        });
1909
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1910

X
Xin Pan 已提交
1911 1912
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1913 1914 1915 1916
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1917
  BindCostModel(&m);
1918
  BindConstValue(&m);
1919
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1920
  BindFleetExecutor(&m);
1921
  BindTCPStore(&m);
1922
  BindCommContextManager(&m);
1923
  BindAutoParallel(&m);
1924
  BindJitProperty(&m);
Y
Yu Yang 已提交
1925

Y
Yu Yang 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1935
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1936
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1937 1938 1939

    Examples:
        .. code-block:: python
1940

Z
Zeng Jinle 已提交
1941 1942 1943
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1944 1945 1946 1947
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1948 1949
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1950 1951 1952 1953
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1954 1955
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1956
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1957 1958
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1959 1960 1961
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1962 1963 1964
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1965 1966
      .def(
          "append",
1967
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1968 1969 1970 1971
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1972 1973
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1974
             Append a LoDensor to LoDTensorArray.
1975

1976 1977 1978 1979 1980
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1992
           )DOC")
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2004

2005
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2006
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2007
        )DOC")
2008 2009 2010 2011 2012 2013
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2014
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2015
                res[i] = py::cast(std::move(data));
2016 2017 2018
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2019
              } else {
R
Ruibiao Chen 已提交
2020
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2032

2033 2034
      .def(
          "append",
2035
          [](FetchList &self, const phi::DenseTensor &t) {
2036
            self.emplace_back();
2037
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2038 2039 2040 2041 2042 2043 2044 2045 2046
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2047
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2048 2049 2050 2051 2052 2053
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2054 2055

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2056
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2057
        )DOC")
2058 2059 2060 2061 2062 2063 2064 2065
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2066
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2067 2068
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2069
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2084

Y
Yu Yang 已提交
2085
  m.def("op_support_gpu", OpSupportGPU);
2086
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2087
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2088
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2089 2090 2091 2092 2093 2094 2095 2096
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2097 2098 2099 2100 2101 2102
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2103 2104

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2130
      });
D
dangqingqing 已提交
2131

2132
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2133 2134 2135
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2136 2137 2138
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2139 2140 2141
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2142
#endif
P
peizhilin 已提交
2143
#endif
Y
Yu Yang 已提交
2144

2145 2146
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2147
  m.def("npu_finalize", []() {
2148 2149
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2150 2151 2152
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2153
      platform::NPUDeviceGuard guard(devices[i]);
2154 2155 2156 2157
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2178 2179 2180 2181
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2182 2183 2184 2185
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2186 2187 2188 2189 2190 2191
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2192 2193 2194 2195
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2196
      .value("kAll", platform::ProfilerState::kAll)
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2208
  m.def("set_tracer_option", platform::SetTracerOption);
2209 2210
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2211
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2212
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2213
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2214
    PADDLE_ENFORCE_EQ(
2215 2216
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2217 2218 2219
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2220
    callable.inc_ref();
2221 2222 2223 2224 2225 2226 2227 2228
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2229
  });
2230
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2231 2232 2233
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2234

2235
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2236 2237
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2238 2239
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2240 2241
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2242 2243 2244 2245 2246 2247 2248 2249 2250
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2251

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2315 2316
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2317 2318 2319 2320
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2321 2322 2323
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2324 2325 2326 2327 2328
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2329 2330 2331
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2332 2333

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2334 2335
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2336
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2337
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2338 2339
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2340 2341 2342 2343 2344 2345
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2369 2370 2371 2372 2373 2374 2375 2376
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2395 2396
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2397 2398
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2399

2400
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2401 2402
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2403 2404
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2405
#endif  // PADDLE_WITH_CUDA
2406 2407 2408 2409 2410 2411 2412 2413
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2414

J
jianghaicheng 已提交
2415 2416
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2417 2418 2419
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2420 2421 2422 2423 2424 2425 2426
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2427
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2428 2429
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2430
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2441 2442 2443 2444
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2467 2468
                         option.get_type(),
                         option_name));
2469 2470 2471 2472 2473 2474 2475
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2476 2477
                         option_name,
                         option.first.cast<std::string>(),
2478 2479
                         option.second.cast<std::uint64_t>());
                   }
2480 2481 2482 2483 2484 2485
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2531 2532
                           option.second.get_type(),
                           option_key));
2533
                     }
2534 2535
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2536 2537 2538 2539 2540 2541
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2542 2543
                     element.second.get_type(),
                     option_name));
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2574 2575
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2576 2577 2578
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2579 2580
#endif

2581 2582 2583 2584 2585 2586 2587 2588
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2589
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2590 2591 2592 2593 2594 2595 2596
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2597
  m.def("get_low_precision_op_list", [] {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2609 2610
  });

2611 2612
  m.def("autotune_status", [] {
    py::dict res;
2613
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2614 2615 2616 2617 2618 2619 2620
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2621 2622
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2623

2624 2625
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2626

2627 2628
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2629

D
dongdaxiang 已提交
2630
  BindFleetWrapper(&m);
2631
  BindIO(&m);
2632 2633 2634
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2635

T
Thunderbrook 已提交
2636
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2637
  BindHeterWrapper(&m);
2638
  BindMetrics(&m);
T
Thunderbrook 已提交
2639
#endif
T
Thunderbrook 已提交
2640
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2641
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2642 2643 2644
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2645
#endif
2646
  BindGlooWrapper(&m);
H
hutuxian 已提交
2647
  BindBoxHelper(&m);
H
hutuxian 已提交
2648 2649 2650
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2651
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2652
  BindNCCLWrapper(&m);
2653 2654 2655
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2656
#endif
F
flame 已提交
2657 2658
  BindGraph(&m);
  BindNode(&m);
2659
  BindPass(&m);
F
flame 已提交
2660
  BindInferenceApi(&m);
2661
  BindCompatible(&m);
2662
  BindDataset(&m);
Y
yaoxuefeng 已提交
2663
  BindGenerator(&m);
2664
#ifndef PADDLE_NO_PYTHON
2665 2666
  BindDistributed(&m);
#endif
2667 2668 2669
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2670
  BindAscendDevice(&m);
2671
#endif
Y
Yanghello 已提交
2672 2673 2674
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2675

T
tangwei12 已提交
2676
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2677 2678
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2679
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2680 2681
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2682 2683 2684 2685 2686
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2687 2688 2689 2690
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2691
#ifdef PADDLE_WITH_HETERPS
2692 2693
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2694 2695 2696
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2697
#endif
X
Xinger 已提交
2698
#if defined(PADDLE_WITH_RPC)
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2711
}
2712
}  // namespace pybind
2713
}  // namespace paddle