pybind.cc 103.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
37
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/executor.h"
39
#include "paddle/fluid/framework/executor_cache.h"
40
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
42
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
44
#include "paddle/fluid/framework/io/fs.h"
45
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
46
#include "paddle/fluid/framework/ir/cost_model.h"
47
#include "paddle/fluid/framework/ir/generate_pass.h"
48
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
51
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
52
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/op_info.h"
54
#include "paddle/fluid/framework/op_registry.h"
55
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
56
#include "paddle/fluid/framework/parallel_executor.h"
57
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/framework/prune.h"
59
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/scope_pool.h"
62
#include "paddle/fluid/framework/selected_rows_utils.h"
63
#include "paddle/fluid/framework/tensor_util.h"
64
#include "paddle/fluid/framework/trainer.h"
65
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
66
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
67
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
68
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
69
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
70
#include "paddle/fluid/prim/utils/utils.h"
71 72 73
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
74
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
75
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
76
#include "paddle/fluid/operators/common_infer_shape_functions.h"
77
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
78
#include "paddle/fluid/operators/py_func_op.h"
79
#include "paddle/fluid/platform/cpu_helper.h"
80
#include "paddle/fluid/platform/device/device_wrapper.h"
81
#include "paddle/fluid/platform/device_context.h"
82
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
83
#include "paddle/fluid/platform/enforce.h"
84
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
85
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
86 87
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
88 89 90
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
91
#include "paddle/fluid/pybind/cuda_streams_py.h"
92
#include "paddle/fluid/pybind/custom_device_py.h"
93
#include "paddle/fluid/pybind/distributed_py.h"
94
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
95
#include "paddle/fluid/pybind/imperative.h"
96
#include "paddle/fluid/pybind/io.h"
97
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
98
#include "paddle/fluid/pybind/xpu_streams_py.h"
99
#include "paddle/phi/backends/cpu/cpu_info.h"
100 101
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
102
#include "paddle/utils/none.h"
103 104 105
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
106
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
107
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
108
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
109
#include "paddle/fluid/pybind/box_helper_py.h"
110
#include "paddle/fluid/pybind/communication.h"
111
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
121
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
124
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
125
#include "paddle/fluid/pybind/pybind_variant_caster.h"
126
#include "paddle/phi/backends/device_manager.h"
127

128
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
129
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
130
#endif
131
#include "paddle/fluid/framework/data_type.h"
132 133
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
134 135
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
136
#include "paddle/fluid/pybind/reader_py.h"
137
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
138
#include "paddle/fluid/pybind/tensor_py.h"
139
#include "paddle/fluid/string/to_string.h"
140 141
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
142
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
143
#endif
144
#ifndef PADDLE_WITH_HIP
145
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
146
#endif
147
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
148 149
#endif

150
#ifdef PADDLE_WITH_ASCEND_CL
151
#include "paddle/fluid/platform/collective_helper.h"
152 153
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163 164 165
#include "paddle/phi/capi/capi.h"
#endif

166
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
167

J
jianghaicheng 已提交
168
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
169 170
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
171
#endif
172

173 174 175 176
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
177 178 179 180
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
181
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
182 183 184
#include "paddle/fluid/pybind/fleet_py.h"
#endif

185 186 187 188
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
189
#if defined(PADDLE_WITH_RPC)
190 191 192
#include "paddle/fluid/pybind/rpc.h"
#endif

193
#include "paddle/fluid/eager/api/utils/global_utils.h"
194
#include "paddle/fluid/imperative/layout_autotune.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
199 200
#include "pybind11/stl.h"

201
DECLARE_bool(use_mkldnn);
202

Q
Qiao Longfei 已提交
203 204
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
205 206 207
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
208

209
namespace paddle {
210
namespace pybind {
211

0
0x45f 已提交
212
PyTypeObject *g_framework_scope_pytype = nullptr;
213
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
214
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
215

216 217 218 219 220 221 222 223
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

224
bool IsCompiledWithCUDA() {
225 226 227 228 229 230 231
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

257 258
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
259 260 261 262 263 264
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

281 282 283 284 285 286 287 288
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
303 304 305 306 307 308 309 310
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

311 312 313 314 315 316 317 318
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

319 320 321 322 323 324 325 326
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

327 328 329 330 331 332 333 334
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

335 336 337 338 339 340 341 342
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

343 344 345 346
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
347
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
348 349 350 351 352 353
    return true;
  else
    return false;
#endif
}

354 355 356 357
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
358
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
359 360 361 362 363 364
    return true;
  else
    return false;
#endif
}

365 366 367 368
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
369 370
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
371 372 373 374 375 376 377
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
378 379
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
380 381 382
#endif
}

383
bool IsCompiledWithBrpc() {
384
#ifndef PADDLE_WITH_DISTRIBUTE
385
  return false;
386
#else
387
  return true;
388
#endif
389 390
}

Y
update  
Yancey1989 已提交
391
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
392
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
393 394 395 396 397 398
  return true;
#else
  return false;
#endif
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
467 468
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
469 470
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
484 485
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
486 487
    }
    vec_res.emplace_back(
488
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
489 490 491 492 493 494 495 496 497 498 499 500
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
501 502
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
503 504 505 506 507 508 509 510 511 512 513 514
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
515 516 517
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
518 519 520 521
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
522 523
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
524 525 526 527
  }
  return vec_res;
}

O
OccupyMars2025 已提交
528
static void inline CreateVariableIfNotExist(
529 530
    const py::handle &py_handle,
    const framework::Scope &scope,
531 532 533 534 535 536
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
537 538
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
552 553 554
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
555 556 557 558 559
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
560 561 562 563 564
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
565 566
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
567
        PADDLE_ENFORCE_NOT_NULL(
568 569 570
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
571 572 573
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
574
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
575
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
576 577
        tensor_temp->mutable_data(
            exe->GetPlace(),
578
            framework::TransToPhiDataType(var_desc.GetDataType()));
579 580 581
      }
    }
  } else {
582 583
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
584 585 586 587 588
  }

  return;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
605 606
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
607 608 609 610 611 612 613
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
614 615 616 617
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
618
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
619 620 621 622 623 624 625 626
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

627
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
628
  BindImperative(&m);
629
  BindEager(&m);
J
Jack Zhou 已提交
630
  BindEagerStringTensor(&m);
631
  BindCudaStream(&m);
J
james 已提交
632
  BindXpuStream(&m);
633
  BindJit(&m);
634
  BindCustomDevicePy(&m);
635

Y
Yu Yang 已提交
636
  // Not used, just make sure cpu_info.cc is linked.
637
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
638

Y
Refine  
Yu Yang 已提交
639
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
640

641 642
  AssertStaticGraphAndDygraphGradMakerNoDiff();

643
  m.doc() = "C++ core of PaddlePaddle";
644

645 646 647 648
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

649
  BindException(&m);
Y
Yu Yang 已提交
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

666 667 668 669 670 671 672 673 674 675
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
676 677
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
678 679
  m.def("set_num_threads", &platform::SetNumThreads);

680 681
  m.def("disable_signal_handler", &DisableSignalHandler);

682 683 684 685 686 687 688 689
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

690
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
691
  m.def("cudnn_version", &platform::DnnVersion);
692 693 694 695 696 697
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
698
#endif
699

Z
Zeng Jinle 已提交
700 701 702 703
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

704 705
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
706
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
707 708 709 710 711 712
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
713
      .def_static("gen_new_memory_pool_id",
714 715 716 717 718
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
719 720
#endif

Z
Zeng Jinle 已提交
721 722 723 724
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
725 726 727
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
728 729

    PADDLE_ENFORCE_NOT_NULL(
730 731 732 733
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
734

6
633WHU 已提交
735 736
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
737
    phi::DenseTensor tensor;
6
633WHU 已提交
738

S
Siming Dai 已提交
739
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
740
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
741
    }
742
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
743
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
744
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
745 746 747 748
    }
#endif
    return tensor;
  });
H
hong 已提交
749

750
  m.def("_create_loaded_parameter",
751 752
        [](const py::handle &vec_var_list,
           const Scope &scope,
753
           const Executor *executor) {
O
OccupyMars2025 已提交
754
          CreateVariableIfNotExist(vec_var_list, scope, executor);
755 756
        });

757 758 759 760 761 762
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
763 764
  });

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

790 791 792 793 794 795
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
796

S
sneaxiy 已提交
797
  m.def(
S
sneaxiy 已提交
798
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
799 800 801 802
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
803 804 805
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
822
            }
823
            all_kernels_info.emplace(op_type, kernel_types);
824
          }
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
841
                }
842 843
              } else {
                kernel_types.emplace_back(kernel_type_str);
844
              }
845
            }
846 847 848
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
849
          }
850
        }
851

852 853 854 855
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
856 857 858
           Return the registered kernels in paddle.

           Args:
859
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
860
           )DOC");
861

862 863 864 865 866 867
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
868 869 870 871 872
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
873

S
sneaxiy 已提交
874 875 876
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
877
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
878

879
  m.def("_set_fuse_parameter_group_size",
880
        &paddle::framework::ir::SetFuseParameterGroupsSize);
881
  m.def("_set_fuse_parameter_memory_size",
882
        &paddle::framework::ir::SetFuseParameterMemorySize);
883

S
sneaxiy 已提交
884 885 886
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

887 888
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
889 890
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

891 892 893
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
935 936 937 938 939 940 941 942 943 944 945 946 947
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
948 949 950 951 952
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
953

954
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
955 956 957

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
958
      .def(py::init<>())
959
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
960
      .def("set_int",
961 962
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
963 964 965 966 967 968 969
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
970 971
      .def(
          "get_tensor",
972 973
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
974 975
          },
          py::return_value_policy::reference)
976 977
      .def("get_bytes",
           [](Variable &self) {
978 979 980 981 982 983
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
984
           })
S
Steffy-zxf 已提交
985
      .def("set_string_list",
986
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
987 988
             *self.GetMutable<Strings>() = str_list;
           })
989
      .def("set_vocab",
990 991
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
992 993
             *self.GetMutable<Vocab>() = vocab;
           })
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1020
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1021 1022 1023 1024 1025 1026
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1027
#endif
1028 1029 1030
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1031 1032
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1043 1044
                scope_vec->size(),
                0,
1045 1046 1047 1048 1049
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1050 1051 1052 1053
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1054

S
sneaxiy 已提交
1055
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1056

0
0x45f 已提交
1057
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1071
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1072 1073 1074 1075 1076
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1077 1078 1079
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1080 1081
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1082 1083 1084 1085 1086 1087 1088
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1089
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1090

1091
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1092
           current scope, the variable would be created. Otherwise,
1093
           return the existing variable.
S
sneaxiy 已提交
1094 1095

           Args:
1096 1097
               name (str): the variable name.

S
sneaxiy 已提交
1098
           Returns:
1099
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1100
           )DOC",
1101
          py::return_value_policy::reference)
1102 1103 1104
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1105
           R"DOC(
1106
           Find variable named :code:`name` in the current scope or
1107
           its parent scope. Return None if not found.
1108

S
sneaxiy 已提交
1109 1110
           Args:
               name (str): the variable name.
1111

S
sneaxiy 已提交
1112
           Returns:
1113
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1114
           )DOC",
1115
           py::return_value_policy::reference)
1116
      .def("size", &Scope::Size)
1117 1118 1119
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1120 1121
           R"DOC(
           Find variable named :code:`name` in the current scope or
1122
           its parent scope. Return None if not found.
1123 1124 1125 1126 1127 1128 1129 1130

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1131
      .def(
1132 1133
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1134
          R"DOC(
S
sneaxiy 已提交
1135 1136 1137 1138 1139
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1140
          py::return_value_policy::reference)
1141 1142
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1143 1144
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1145
           )DOC")
1146 1147
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1148

1149 1150 1151 1152 1153 1154 1155 1156
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1157
        Create a new scope.
1158

S
sneaxiy 已提交
1159 1160 1161
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1162
      py::return_value_policy::reference);
S
sneaxiy 已提交
1163

Y
Yu Yang 已提交
1164 1165
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1166 1167
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1168 1169 1170 1171
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1172
        PADDLE_ENFORCE_EQ(
1173 1174
            info.Proto().SerializeToString(&str),
            true,
1175 1176
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1177 1178 1179
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1180 1181
    return ret_values;
  });
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1220 1221 1222 1223 1224 1225 1226 1227
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1228
              res = op_checker->GetDefaultAttrsMap();
1229 1230 1231 1232
            }
          }
          return res;
        });
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1249 1250 1251 1252 1253
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1254 1255 1256

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1257
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1258 1259 1260 1261 1262 1263 1264

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1265
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1266 1267 1268 1269 1270 1271 1272 1273
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1274
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1275 1276
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1277
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1278 1279
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1280
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
J
Jiabin Yang 已提交
1281
            if (grad_comp_op_maker != nullptr) {
1282
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1305 1306 1307 1308 1309 1310 1311 1312
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1313 1314 1315
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1316 1317 1318 1319 1320
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1321 1322 1323
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1324
  m.def("infer_no_need_buffer_slots",
1325 1326
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1354 1355 1356 1357 1358 1359
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1360 1361
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1362

1363
            Args:
1364 1365 1366
                   program (ProgramDesc): The original program.

             Returns:
1367
                   tuple(ProgramDesc, map<int, int>): The first part is
1368 1369 1370 1371
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1372 1373 1374 1375
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1376 1377
    VLOG(4) << s;
    return s;
1378 1379 1380 1381 1382 1383
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1384
  });
1385 1386 1387 1388
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1389 1390 1391
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1392 1393
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1394

Y
Yu Yang 已提交
1395
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1396
      .def_static("create",
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1412 1413 1414 1415
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1416
                    return context;
Q
qijun 已提交
1417
                  })
1418 1419 1420 1421
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1422
#ifndef PADDLE_WITH_XPU
1423 1424 1425
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1426
#else
W
Wilber 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1440 1441 1442 1443
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1444
      return context;
1445
#endif
1446 1447 1448 1449 1450
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1451
#ifndef PADDLE_WITH_MLU
1452 1453 1454
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1455 1456
#else
                    return new paddle::platform::MLUDeviceContext(place);
1457
#endif
1458 1459 1460 1461 1462
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1463
#ifndef PADDLE_WITH_ASCEND_CL
1464 1465 1466
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1467 1468
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1469
#endif
1470 1471 1472 1473
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1474
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1475 1476 1477 1478
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1479 1480
#else
                return new paddle::platform::CustomDeviceContext(place);
1481
#endif
1482 1483 1484 1485 1486
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1487
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1488 1489 1490
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1491
#else
L
Leo Chen 已提交
1492
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1505 1506 1507 1508
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1509 1510 1511 1512
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1513 1514
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1515
#endif
1516 1517 1518 1519 1520
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1521
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1522 1523 1524
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1525 1526 1527
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1528
          });
1529
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1530 1531
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1532 1533 1534
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1535
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1536
#else
R
ronnywang 已提交
1537
          VLOG(1) << string::Sprintf(
1538 1539 1540 1541
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1542
              "PaddlePaddle by: pip install paddlepaddle\n");
1543 1544 1545 1546 1547 1548
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1549
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1550
#else
R
ronnywang 已提交
1551
          VLOG(1) << string::Sprintf(
1552 1553 1554 1555
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1556
              "PaddlePaddle by: pip install paddlepaddle\n");
1557 1558 1559 1560 1561 1562
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1563
    devices = phi::DeviceManager::GetAllDeviceList();
1564
#else
R
ronnywang 已提交
1565
          VLOG(1) << string::Sprintf(
1566 1567 1568 1569
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1570
              "PaddlePaddle by: pip install paddlepaddle\n");
1571 1572 1573 1574 1575 1576
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1577
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1578
#else
R
ronnywang 已提交
1579
          VLOG(1) << string::Sprintf(
1580 1581 1582 1583 1584 1585
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1586
              "PaddlePaddle by: pip install paddlepaddle\n");
1587 1588 1589
#endif
    return devices;
  });
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1609

Y
Yu Yang 已提交
1610
  py::class_<OperatorBase>(m, "Operator")
1611 1612 1613 1614 1615 1616 1617
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1618 1619
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1620 1621 1622 1623 1624 1625
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1626
      .def("run",
1627 1628
           [](OperatorBase &self,
              const Scope &scope,
1629 1630 1631 1632
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1633
      .def("run",
1634 1635
           [](OperatorBase &self,
              const Scope &scope,
1636 1637 1638 1639
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1640
      .def("run",
1641 1642
           [](OperatorBase &self,
              const Scope &scope,
1643 1644 1645 1646
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1647
      .def("run",
1648 1649
           [](OperatorBase &self,
              const Scope &scope,
1650 1651 1652 1653
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1654
      .def("run",
1655 1656
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1657
              const platform::CUDAPinnedPlace &place) {
1658
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1659 1660
             self.Run(scope, place);
           })
1661
      .def("run",
1662 1663
           [](OperatorBase &self,
              const Scope &scope,
1664 1665 1666 1667
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1668
      .def("run",
1669 1670
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1671 1672 1673 1674
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1675 1676 1677 1678 1679
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1680 1681
             return op.Outputs();
           })
Q
qijun 已提交
1682 1683
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1684
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1685
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1686 1687 1688 1689
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1690

1691 1692 1693
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1694 1695
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1696 1697 1698 1699 1700 1701
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1702 1703
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1704

1705 1706
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1707
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1708
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1709
      .def("close", &Executor::Close)
1710 1711
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1712
           py::call_guard<py::gil_scoped_release>())
1713 1714
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1715
           py::call_guard<py::gil_scoped_release>())
1716
      .def("init_for_dataset",
1717 1718 1719 1720
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1721
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1722
             pybind11::gil_scoped_release release;
1723 1724 1725 1726 1727 1728 1729
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1730
      .def("run_prepared_ctx",
1731 1732 1733
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1734
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1735
              std::map<std::string, FetchType *> *fetch_targets,
1736 1737
              bool create_local_scope = true,
              bool create_vars = true,
1738 1739 1740
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1741 1742 1743 1744 1745 1746 1747 1748
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1749
           })
1750
      .def("run_prepared_ctx",
1751 1752 1753 1754 1755
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1756 1757
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1758 1759
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1760
           })
1761
      .def("prepare",
1762 1763 1764
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1765 1766 1767 1768
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1769 1770
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1771 1772
           })
      .def("create_variables", &Executor::CreateVariables)
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1789

1790
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1791
      .def(py::init<>())
1792 1793 1794 1795 1796
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1797

1798
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1799
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1800
      .def("run",
1801
           [](StandaloneExecutor &self,
1802
              Scope *scope,
1803
              std::vector<std::string> feed_names,
1804 1805 1806 1807
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1808
               ret = self.Run(scope, feed_names, fetch_names);
1809 1810 1811
             }
             return py::cast(std::move(ret));
           })
1812 1813
      .def("dry_run",
           [](StandaloneExecutor &self,
1814
              Scope *scope,
1815
              const std::unordered_map<std::string, py::array> &input_dict) {
1816
             std::vector<phi::DenseTensor> feed_tensors;
1817 1818 1819
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1820
               phi::DenseTensor t;
1821 1822 1823 1824 1825 1826
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1827
             framework::interpreter::CostInfo cost_info;
1828 1829
             {
               pybind11::gil_scoped_release release;
1830
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1831 1832
             }
             return cost_info;
H
hong 已提交
1833 1834
           });

D
dzhwinter 已提交
1835
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1836
  m.def("init_glog", framework::InitGLOG);
1837 1838 1839 1840
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1841 1842 1843 1844 1845 1846 1847 1848
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1849 1850
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1851
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1852
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1853
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1854
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1855
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1856
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1857
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1858
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1859
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1860
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1861 1862
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1863
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1864
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1865
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1866
  m.def("supports_bfloat16", SupportsBfloat16);
1867
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1868 1869
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1870
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1871
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1872
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1873 1874 1875
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1895 1896 1897
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1898 1899
  m.def(
      "run_cmd",
1900 1901
      [](const std::string &cmd,
         int time_out = -1,
1902
         int sleep_inter = -1) -> const std::string {
1903 1904
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1905
      },
1906 1907 1908
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1909 1910
  m.def(
      "shell_execute_cmd",
1911 1912 1913
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1914
         bool redirect_stderr = false) -> std::vector<std::string> {
1915 1916
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1917
      },
1918 1919 1920
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1921
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1922

1923
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1924 1925
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1926
    return platform::GetGPUComputeCapability(place.device) >= 53;
1927
  });
1928 1929 1930 1931
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1932
#endif
1933

S
Steffy-zxf 已提交
1934
  m.def("set_feed_variable",
1935 1936
        static_cast<void (*)(  // NOLINT
            Scope *,
1937
            const phi::DenseTensor &,
1938 1939
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1940
  m.def("set_feed_variable",
1941 1942
        static_cast<void (*)(  // NOLINT
            Scope *,
1943
            const std::vector<std::string> &,
1944 1945
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1946
  m.def("get_fetch_variable",
1947 1948
        [](const Scope &scope,
           const std::string &var_name,
1949 1950 1951
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1952
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1953
          } else {
R
Ruibiao Chen 已提交
1954
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1955 1956
          }
        });
1957
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1958

X
Xin Pan 已提交
1959 1960
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1961 1962 1963 1964
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1965
  BindCostModel(&m);
1966
  BindConstValue(&m);
1967
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1968
  BindFleetExecutor(&m);
1969
  BindTCPStore(&m);
1970
  BindCommContextManager(&m);
1971
  BindAutoParallel(&m);
1972
  BindJitProperty(&m);
Y
Yu Yang 已提交
1973

Y
Yu Yang 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1983
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1984
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1985 1986 1987

    Examples:
        .. code-block:: python
1988

Z
Zeng Jinle 已提交
1989 1990 1991
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1992 1993 1994 1995
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1996 1997
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1998 1999 2000 2001
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2002 2003
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2004
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2005 2006
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2007 2008 2009
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2010 2011 2012
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2013 2014
      .def(
          "append",
2015
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2016 2017 2018 2019
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2020 2021
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2022
             Append a LoDensor to LoDTensorArray.
2023

2024 2025 2026 2027 2028
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2040
           )DOC")
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2052

2053
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2054
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2055
        )DOC")
2056 2057 2058 2059 2060 2061
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2062
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2063
                res[i] = py::cast(std::move(data));
2064 2065 2066
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2067
              } else {
R
Ruibiao Chen 已提交
2068
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2080

2081 2082
      .def(
          "append",
2083
          [](FetchList &self, const phi::DenseTensor &t) {
2084
            self.emplace_back();
2085
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2086 2087 2088 2089 2090 2091 2092 2093 2094
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2095
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2096 2097 2098 2099 2100 2101
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2102 2103

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2104
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2105
        )DOC")
2106 2107 2108 2109 2110 2111 2112 2113
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2114
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2115 2116
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2117
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2132

Y
Yu Yang 已提交
2133
  m.def("op_support_gpu", OpSupportGPU);
2134
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2135
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2136
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2137 2138 2139 2140 2141 2142 2143 2144
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2145 2146 2147 2148 2149 2150
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2151 2152

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2178
      });
D
dangqingqing 已提交
2179

2180
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2181 2182 2183
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2184 2185 2186
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2187 2188 2189
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2190
#endif
P
peizhilin 已提交
2191
#endif
Y
Yu Yang 已提交
2192

2193 2194
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2195
  m.def("npu_finalize", []() {
2196 2197
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2198 2199 2200
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2201
      platform::NPUDeviceGuard guard(devices[i]);
2202 2203 2204 2205
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2226 2227 2228 2229
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2230 2231 2232 2233
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2234 2235 2236 2237 2238 2239
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2240 2241 2242 2243
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2244
      .value("kAll", platform::ProfilerState::kAll)
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2256
  m.def("set_tracer_option", platform::SetTracerOption);
2257 2258
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2259
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2260
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2261
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2262
    PADDLE_ENFORCE_EQ(
2263 2264
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2265 2266 2267
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2268
    callable.inc_ref();
2269 2270 2271 2272 2273 2274 2275 2276
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2277
  });
2278
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2279 2280 2281
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2282

2283
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2284 2285
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2286 2287
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2288 2289
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2290 2291 2292 2293 2294 2295 2296 2297 2298
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2363 2364
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2365 2366 2367 2368
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2369 2370 2371
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2372 2373 2374 2375 2376
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2377 2378 2379
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2380 2381

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2382 2383
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2384
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2385
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2386 2387
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2388 2389 2390 2391 2392 2393
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2417 2418 2419 2420 2421 2422 2423 2424
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2443 2444
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2445 2446
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2447

2448
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2449 2450
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2451 2452
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2453
#endif  // PADDLE_WITH_CUDA
2454 2455 2456 2457 2458 2459 2460 2461
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2462

J
jianghaicheng 已提交
2463 2464
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2465 2466 2467
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2468 2469 2470 2471 2472 2473 2474
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2475
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2476 2477
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2478
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2489 2490 2491 2492
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2515 2516
                         option.get_type(),
                         option_name));
2517 2518 2519 2520 2521 2522 2523
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2524 2525
                         option_name,
                         option.first.cast<std::string>(),
2526 2527
                         option.second.cast<std::uint64_t>());
                   }
2528 2529 2530 2531 2532 2533
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2579 2580
                           option.second.get_type(),
                           option_key));
2581
                     }
2582 2583
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2584 2585 2586 2587 2588 2589
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2590 2591
                     element.second.get_type(),
                     option_name));
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2622 2623
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2624 2625 2626
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2627 2628
#endif

2629 2630 2631 2632 2633 2634 2635 2636
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2637
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2638 2639 2640 2641 2642 2643 2644
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2645
  m.def("get_low_precision_op_list", [] {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2657 2658
  });

2659 2660
  m.def("autotune_status", [] {
    py::dict res;
2661
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2662 2663 2664 2665 2666 2667 2668
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2669 2670
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2671

2672 2673
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2674

2675 2676
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2677 2678 2679
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2680

D
dongdaxiang 已提交
2681
  BindFleetWrapper(&m);
2682
  BindIO(&m);
2683 2684 2685
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2686

T
Thunderbrook 已提交
2687
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2688
  BindHeterWrapper(&m);
2689
  BindMetrics(&m);
T
Thunderbrook 已提交
2690
#endif
T
Thunderbrook 已提交
2691
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2692
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2693 2694 2695
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2696
#endif
2697
  BindGlooWrapper(&m);
H
hutuxian 已提交
2698
  BindBoxHelper(&m);
H
hutuxian 已提交
2699 2700 2701
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2702
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2703
  BindNCCLWrapper(&m);
2704 2705 2706
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2707
#endif
F
flame 已提交
2708 2709
  BindGraph(&m);
  BindNode(&m);
2710
  BindPass(&m);
F
flame 已提交
2711
  BindInferenceApi(&m);
2712
  BindCompatible(&m);
2713
  BindDataset(&m);
Y
yaoxuefeng 已提交
2714
  BindGenerator(&m);
2715
#ifndef PADDLE_NO_PYTHON
2716 2717
  BindDistributed(&m);
#endif
2718 2719 2720
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2721
  BindAscendDevice(&m);
2722
#endif
Y
Yanghello 已提交
2723 2724 2725
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2726

T
tangwei12 已提交
2727
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2728 2729
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2730
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2731 2732
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2733 2734 2735 2736 2737
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2738 2739 2740 2741
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2742
#ifdef PADDLE_WITH_HETERPS
2743 2744
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2745 2746 2747
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2748
#endif
X
Xinger 已提交
2749
#if defined(PADDLE_WITH_RPC)
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2762
}
2763
}  // namespace pybind
2764
}  // namespace paddle