pybind.cc 107.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17
#include "paddle/fluid/eager/grad_node_info.h"

18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

C
chengduoZH 已提交
23
#include <algorithm>
24
#include <cctype>
25
#include <cstdlib>
26
#include <iterator>
C
chengduoZH 已提交
27
#include <map>
S
sneaxiy 已提交
28
#include <memory>
C
chengduoZH 已提交
29
#include <mutex>  // NOLINT // for call_once
30
#include <sstream>
C
chengduoZH 已提交
31
#include <string>
32 33
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
34
#include <unordered_map>
35
#include <unordered_set>
C
chengduoZH 已提交
36 37
#include <utility>
#include <vector>
38

39
#include "paddle/fluid/framework/convert_utils.h"
40
#include "paddle/fluid/framework/custom_operator.h"
41
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
42
#include "paddle/fluid/framework/data_type_transform.h"
43
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/executor.h"
45
#include "paddle/fluid/framework/executor_cache.h"
46
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
48
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
50
#include "paddle/fluid/framework/io/fs.h"
51
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
52
#include "paddle/fluid/framework/ir/cost_model.h"
53
#include "paddle/fluid/framework/ir/generate_pass.h"
54
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
57
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
58 59
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
60
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/op_info.h"
62
#include "paddle/fluid/framework/op_registry.h"
63
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/framework/parallel_executor.h"
65
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/framework/prune.h"
67
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/framework/scope_pool.h"
70
#include "paddle/fluid/framework/selected_rows_utils.h"
71
#include "paddle/fluid/framework/tensor_util.h"
72
#include "paddle/fluid/framework/trainer.h"
73
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
74
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
76
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
77
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
78 79
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
80
#include "paddle/fluid/prim/utils/utils.h"
81 82 83
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
84
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
85
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
86
#include "paddle/fluid/operators/common_infer_shape_functions.h"
87
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
88
#include "paddle/fluid/operators/py_func_op.h"
89
#include "paddle/fluid/platform/cpu_helper.h"
90
#include "paddle/fluid/platform/device/device_wrapper.h"
91
#include "paddle/fluid/platform/device_context.h"
92
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/platform/enforce.h"
94
#include "paddle/fluid/platform/init.h"
95
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
96
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
99 100 101
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
109 110
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
112 113
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
120
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/heter_wrapper_py.h"
122
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/inference_api.h"
124
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/ir.h"
126
#include "paddle/fluid/pybind/jit.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130 131
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
132
#include "paddle/phi/backends/device_manager.h"
133 134 135
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
136

137
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
138
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
139
#endif
140
#include "paddle/fluid/framework/data_type.h"
141 142
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
143 144
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
145
#include "paddle/fluid/pybind/reader_py.h"
146
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
147
#include "paddle/fluid/pybind/tensor_py.h"
148
#include "paddle/fluid/string/to_string.h"
149 150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
151
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
152
#endif
153
#ifndef PADDLE_WITH_HIP
154
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
155
#endif
156
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
157 158
#endif

159
#ifdef PADDLE_WITH_XPU
160
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
161
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
162 163
#endif

164
#ifdef PADDLE_WITH_CUSTOM_DEVICE
165
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
166
#include "paddle/fluid/platform/collective_helper.h"
167 168
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

Y
Yanghello 已提交
179 180 181 182
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
183
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
184 185 186
#include "paddle/fluid/pybind/fleet_py.h"
#endif

187 188 189 190
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
191
#if defined(PADDLE_WITH_RPC)
192 193 194
#include "paddle/fluid/pybind/rpc.h"
#endif

195
#include "paddle/fluid/eager/api/utils/global_utils.h"
196
#include "paddle/fluid/eager/nan_inf_utils.h"
197
#include "paddle/fluid/imperative/layout_autotune.h"
198 199
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
200 201
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
202 203
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
204
#include "paddle/phi/core/flags.h"
205 206
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
207 208
#include "pybind11/stl.h"

209
PHI_DECLARE_bool(use_mkldnn);
210

Q
Qiao Longfei 已提交
211 212
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
213 214 215
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
216

217
DECLARE_FILE_SYMBOLS(init_phi);
218
DECLARE_FILE_SYMBOLS(kernel_dialect);
219
namespace paddle {
220
namespace pybind {
221

0
0x45f 已提交
222
PyTypeObject *g_framework_scope_pytype = nullptr;
223
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
224
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
225

226 227 228 229 230 231 232 233
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

234
bool IsCompiledWithCUDA() {
235 236 237 238 239 240 241
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

242 243 244 245 246 247 248 249
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

267 268
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
269 270 271 272 273 274
  return false;
#else
  return true;
#endif
}

275 276 277 278 279 280 281 282
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
297 298 299 300 301 302 303 304
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

305 306 307 308 309 310 311 312
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

313 314 315 316 317 318 319 320
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

321 322 323 324 325 326 327 328 329
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

330 331 332 333 334 335 336 337
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

338 339 340 341
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
342
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
343 344 345 346 347 348
    return true;
  else
    return false;
#endif
}

349 350 351 352
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
353
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
354 355 356 357 358 359
    return true;
  else
    return false;
#endif
}

360 361 362 363
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
364 365
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
366 367 368 369 370 371 372
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
373 374
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
375 376 377
#endif
}

378
bool IsCompiledWithBrpc() {
379
#ifndef PADDLE_WITH_DISTRIBUTE
380
  return false;
381
#else
382
  return true;
383
#endif
384 385
}

Y
update  
Yancey1989 已提交
386
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
387
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
388 389 390 391 392 393
  return true;
#else
  return false;
#endif
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
529 530
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
531 532
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
546 547
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
548 549
    }
    vec_res.emplace_back(
550
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
551 552 553 554 555 556 557 558 559 560 561 562
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
563 564
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
565 566 567 568 569 570 571 572 573 574 575 576
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
577 578 579
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
580 581 582 583
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
584 585
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
586 587 588 589
  }
  return vec_res;
}

O
OccupyMars2025 已提交
590
static void inline CreateVariableIfNotExist(
591 592
    const py::handle &py_handle,
    const framework::Scope &scope,
593 594 595 596 597 598
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
599 600
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
601 602 603 604 605 606 607 608 609 610 611 612 613
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
614 615 616
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
617 618 619 620 621
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
622 623 624 625 626
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
627 628
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
629
        PADDLE_ENFORCE_NOT_NULL(
630 631 632
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
633 634 635
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
636
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
637
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
638 639
        tensor_temp->mutable_data(
            exe->GetPlace(),
640
            framework::TransToPhiDataType(var_desc.GetDataType()));
641 642 643
      }
    }
  } else {
644 645
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
646 647 648 649 650
  }

  return;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
667 668
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
669 670 671 672 673 674 675
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
676 677 678 679
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
680
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
681 682 683 684 685 686 687 688
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

689
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
690
  BindImperative(&m);
691
  BindEager(&m);
J
Jack Zhou 已提交
692
  BindEagerStringTensor(&m);
693
  BindCudaStream(&m);
J
james 已提交
694
  BindXpuStream(&m);
695
  BindJit(&m);
696
  BindEvalFrame(&m);
697
  BindCustomDevicePy(&m);
698

Y
Yu Yang 已提交
699
  // Not used, just make sure cpu_info.cc is linked.
700
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
701

Y
Refine  
Yu Yang 已提交
702
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
703

704 705
  AssertStaticGraphAndDygraphGradMakerNoDiff();

706
  m.doc() = "C++ core of PaddlePaddle";
707

708 709 710 711
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

712
  BindException(&m);
Y
Yu Yang 已提交
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

752 753 754 755 756 757 758 759 760 761
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
762 763 764 765
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
766 767
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
768 769
  m.def("set_num_threads", &platform::SetNumThreads);

770 771
  m.def("disable_signal_handler", &DisableSignalHandler);

772 773 774 775 776 777 778 779
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  py::class_<egr::GradNodeBase, std::shared_ptr<egr::GradNodeBase>>(
      m, "GradNodeBase")
      .def("name",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->name();
           })
      .def_property_readonly(
          "next_functions",
          [](const std::shared_ptr<egr::GradNodeBase> &self) {
            return self->NextFunctions();
          })
      .def("input_meta",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->InputMeta();
           })
      .def("output_meta", [](const std::shared_ptr<egr::GradNodeBase> &self) {
        return self->OutputMeta();
      });
798

799
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
800
  m.def("cudnn_version", &platform::DnnVersion);
801 802 803 804 805 806
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
807
#endif
808

Z
Zeng Jinle 已提交
809 810 811 812
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

813 814
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
815
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
816 817 818 819 820 821
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
822
      .def_static("gen_new_memory_pool_id",
823 824 825 826 827
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
828 829
#endif

Z
Zeng Jinle 已提交
830 831 832 833
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
834 835 836
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
837 838

    PADDLE_ENFORCE_NOT_NULL(
839 840 841 842
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
843

6
633WHU 已提交
844 845
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
846
    phi::DenseTensor tensor;
6
633WHU 已提交
847

S
Siming Dai 已提交
848
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
849
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
850
    }
851
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
852
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
853
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
854 855 856 857
    }
#endif
    return tensor;
  });
H
hong 已提交
858

859
  m.def("_create_loaded_parameter",
860 861
        [](const py::handle &vec_var_list,
           const Scope &scope,
862
           const Executor *executor) {
O
OccupyMars2025 已提交
863
          CreateVariableIfNotExist(vec_var_list, scope, executor);
864 865
        });

866 867 868 869 870 871
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
872 873
  });

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

899 900 901 902 903 904
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
905

S
sneaxiy 已提交
906
  m.def(
S
sneaxiy 已提交
907
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
908 909 910 911
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
912 913 914
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
931
            }
932
            all_kernels_info.emplace(op_type, kernel_types);
933
          }
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
950
                }
951 952
              } else {
                kernel_types.emplace_back(kernel_type_str);
953
              }
954
            }
955 956 957
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
958
          }
959
        }
960

961 962 963 964
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
965 966 967
           Return the registered kernels in paddle.

           Args:
968
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
969
           )DOC");
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1023 1024 1025 1026 1027 1028
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1029 1030
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1031
    platform::XCCLCommContext::Release();
1032 1033 1034
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1035
    phi::DeviceManager::Release();
1036 1037
#endif
  });
1038

S
sneaxiy 已提交
1039 1040 1041
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1042
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1043

1044
  m.def("_set_fuse_parameter_group_size",
1045
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1046
  m.def("_set_fuse_parameter_memory_size",
1047
        &paddle::framework::ir::SetFuseParameterMemorySize);
1048

S
sneaxiy 已提交
1049 1050 1051
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1052 1053
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1054 1055
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1056 1057 1058
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1059
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1060 1061 1062

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1063
      .def(py::init<>())
1064
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1065
      .def("set_int",
1066 1067
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1068 1069 1070 1071 1072 1073 1074
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1075 1076
      .def(
          "get_tensor",
1077 1078
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1079 1080
          },
          py::return_value_policy::reference)
1081 1082
      .def("get_bytes",
           [](Variable &self) {
1083 1084 1085 1086 1087 1088
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1089
           })
S
Steffy-zxf 已提交
1090
      .def("set_string_list",
1091
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1092 1093
             *self.GetMutable<Strings>() = str_list;
           })
1094
      .def("set_vocab",
1095 1096
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1097 1098
             *self.GetMutable<Vocab>() = vocab;
           })
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1125
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1126 1127 1128 1129 1130 1131
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1132
#endif
1133 1134 1135
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1136 1137
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1148 1149
                scope_vec->size(),
                0,
1150 1151 1152 1153 1154
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1155 1156 1157 1158
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1159

S
sneaxiy 已提交
1160
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1161

0
0x45f 已提交
1162
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1176
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1177 1178 1179 1180 1181
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1182 1183 1184
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1185 1186
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1187 1188
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1189 1190 1191 1192 1193 1194 1195
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1196
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1197

1198
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1199
           current scope, the variable would be created. Otherwise,
1200
           return the existing variable.
S
sneaxiy 已提交
1201 1202

           Args:
1203 1204
               name (str): the variable name.

S
sneaxiy 已提交
1205
           Returns:
1206
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1207
           )DOC",
1208
          py::return_value_policy::reference)
1209 1210 1211
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1212
           R"DOC(
1213
           Find variable named :code:`name` in the current scope or
1214
           its parent scope. Return None if not found.
1215

S
sneaxiy 已提交
1216 1217
           Args:
               name (str): the variable name.
1218

S
sneaxiy 已提交
1219
           Returns:
1220
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1221
           )DOC",
1222
           py::return_value_policy::reference)
1223
      .def("size", &Scope::Size)
1224 1225 1226
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1227 1228
           R"DOC(
           Find variable named :code:`name` in the current scope or
1229
           its parent scope. Return None if not found.
1230 1231 1232 1233 1234 1235 1236 1237

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1238
      .def(
1239 1240
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1241
          R"DOC(
S
sneaxiy 已提交
1242 1243 1244 1245 1246
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1247
          py::return_value_policy::reference)
1248 1249
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1250 1251
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1252
           )DOC")
1253
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1254
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1255

1256 1257 1258 1259 1260 1261 1262 1263
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1264
        Create a new scope.
1265

S
sneaxiy 已提交
1266 1267 1268
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1269
      py::return_value_policy::reference);
S
sneaxiy 已提交
1270

Y
Yu Yang 已提交
1271 1272
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1273 1274
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1275 1276 1277 1278
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1279
        PADDLE_ENFORCE_EQ(
1280 1281
            info.Proto().SerializeToString(&str),
            true,
1282 1283
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1284 1285 1286
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1287 1288
    return ret_values;
  });
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1327 1328 1329 1330 1331 1332 1333 1334
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1335
              res = op_checker->GetDefaultAttrsMap();
1336 1337 1338 1339
            }
          }
          return res;
        });
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1356 1357 1358
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1359 1360 1361 1362 1363
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1364 1365 1366

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1367
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1368 1369 1370 1371

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1372
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1373
            PADDLE_THROW(platform::errors::NotFound(
1374
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1383
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1384 1385
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1386
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1387 1388
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1389 1390 1391
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1392
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1393
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1394 1395
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1407
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1408
                      << op_desc.Type();
J
Jiabin Yang 已提交
1409 1410 1411
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1412
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1413
                      << op_desc.Type();
J
Jiabin Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1422 1423 1424 1425 1426 1427 1428 1429
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1430 1431 1432
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1433 1434 1435
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1436 1437 1438 1439 1440
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1441 1442 1443
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1444 1445 1446
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1447
  m.def("infer_no_need_buffer_slots",
1448 1449
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1477 1478 1479 1480 1481 1482
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1483 1484
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1485

1486
            Args:
1487 1488 1489
                   program (ProgramDesc): The original program.

             Returns:
1490
                   tuple(ProgramDesc, map<int, int>): The first part is
1491 1492 1493 1494
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1495 1496 1497 1498
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1499 1500
    VLOG(4) << s;
    return s;
1501 1502 1503 1504 1505 1506
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1507
  });
1508 1509 1510 1511
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1512 1513 1514
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1515 1516
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1517

Y
Yu Yang 已提交
1518
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1519
      .def_static("create",
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1535 1536 1537 1538
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1539
                    return context;
Q
qijun 已提交
1540
                  })
1541 1542 1543 1544
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1545
#ifndef PADDLE_WITH_XPU
1546 1547 1548
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1549
#else
W
Wilber 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1563 1564 1565 1566
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1567
      return context;
1568
#endif
1569 1570 1571 1572
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1573
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1574 1575 1576 1577
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1578 1579
#else
                return new paddle::platform::CustomDeviceContext(place);
1580
#endif
1581 1582 1583 1584 1585
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1586
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1587 1588 1589
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1590
#else
L
Leo Chen 已提交
1591
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1604 1605 1606 1607
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1608 1609 1610 1611
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1612 1613
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1614
#endif
1615 1616 1617 1618 1619
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1620
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1621 1622 1623
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1624 1625 1626
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1627
          });
1628
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1629 1630
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1631 1632 1633
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1634
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1635
#else
R
ronnywang 已提交
1636
          VLOG(1) << string::Sprintf(
1637 1638 1639 1640
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1641
              "PaddlePaddle by: pip install paddlepaddle\n");
1642 1643 1644 1645 1646 1647
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1648
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1649
#else
R
ronnywang 已提交
1650
          VLOG(1) << string::Sprintf(
1651 1652 1653 1654
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1655
              "PaddlePaddle by: pip install paddlepaddle\n");
1656 1657 1658 1659 1660 1661
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1662
    devices = phi::DeviceManager::GetAllDeviceList();
1663
#else
R
ronnywang 已提交
1664
          VLOG(1) << string::Sprintf(
1665 1666 1667 1668
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1669
              "PaddlePaddle by: pip install paddlepaddle\n");
1670 1671 1672 1673 1674 1675
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1676
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1677
#else
R
ronnywang 已提交
1678
          VLOG(1) << string::Sprintf(
1679 1680 1681 1682 1683 1684
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1685
              "PaddlePaddle by: pip install paddlepaddle\n");
1686 1687 1688
#endif
    return devices;
  });
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1708

Y
Yu Yang 已提交
1709
  py::class_<OperatorBase>(m, "Operator")
1710 1711 1712 1713 1714 1715 1716
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1717 1718
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1719 1720 1721 1722 1723 1724
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1725
      .def("run",
1726 1727
           [](OperatorBase &self,
              const Scope &scope,
1728 1729 1730 1731
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1732
      .def("run",
1733 1734
           [](OperatorBase &self,
              const Scope &scope,
1735 1736 1737 1738
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1739
      .def("run",
1740 1741
           [](OperatorBase &self,
              const Scope &scope,
1742 1743 1744 1745
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1746
      .def("run",
1747 1748
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1749
              const platform::CUDAPinnedPlace &place) {
1750
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1751 1752
             self.Run(scope, place);
           })
R
ronnywang 已提交
1753
      .def("run",
1754 1755
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1756 1757 1758 1759
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1760 1761 1762 1763 1764
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1765 1766
             return op.Outputs();
           })
Q
qijun 已提交
1767 1768
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1769
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1770
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1771 1772 1773 1774
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1775

1776 1777 1778
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1779 1780
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1781 1782 1783 1784 1785 1786
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1787 1788
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1789

1790 1791
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1792
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1793
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1794
      .def("close", &Executor::Close)
1795 1796
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1797
           py::call_guard<py::gil_scoped_release>())
1798 1799
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1800
           py::call_guard<py::gil_scoped_release>())
1801
      .def("init_for_dataset",
1802 1803 1804 1805
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1806
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1807
             pybind11::gil_scoped_release release;
1808 1809 1810 1811 1812 1813 1814
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1815
      .def("run_prepared_ctx",
1816 1817 1818
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1819
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1820
              std::map<std::string, FetchType *> *fetch_targets,
1821 1822
              bool create_local_scope = true,
              bool create_vars = true,
1823 1824 1825
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1826 1827 1828 1829 1830 1831 1832 1833
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1834
           })
1835
      .def("run_prepared_ctx",
1836 1837 1838 1839 1840
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1841 1842
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1843 1844
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1845
           })
1846
      .def("prepare",
1847 1848 1849
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1850 1851 1852 1853
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1854 1855
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1856 1857
           })
      .def("create_variables", &Executor::CreateVariables)
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1874

1875
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1876
      .def(py::init<>())
1877 1878 1879 1880 1881
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1882

1883
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1884 1885 1886
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1887
      .def("run",
1888
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1889 1890 1891
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1892
               ret = self.Run(feed_names);
1893 1894
             }
             return py::cast(std::move(ret));
H
hong 已提交
1895 1896
           });

1897 1898
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1899
      .def(py::init<const std::string &>(), py::arg("type"))
1900 1901 1902 1903
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1904 1905
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1918

D
dzhwinter 已提交
1919
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1920
  m.def("init_glog", framework::InitGLOG);
1921
  m.def("init_memory_method", framework::InitMemoryMethod);
1922 1923 1924 1925
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1926 1927 1928 1929 1930 1931 1932 1933
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1934 1935
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1936 1937 1938 1939 1940 1941 1942 1943 1944
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1945
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1946
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1947
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1948
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1949
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1950
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1951
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1952
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1953 1954
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1955
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1956
  m.def("is_run_with_cinn", IsRunWithCINN);
1957
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1958
  m.def("supports_bfloat16", SupportsBfloat16);
1959
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1960 1961
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1962
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1963
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1964
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1965 1966 1967
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1968 1969 1970 1971 1972
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1992 1993 1994
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1995 1996
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1997 1998
  m.def(
      "run_cmd",
1999 2000
      [](const std::string &cmd,
         int time_out = -1,
2001
         int sleep_inter = -1) -> const std::string {
2002 2003
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2004
      },
2005 2006 2007
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2008 2009
  m.def(
      "shell_execute_cmd",
2010 2011 2012
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2013
         bool redirect_stderr = false) -> std::vector<std::string> {
2014 2015
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2016
      },
2017 2018 2019
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2020
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2021

S
Steffy-zxf 已提交
2022
  m.def("set_feed_variable",
2023 2024
        static_cast<void (*)(  // NOLINT
            Scope *,
2025
            const phi::DenseTensor &,
2026 2027
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2028
  m.def("set_feed_variable",
2029 2030
        static_cast<void (*)(  // NOLINT
            Scope *,
2031
            const std::vector<std::string> &,
2032 2033
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2034
  m.def("get_fetch_variable",
2035 2036
        [](const Scope &scope,
           const std::string &var_name,
2037 2038 2039
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2040
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2041
          } else {
R
Ruibiao Chen 已提交
2042
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2043 2044
          }
        });
2045
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2046

X
Xin Pan 已提交
2047 2048
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2049 2050 2051 2052
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2053
  BindCostModel(&m);
2054
  BindConstValue(&m);
2055
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2056
  BindFleetExecutor(&m);
2057
  BindTCPStore(&m);
2058
  BindCommContextManager(&m);
2059
  BindAutoParallel(&m);
2060
  BindJitProperty(&m);
Y
Yu Yang 已提交
2061

Y
Yu Yang 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2071
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2072
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2073 2074 2075

    Examples:
        .. code-block:: python
2076

Z
Zeng Jinle 已提交
2077 2078 2079
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2080 2081 2082 2083
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2084 2085
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2086 2087 2088 2089
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2090 2091
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2092
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2093 2094
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2095 2096 2097
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2098 2099 2100
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2101 2102
      .def(
          "append",
2103
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2104 2105 2106 2107
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2108 2109
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2110
             Append a LoDensor to LoDTensorArray.
2111

2112 2113 2114 2115 2116
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2128
           )DOC")
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2140

2141
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2142
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2143
        )DOC")
2144 2145 2146 2147 2148 2149
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2150
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2151
                res[i] = py::cast(std::move(data));
2152 2153 2154
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2155
              } else {
R
Ruibiao Chen 已提交
2156
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2168

2169 2170
      .def(
          "append",
2171
          [](FetchList &self, const phi::DenseTensor &t) {
2172
            self.emplace_back();
2173
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2174 2175 2176 2177 2178 2179 2180 2181 2182
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2183
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2184 2185 2186 2187 2188 2189
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2190 2191

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2192
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2193
        )DOC")
2194 2195 2196 2197 2198 2199 2200 2201
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2202
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2203 2204
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2205
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2220

Y
Yu Yang 已提交
2221
  m.def("op_support_gpu", OpSupportGPU);
2222
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2223
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2224
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2225 2226 2227 2228 2229 2230 2231 2232
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2233 2234 2235 2236 2237 2238
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2239 2240

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2266
      });
D
dangqingqing 已提交
2267

2268
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2269 2270 2271
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2272 2273 2274
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2275 2276 2277
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2278
#endif
P
peizhilin 已提交
2279
#endif
Y
Yu Yang 已提交
2280

J
jianghaicheng 已提交
2281 2282 2283 2284
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2285 2286 2287 2288 2289 2290
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2291 2292 2293 2294
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2295
      .value("kAll", platform::ProfilerState::kAll)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2307
  m.def("set_tracer_option", platform::SetTracerOption);
2308 2309
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2310
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2311
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2312
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2313
    PADDLE_ENFORCE_EQ(
2314 2315
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2316 2317 2318
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2319
    callable.inc_ref();
2320 2321 2322 2323
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2324 2325
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2326 2327
          return pass;
        });
2328
  });
2329
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2330 2331 2332
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
2333 2334 2335
  m.def("register_subgraph_pass", [](const std::string &pass_type) {
    framework::ir::Pass::AddSupportSubgraphPass(pass_type);
  });
Y
Yu Yang 已提交
2336

2337
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2338 2339
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2340 2341
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2342 2343
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2344 2345 2346 2347 2348 2349 2350 2351 2352
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2417 2418
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2419 2420 2421 2422
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2423 2424 2425
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2426 2427 2428 2429 2430
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2431 2432 2433
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2434 2435

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2436 2437
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2438
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2439
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2440 2441
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2442
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2443 2444 2445 2446 2447 2448
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2472 2473 2474 2475 2476 2477 2478 2479
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2498 2499
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2500 2501
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2502

2503
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2504 2505 2506 2507
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2508
#endif  // PADDLE_WITH_CUDA
2509 2510 2511 2512 2513 2514 2515 2516
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2517

J
jianghaicheng 已提交
2518 2519
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2520 2521 2522
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2523 2524 2525 2526 2527 2528 2529
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2530
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2531 2532
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2533
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2544 2545 2546 2547
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2570 2571
                         option.get_type(),
                         option_name));
2572 2573 2574 2575 2576 2577 2578
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2579 2580
                         option_name,
                         option.first.cast<std::string>(),
2581 2582
                         option.second.cast<std::uint64_t>());
                   }
2583 2584 2585 2586 2587 2588
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2634 2635
                           option.second.get_type(),
                           option_key));
2636
                     }
2637 2638
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2639 2640 2641 2642 2643 2644
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2645 2646
                     element.second.get_type(),
                     option_name));
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2677 2678
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2679 2680 2681
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2682 2683
#endif

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2701 2702 2703 2704 2705 2706 2707 2708
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2709
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2710 2711 2712 2713 2714 2715 2716 2717 2718
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2719
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2720 2721 2722 2723 2724 2725 2726
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2727 2728
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2729

2730 2731
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2732

2733 2734
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2735
  // Add the api for nan op debug
2736 2737 2738 2739
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2740 2741
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2742

2743 2744 2745 2746 2747 2748 2749
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
D
dongdaxiang 已提交
2750
  BindFleetWrapper(&m);
2751
  BindIO(&m);
2752 2753 2754
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2755

T
Thunderbrook 已提交
2756
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2757
  BindHeterWrapper(&m);
2758
  BindMetrics(&m);
T
Thunderbrook 已提交
2759
#endif
T
Thunderbrook 已提交
2760
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2761
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2762 2763 2764
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2765
#endif
2766
  BindGlooWrapper(&m);
H
hutuxian 已提交
2767
  BindBoxHelper(&m);
H
hutuxian 已提交
2768 2769 2770
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2771
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2772
  BindNCCLWrapper(&m);
2773 2774 2775
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2776
#endif
F
flame 已提交
2777 2778
  BindGraph(&m);
  BindNode(&m);
2779
  BindPass(&m);
F
flame 已提交
2780
  BindInferenceApi(&m);
2781
  BindCompatible(&m);
2782
  BindDataset(&m);
Y
yaoxuefeng 已提交
2783
  BindGenerator(&m);
2784
#ifndef PADDLE_NO_PYTHON
2785 2786
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2787 2788 2789
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2790

T
tangwei12 已提交
2791
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2792 2793
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2794
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2795 2796
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2797 2798 2799 2800 2801
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2802 2803 2804 2805
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2806
#ifdef PADDLE_WITH_HETERPS
2807 2808
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2809 2810 2811
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2812
#endif
X
Xinger 已提交
2813
#if defined(PADDLE_WITH_RPC)
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2826 2827

  BindNewIR(&m);
L
Luo Tao 已提交
2828
}
2829
}  // namespace pybind
2830
}  // namespace paddle