pybind.cc 69.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
47
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
49
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
54
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
62

W
wopeizl 已提交
63
#ifndef _WIN32
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
65
#endif
66
#include "paddle/fluid/framework/data_type.h"
67 68
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
69
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/tensor_py.h"
71
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
72
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
73
#ifndef _WIN32
Y
Yi Wang 已提交
74
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
75
#endif
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
78 79
#endif

80 81 82 83
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
84 85
#include "pybind11/stl.h"

86 87 88
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
89
DECLARE_bool(use_mkldnn);
90 91 92
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
93

Q
Qiao Longfei 已提交
94 95 96
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

97
namespace paddle {
98
namespace pybind {
99
bool IsCompiledWithCUDA() {
100
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
101 102 103 104 105 106
  return false;
#else
  return true;
#endif
}

107 108 109 110 111 112 113 114
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

115 116 117 118 119 120 121 122
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

123
bool IsCompiledWithBrpc() {
124
#ifndef PADDLE_WITH_DISTRIBUTE
125 126
  return false;
#endif
127 128 129 130 131 132

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
133 134
}

Y
update  
Yancey1989 已提交
135
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
136
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
137 138 139 140 141 142
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

153 154 155 156 157 158
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
159 160 161
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
162
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
163

164
  m.doc() = "C++ core of PaddlePaddle";
165

166 167 168 169
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

170
  BindException(&m);
Y
Yu Yang 已提交
171

172 173
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
174
  m.def(
S
sneaxiy 已提交
175
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
176 177 178 179
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
180 181 182
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
183 184 185
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
186
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
187

188
  m.def("_set_fuse_parameter_group_size",
189
        &paddle::framework::ir::SetFuseParameterGroupsSize);
190
  m.def("_set_fuse_parameter_memory_size",
191
        &paddle::framework::ir::SetFuseParameterMemorySize);
192

S
sneaxiy 已提交
193 194 195
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

196 197
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

198
  BindImperative(&m);
199

200
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
201
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
202 203
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
204
      .def("_get_dims",
205
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
206
      .def("_set_dims",
Q
qijun 已提交
207
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
208
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
209
           })
Y
yuyang18 已提交
210
      .def("_set_layout",
D
dzhwinter 已提交
211 212 213
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
214
      .def("_alloc_float",
D
dzhwinter 已提交
215
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
216
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
217
           })
Y
yuyang18 已提交
218
      .def("_alloc_float",
Y
Yu Yang 已提交
219
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
220
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
221
           })
Y
yuyang18 已提交
222
      .def("_alloc_int",
Y
Yu Yang 已提交
223
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
224
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
225
           })
Y
yuyang18 已提交
226
      .def("_alloc_int",
D
dzhwinter 已提交
227
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<int>(place);
Q
qijun 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_alloc_int",
C
chengduoZH 已提交
231 232 233
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
234
      .def("_alloc_float",
C
chengduoZH 已提交
235 236 237
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
238
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
239 240
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
241
      .def("set", PyCPUTensorSetFromArray<double>)
242
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
243
      .def("set", PyCPUTensorSetFromArray<bool>)
244
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
245
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
246
      .def("set", PyCPUTensorSetFromArray<int8_t>)
247
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
248 249
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
250
      .def("set", PyCUDATensorSetFromArray<double>)
251
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
252
      .def("set", PyCUDATensorSetFromArray<bool>)
253
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
254
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
255
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
256 257 258 259 260 261
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
262
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
263
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
264
#endif
265
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
266 267 268 269
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
270
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
271
      .def("_dtype", [](Tensor &self) { return self.type(); })
272 273 274 275 276 277
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
278

X
Xin Pan 已提交
279 280 281 282 283 284 285 286 287
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

288 289
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
290
    described by x.lod.
X
Xin Pan 已提交
291

Z
Zeng Jinle 已提交
292 293 294
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
295

Z
Zeng Jinle 已提交
296
    x.lod  = [[2, 3]]
297

Z
Zeng Jinle 已提交
298
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
299

Z
Zeng Jinle 已提交
300
    x.shape = [5, 2]
X
Xin Pan 已提交
301

Z
Zeng Jinle 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
319 320 321 322 323 324 325 326 327 328 329 330

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
331
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
332 333 334 335 336 337 338 339 340 341 342 343 344 345
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
346
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
347 348 349 350 351
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
352
      .def("set_lod",
353
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
354
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
355
             LoD new_lod;
356 357
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
358 359
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
360
             self.set_lod(new_lod);
S
sneaxiy 已提交
361 362 363 364 365 366
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
367 368 369 370 371 372 373 374 375 376

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
377
           )DOC")
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
393 394 395 396
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
397
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
398 399
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
400 401

           Args:
402
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
403 404 405 406 407 408 409 410 411 412

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
413
           )DOC")
414 415 416 417 418 419 420 421
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
422 423 424 425 426 427
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
428 429 430 431 432 433 434 435 436 437 438

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
439
           )DOC")
G
gongweibao 已提交
440
      // Set above comments of set_lod.
441 442 443 444 445 446 447 448
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
449 450 451 452 453
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
454
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
455 456 457 458 459 460 461 462 463 464 465

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
466 467 468 469 470 471 472 473 474 475 476 477
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
478 479 480 481 482 483 484 485 486 487 488

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
489 490 491 492 493 494 495
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
496
           )DOC")
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
515
      });
D
dangqingqing 已提交
516

Q
qijun 已提交
517 518 519 520 521 522 523 524 525 526 527
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
528 529
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
530 531
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
532 533 534 535 536 537 538 539 540
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
541
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
542
      .def("rows", [](SelectedRows &self) {
543 544 545 546 547
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
548
      });
Q
qijun 已提交
549

550
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
551 552 553

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
554
      .def(py::init<>())
555
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
556
      .def("set_int",
557 558
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
559 560 561 562 563 564 565
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
566
      .def("get_tensor",
567 568
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
569 570
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
571 572 573
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
574 575 576 577 578
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
579 580 581
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
582
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
583 584 585 586 587
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
588
#endif
Y
Refine  
Yu Yang 已提交
589 590 591 592 593
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
594
           py::return_value_policy::reference);
595

S
sneaxiy 已提交
596
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
597

S
sneaxiy 已提交
598 599 600 601
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
602

S
sneaxiy 已提交
603 604
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
605
      .def("push",
S
sneaxiy 已提交
606
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
607
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
608
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
609
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
610
           })
S
sneaxiy 已提交
611 612 613 614
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
615

S
sneaxiy 已提交
616
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
617 618
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
619
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
620 621 622 623
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
624
        py::return_value_policy::copy);
S
sneaxiy 已提交
625

S
sneaxiy 已提交
626
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

640
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
641 642 643 644 645 646
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
647 648
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
649
      .def("var",
650
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
651
             return self.Var(name);
Y
Yu Yang 已提交
652
           },
S
sneaxiy 已提交
653 654
           py::arg("name"),
           R"DOC(
655
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
656

657
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
658
           current scope, the variable would be created. Otherwise,
659
           return the existing variable.
S
sneaxiy 已提交
660 661

           Args:
662 663
               name (str): the variable name.

S
sneaxiy 已提交
664
           Returns:
665
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
666 667 668 669
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
670
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
671
           its parent scope. Return None if not found.
672

S
sneaxiy 已提交
673 674
           Args:
               name (str): the variable name.
675

S
sneaxiy 已提交
676
           Returns:
677
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
678
           )DOC",
679
           py::return_value_policy::reference)
680
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
681 682 683 684 685 686
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
687
           py::return_value_policy::reference)
S
sneaxiy 已提交
688 689 690
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
691 692
           )DOC")
      .def("_kids", &Scope::kids);
693

S
sneaxiy 已提交
694 695 696 697 698 699
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
700 701
        R"DOC(
        Create a new scope.
702

S
sneaxiy 已提交
703 704 705
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
706 707
        py::return_value_policy::reference);

Y
Yu Yang 已提交
708 709
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
710 711
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
712 713 714 715 716 717 718 719 720 721
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
722 723
    return ret_values;
  });
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
740 741 742 743 744 745 746
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
747 748 749
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
750

Y
Yu Yang 已提交
751
  m.def("prune", [](const ProgramDesc &origin,
752
                    const std::set<std::string> &feeded_var_names,
753
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
754
    ProgramDesc prog_with_targets(origin);
755

756
    for (const auto &t : targets) {
757
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
758
    }
759
    proto::ProgramDesc pruned_desc;
760
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
761
    return new ProgramDesc(pruned_desc);
762
  });
763 764 765 766
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
767 768 769
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
770 771
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
772
  // clang-format off
Y
Yu Yang 已提交
773
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
774 775
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
776
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
777 778 779
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
780
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
781
                      -> paddle::platform::DeviceContext* {
782
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
783
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
784
#else
Q
qijun 已提交
785
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
786
#endif
C
chengduoZH 已提交
787 788 789 790 791 792 793 794 795 796 797
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
798
// clang-format on
P
peizhilin 已提交
799
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
800 801
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
802 803 804 805
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
806 807 808 809

    Examples:
        .. code-block:: python

810
          import paddle.fluid as fluid
L
lujun 已提交
811 812
          gpu_place = fluid.CUDAPlace(0)

813
        )DOC")
S
sneaxiy 已提交
814 815 816
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
841 842
             new (&self) platform::CUDAPlace(dev_id);
#else
843 844 845 846 847 848 849 850 851
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
852 853
#endif
           })
S
sneaxiy 已提交
854 855 856 857 858 859
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
860
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
861

862 863 864
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
865 866 867 868

    Examples:
        .. code-block:: python

869
          import paddle.fluid as fluid
L
lujun 已提交
870 871
          cpu_place = fluid.CPUPlace()

872
        )DOC")
873
      .def(py::init<>())
S
sneaxiy 已提交
874 875 876 877 878 879
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
880
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
881

882 883 884
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
885 886 887 888

    Examples:
        .. code-block:: python

889
          import paddle.fluid as fluid
L
lujun 已提交
890 891
          place = fluid.CUDAPinnedPlace()

892
        )DOC")
S
sneaxiy 已提交
893
      .def("__init__",
S
sneaxiy 已提交
894
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
895 896 897
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
898
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
899
           })
S
sneaxiy 已提交
900 901 902 903 904 905 906 907
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
908 909
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
910 911
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
912 913 914 915 916
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
917 918
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
919 920 921 922 923 924
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
925 926 927 928
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
929 930
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
931 932 933 934 935
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
936
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
937
             self = gpu_place;
C
chengduoZH 已提交
938 939
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
940 941
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
942
      });
Y
Yu Yang 已提交
943

Y
Yu Yang 已提交
944 945 946
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
947
                    proto::OpDesc desc;
Y
Yu Yang 已提交
948 949 950 951 952
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
953
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
954
                  })
955
      .def("run",
956
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
957 958 959
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
960
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
961 962 963 964 965
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
966 967 968 969 970 971 972
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
973 974
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
975
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
976
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
977 978 979 980
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
981

982 983 984
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
985
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
986
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
987
      .def("close", &Executor::Close)
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1002 1003 1004 1005 1006 1007 1008 1009
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1010 1011
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1012 1013
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1014
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1015 1016
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1017
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1018 1019
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1020
      });
S
sneaxiy 已提交
1021

D
dzhwinter 已提交
1022
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1023
  m.def("init_glog", framework::InitGLOG);
1024
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1025 1026
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1027

1028
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1029
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1030
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1031
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1032
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1033 1034 1035 1036 1037 1038
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1039

1040
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1041
  m.def("get_fetch_variable", framework::GetFetchVariable);
1042
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1043

X
Xin Pan 已提交
1044 1045
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1046 1047 1048 1049 1050
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1051

Y
Yu Yang 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1061 1062 1063 1064 1065
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1066

Z
Zeng Jinle 已提交
1067 1068 1069 1070
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1071 1072
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1083 1084 1085 1086 1087 1088
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1113

Y
Yu Yang 已提交
1114
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1115
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1116
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1117

P
peizhilin 已提交
1118
#ifndef _WIN32
D
dangqingqing 已提交
1119 1120 1121
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1122
#endif
P
peizhilin 已提交
1123
#endif
Y
Yu Yang 已提交
1124

1125 1126 1127 1128
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1129
      .value("kAll", platform::ProfilerState::kAll)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1143
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1144
  m.def("reset_profiler", platform::ResetProfiler);
1145
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1146 1147 1148
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1149

1150 1151
  m.def("size_of_dtype", framework::SizeOfType);

1152 1153
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1154
      .def("has", &ir::Pass::Has)
1155 1156 1157
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1158
           })
1159
      .def(
1160
          "set",
1161 1162 1163
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1164 1165
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1166 1167
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1168
        self.Apply(graph.get());
F
flame 已提交
1169
      });
1170

X
fix  
Xin Pan 已提交
1171 1172
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1187
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1188

Y
yuyang18 已提交
1189
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1190 1191 1192 1193
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1194 1195 1196
    Examples:
        .. code-block:: python

1197
          import paddle.fluid as fluid
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1208 1209 1210
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1211 1212
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1213 1214
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1215 1216
        )DOC");

Y
yuyang18 已提交
1217
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1218 1219 1220 1221 1222
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1233
      .def_property(
1234 1235 1236 1237
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1238 1239 1240 1241
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1242 1243 1244 1245 1246
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1247 1248 1249
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1250 1251
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1252 1253 1254 1255 1256 1257 1258
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1259 1260 1261 1262
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1263 1264
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1265 1266 1267 1268 1269 1270

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1271
              )DOC")
Q
Qiao Longfei 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1283 1284 1285 1286 1287
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1288

Y
yuyang18 已提交
1289
  exec_strategy.def_property(
Y
yuyang18 已提交
1290 1291 1292 1293 1294 1295 1296
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1297 1298
      });

C
chengduo 已提交
1299 1300 1301 1302
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1303 1304 1305
    Examples:
        .. code-block:: python

F
flame 已提交
1306 1307 1308
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1309
)DOC");
Y
yuyang18 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1326
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1327
            self.reduce_ = strategy;
C
chengduo 已提交
1328
          },
C
chengduo 已提交
1329 1330 1331 1332 1333 1334 1335
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1336 1337 1338 1339 1340 1341 1342 1343

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1344 1345 1346 1347 1348
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1349
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finalized.");
Y
yuyang18 已提交
1350
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1351
          },
C
chengduo 已提交
1352 1353 1354 1355 1356
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1357 1358 1359 1360 1361

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1390
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1405
                   )DOC")
Y
yuyang18 已提交
1406 1407 1408 1409
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1410
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1411
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1412
          },
C
chengduo 已提交
1413
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1414 1415 1416 1417 1418 1419 1420 1421
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1422 1423
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1424
                    )DOC")
S
sneaxiy 已提交
1425 1426 1427 1428 1429 1430
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1431
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1432 1433
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1434 1435
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1436 1437 1438 1439 1440 1441 1442 1443

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1444 1445 1446 1447 1448 1449
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1450
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1451 1452
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1453 1454
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1455 1456 1457 1458 1459 1460 1461 1462

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1463 1464 1465 1466
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1467 1468 1469
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1470 1471
            self.num_trainers_ = num_trainers;
          })
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1484 1485 1486 1487 1488 1489
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1490
      .def_property("use_hierarchical_allreduce",
1491 1492 1493 1494 1495 1496
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1497
      .def_property("hierarchical_allreduce_inter_nranks",
1498 1499 1500 1501 1502 1503 1504
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1505 1506 1507 1508 1509 1510
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1511
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1512 1513 1514
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1592 1593
      .def_property(
          "memory_optimize",
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1613
                consumption, set to True to enable it.
1614

1615 1616 1617 1618
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1619 1620 1621
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1622 1623 1624 1625 1626 1627 1628 1629 1630
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1631 1632 1633
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1634
      .def_property(
D
dzhwinter 已提交
1635 1636 1637
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1638 1639 1640 1641
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1642 1643 1644 1645 1646 1647 1648
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1649 1650 1651 1652
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1653 1654 1655 1656 1657 1658 1659 1660 1661
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1662
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1663
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1664 1665 1666 1667 1668
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1669 1670

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1671
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1672
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1673
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1674 1675 1676 1677
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1678 1679 1680 1681 1682
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1683 1684 1685
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1686 1687 1688 1689
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1690
      .def("run", [](ParallelExecutor &self,
1691
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1692
        pybind11::gil_scoped_release release;
1693
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1694
      });
Y
Yu Yang 已提交
1695

D
dongdaxiang 已提交
1696
  BindFleetWrapper(&m);
H
hutuxian 已提交
1697
  BindBoxHelper(&m);
W
wopeizl 已提交
1698
#ifndef _WIN32
D
dongdaxiang 已提交
1699
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1700
#endif
F
flame 已提交
1701 1702
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1703
  BindInferenceApi(&m);
1704
  BindDataset(&m);
1705 1706 1707
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1708
}
1709
}  // namespace pybind
1710
}  // namespace paddle