pybind.cc 106.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
56 57
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
58
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/op_info.h"
60
#include "paddle/fluid/framework/op_registry.h"
61
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
62
#include "paddle/fluid/framework/parallel_executor.h"
63
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/framework/prune.h"
65
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/framework/scope_pool.h"
68
#include "paddle/fluid/framework/selected_rows_utils.h"
69
#include "paddle/fluid/framework/tensor_util.h"
70
#include "paddle/fluid/framework/trainer.h"
71
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
72
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
74
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
75
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
76 77
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
78
#include "paddle/fluid/prim/utils/utils.h"
79 80 81
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
82
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
83
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
84
#include "paddle/fluid/operators/common_infer_shape_functions.h"
85
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
86
#include "paddle/fluid/operators/py_func_op.h"
87
#include "paddle/fluid/platform/cpu_helper.h"
88
#include "paddle/fluid/platform/device/device_wrapper.h"
89
#include "paddle/fluid/platform/device_context.h"
90
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/platform/enforce.h"
92
#include "paddle/fluid/platform/init.h"
93
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
94
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
97 98 99
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
100
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
101
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
102
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
103
#include "paddle/fluid/pybind/box_helper_py.h"
104
#include "paddle/fluid/pybind/communication.h"
105
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/const_value.h"
107 108
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
110 111
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
118
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
119
#include "paddle/fluid/pybind/heter_wrapper_py.h"
120
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
121
#include "paddle/fluid/pybind/inference_api.h"
122
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/ir.h"
124
#include "paddle/fluid/pybind/jit.h"
125
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
126
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
127
#include "paddle/fluid/pybind/pybind_variant_caster.h"
128 129
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
130
#include "paddle/phi/backends/device_manager.h"
131 132 133
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
134

135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
136
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
137
#endif
138
#include "paddle/fluid/framework/data_type.h"
139 140
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
141 142
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
143
#include "paddle/fluid/pybind/reader_py.h"
144
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
145
#include "paddle/fluid/pybind/tensor_py.h"
146
#include "paddle/fluid/string/to_string.h"
147 148
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
149
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
150
#endif
151
#ifndef PADDLE_WITH_HIP
152
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
153
#endif
154
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
155 156
#endif

157
#ifdef PADDLE_WITH_XPU
158
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
159
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
160 161
#endif

162
#ifdef PADDLE_WITH_CUSTOM_DEVICE
163
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
164
#include "paddle/fluid/platform/collective_helper.h"
165 166
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
167 168 169
#include "paddle/phi/capi/capi.h"
#endif

170
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
171

J
jianghaicheng 已提交
172
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
173 174
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
175
#endif
176

Y
Yanghello 已提交
177 178 179 180
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
181
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
182 183 184
#include "paddle/fluid/pybind/fleet_py.h"
#endif

185 186 187 188
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
189
#if defined(PADDLE_WITH_RPC)
190 191 192
#include "paddle/fluid/pybind/rpc.h"
#endif

193
#include "paddle/fluid/eager/api/utils/global_utils.h"
194
#include "paddle/fluid/eager/nan_inf_utils.h"
195
#include "paddle/fluid/imperative/layout_autotune.h"
196
#include "paddle/fluid/ir_adaptor/translator/translate.h"
197 198
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
199 200
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
201 202
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
203
#include "paddle/phi/core/flags.h"
204 205
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
206 207
#include "pybind11/stl.h"

208
PHI_DECLARE_bool(use_mkldnn);
209

Q
Qiao Longfei 已提交
210 211
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
212 213 214
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
215

216
DECLARE_FILE_SYMBOLS(init_phi);
217
DECLARE_FILE_SYMBOLS(kernel_dialect);
218
namespace paddle {
219
namespace pybind {
220

0
0x45f 已提交
221
PyTypeObject *g_framework_scope_pytype = nullptr;
222
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
223
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
224

225 226 227 228 229 230 231 232
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

233
bool IsCompiledWithCUDA() {
234 235 236 237 238 239 240
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

241 242 243 244 245 246 247 248
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

266 267
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
268 269 270 271 272 273
  return false;
#else
  return true;
#endif
}

274 275 276 277 278 279 280 281
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
296 297 298 299 300 301 302 303
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

304 305 306 307 308 309 310 311
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

312 313 314 315 316 317 318 319
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

320 321 322 323 324 325 326 327 328
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

329 330 331 332 333 334 335 336
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

337 338 339 340
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
341
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
342 343 344 345 346 347
    return true;
  else
    return false;
#endif
}

348 349 350 351
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
352
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
353 354 355 356 357 358
    return true;
  else
    return false;
#endif
}

359 360 361 362
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
363 364
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
365 366 367 368 369 370 371
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
372 373
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
374 375 376
#endif
}

377
bool IsCompiledWithBrpc() {
378
#ifndef PADDLE_WITH_DISTRIBUTE
379
  return false;
380
#else
381
  return true;
382
#endif
383 384
}

Y
update  
Yancey1989 已提交
385
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
386
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
387 388 389 390 391 392
  return true;
#else
  return false;
#endif
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
528 529
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
530 531
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
545 546
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
547 548
    }
    vec_res.emplace_back(
549
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
550 551 552 553 554 555 556 557 558 559 560 561
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
562 563
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
564 565 566 567 568 569 570 571 572 573 574 575
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
576 577 578
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
579 580 581 582
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
583 584
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
585 586 587 588
  }
  return vec_res;
}

O
OccupyMars2025 已提交
589
static void inline CreateVariableIfNotExist(
590 591
    const py::handle &py_handle,
    const framework::Scope &scope,
592 593 594 595 596 597
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
598 599
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
600 601 602 603 604 605 606 607 608 609 610 611 612
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
613 614 615
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
616 617 618 619 620
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
621 622 623 624 625
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
626 627
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
628
        PADDLE_ENFORCE_NOT_NULL(
629 630 631
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
632 633 634
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
635
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
636
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
637 638
        tensor_temp->mutable_data(
            exe->GetPlace(),
639
            framework::TransToPhiDataType(var_desc.GetDataType()));
640 641 642
      }
    }
  } else {
643 644
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
645 646 647 648 649
  }

  return;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
666 667
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
668 669 670 671 672 673 674
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
675 676 677 678
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
679
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
680 681 682 683 684 685 686 687
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

688
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
689
  BindImperative(&m);
690
  BindEager(&m);
J
Jack Zhou 已提交
691
  BindEagerStringTensor(&m);
692
  BindCudaStream(&m);
J
james 已提交
693
  BindXpuStream(&m);
694
  BindJit(&m);
695
  BindEvalFrame(&m);
696
  BindCustomDevicePy(&m);
697

Y
Yu Yang 已提交
698
  // Not used, just make sure cpu_info.cc is linked.
699
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
700

Y
Refine  
Yu Yang 已提交
701
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
702

703 704
  AssertStaticGraphAndDygraphGradMakerNoDiff();

705
  m.doc() = "C++ core of PaddlePaddle";
706

707 708 709 710
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

711
  BindException(&m);
Y
Yu Yang 已提交
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

751 752 753 754 755 756 757 758 759 760
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
761 762 763 764
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
765 766
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
767 768
  m.def("set_num_threads", &platform::SetNumThreads);

769 770
  m.def("disable_signal_handler", &DisableSignalHandler);

771 772 773 774 775 776 777 778
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

779
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
780
  m.def("cudnn_version", &platform::DnnVersion);
781 782 783 784 785 786
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
787
#endif
788

Z
Zeng Jinle 已提交
789 790 791 792
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

793 794
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
795
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
796 797 798 799 800 801
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
802
      .def_static("gen_new_memory_pool_id",
803 804 805 806 807
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
808 809
#endif

Z
Zeng Jinle 已提交
810 811 812 813
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
814 815 816
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
817 818

    PADDLE_ENFORCE_NOT_NULL(
819 820 821 822
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
823

6
633WHU 已提交
824 825
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
826
    phi::DenseTensor tensor;
6
633WHU 已提交
827

S
Siming Dai 已提交
828
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
829
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
830
    }
831
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
832
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
833
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
834 835 836 837
    }
#endif
    return tensor;
  });
H
hong 已提交
838

839
  m.def("_create_loaded_parameter",
840 841
        [](const py::handle &vec_var_list,
           const Scope &scope,
842
           const Executor *executor) {
O
OccupyMars2025 已提交
843
          CreateVariableIfNotExist(vec_var_list, scope, executor);
844 845
        });

846 847 848 849 850 851
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
852 853
  });

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

879 880 881 882 883 884
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
885

S
sneaxiy 已提交
886
  m.def(
S
sneaxiy 已提交
887
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
888 889 890 891
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
892 893 894
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
911
            }
912
            all_kernels_info.emplace(op_type, kernel_types);
913
          }
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
930
                }
931 932
              } else {
                kernel_types.emplace_back(kernel_type_str);
933
              }
934
            }
935 936 937
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
938
          }
939
        }
940

941 942 943 944
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
945 946 947
           Return the registered kernels in paddle.

           Args:
948
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
949
           )DOC");
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1003 1004 1005 1006 1007 1008
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1009 1010
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1011
    platform::XCCLCommContext::Release();
1012 1013 1014
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1015 1016 1017
    phi::DeviceManager::Clear();
#endif
  });
1018

S
sneaxiy 已提交
1019 1020 1021
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1022
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1023

1024
  m.def("_set_fuse_parameter_group_size",
1025
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1026
  m.def("_set_fuse_parameter_memory_size",
1027
        &paddle::framework::ir::SetFuseParameterMemorySize);
1028

S
sneaxiy 已提交
1029 1030 1031
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1032 1033
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1034 1035
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1036 1037 1038
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1039
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1040 1041 1042

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1043
      .def(py::init<>())
1044
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1045
      .def("set_int",
1046 1047
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1048 1049 1050 1051 1052 1053 1054
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1055 1056
      .def(
          "get_tensor",
1057 1058
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1059 1060
          },
          py::return_value_policy::reference)
1061 1062
      .def("get_bytes",
           [](Variable &self) {
1063 1064 1065 1066 1067 1068
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1069
           })
S
Steffy-zxf 已提交
1070
      .def("set_string_list",
1071
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1072 1073
             *self.GetMutable<Strings>() = str_list;
           })
1074
      .def("set_vocab",
1075 1076
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1077 1078
             *self.GetMutable<Vocab>() = vocab;
           })
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1105
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1106 1107 1108 1109 1110 1111
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1112
#endif
1113 1114 1115
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1116 1117
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1128 1129
                scope_vec->size(),
                0,
1130 1131 1132 1133 1134
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1135 1136 1137 1138
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1139

S
sneaxiy 已提交
1140
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1141

0
0x45f 已提交
1142
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1156
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1157 1158 1159 1160 1161
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1162 1163 1164
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1165 1166
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1167 1168
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1169 1170 1171 1172 1173 1174 1175
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1176
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1177

1178
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1179
           current scope, the variable would be created. Otherwise,
1180
           return the existing variable.
S
sneaxiy 已提交
1181 1182

           Args:
1183 1184
               name (str): the variable name.

S
sneaxiy 已提交
1185
           Returns:
1186
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1187
           )DOC",
1188
          py::return_value_policy::reference)
1189 1190 1191
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1192
           R"DOC(
1193
           Find variable named :code:`name` in the current scope or
1194
           its parent scope. Return None if not found.
1195

S
sneaxiy 已提交
1196 1197
           Args:
               name (str): the variable name.
1198

S
sneaxiy 已提交
1199
           Returns:
1200
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1201
           )DOC",
1202
           py::return_value_policy::reference)
1203
      .def("size", &Scope::Size)
1204 1205 1206
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1207 1208
           R"DOC(
           Find variable named :code:`name` in the current scope or
1209
           its parent scope. Return None if not found.
1210 1211 1212 1213 1214 1215 1216 1217

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1218
      .def(
1219 1220
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1221
          R"DOC(
S
sneaxiy 已提交
1222 1223 1224 1225 1226
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1227
          py::return_value_policy::reference)
1228 1229
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1230 1231
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1232
           )DOC")
1233
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1234
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1235

1236 1237 1238 1239 1240 1241 1242 1243
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1244
        Create a new scope.
1245

S
sneaxiy 已提交
1246 1247 1248
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1249
      py::return_value_policy::reference);
S
sneaxiy 已提交
1250

Y
Yu Yang 已提交
1251 1252
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1253 1254
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1255 1256 1257 1258
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1259
        PADDLE_ENFORCE_EQ(
1260 1261
            info.Proto().SerializeToString(&str),
            true,
1262 1263
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1264 1265 1266
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1267 1268
    return ret_values;
  });
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1307 1308 1309 1310 1311 1312 1313 1314
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1315
              res = op_checker->GetDefaultAttrsMap();
1316 1317 1318 1319
            }
          }
          return res;
        });
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1336 1337 1338
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1339 1340 1341 1342 1343
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1344 1345 1346

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1347
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1348 1349 1350 1351

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1352
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1353
            PADDLE_THROW(platform::errors::NotFound(
1354
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1355 1356 1357 1358 1359 1360 1361 1362
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1363
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1364 1365
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1366
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1367 1368
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1369 1370 1371
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1372
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1373
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1374 1375
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1387
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1388
                      << op_desc.Type();
J
Jiabin Yang 已提交
1389 1390 1391
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1392
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1393
                      << op_desc.Type();
J
Jiabin Yang 已提交
1394 1395 1396 1397 1398 1399 1400 1401
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1402 1403 1404 1405 1406 1407 1408 1409
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1410 1411 1412
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1413 1414 1415
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1416 1417 1418 1419 1420
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1421 1422 1423
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1424 1425 1426
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1427
  m.def("infer_no_need_buffer_slots",
1428 1429
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1457 1458 1459 1460 1461 1462
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1463 1464
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1465

1466
            Args:
1467 1468 1469
                   program (ProgramDesc): The original program.

             Returns:
1470
                   tuple(ProgramDesc, map<int, int>): The first part is
1471 1472 1473 1474
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1475 1476 1477 1478
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1479 1480
    VLOG(4) << s;
    return s;
1481 1482 1483 1484 1485 1486
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1487
  });
1488 1489 1490 1491
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1492 1493 1494
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1495 1496
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1497

Y
Yu Yang 已提交
1498
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1499
      .def_static("create",
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1515 1516 1517 1518
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1519
                    return context;
Q
qijun 已提交
1520
                  })
1521 1522 1523 1524
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1525
#ifndef PADDLE_WITH_XPU
1526 1527 1528
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1529
#else
W
Wilber 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1543 1544 1545 1546
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1547
      return context;
1548
#endif
1549 1550 1551 1552
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1553
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1554 1555 1556 1557
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1558 1559
#else
                return new paddle::platform::CustomDeviceContext(place);
1560
#endif
1561 1562 1563 1564 1565
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1566
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1567 1568 1569
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1570
#else
L
Leo Chen 已提交
1571
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1584 1585 1586 1587
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1588 1589 1590 1591
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1592 1593
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1594
#endif
1595 1596 1597 1598 1599
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1600
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1601 1602 1603
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1604 1605 1606
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1607
          });
1608
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1609 1610
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1611 1612 1613
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1614
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1615
#else
R
ronnywang 已提交
1616
          VLOG(1) << string::Sprintf(
1617 1618 1619 1620
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1621
              "PaddlePaddle by: pip install paddlepaddle\n");
1622 1623 1624 1625 1626 1627
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1628
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1629
#else
R
ronnywang 已提交
1630
          VLOG(1) << string::Sprintf(
1631 1632 1633 1634
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1635
              "PaddlePaddle by: pip install paddlepaddle\n");
1636 1637 1638 1639 1640 1641
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1642
    devices = phi::DeviceManager::GetAllDeviceList();
1643
#else
R
ronnywang 已提交
1644
          VLOG(1) << string::Sprintf(
1645 1646 1647 1648
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1649
              "PaddlePaddle by: pip install paddlepaddle\n");
1650 1651 1652 1653 1654 1655
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1656
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1657
#else
R
ronnywang 已提交
1658
          VLOG(1) << string::Sprintf(
1659 1660 1661 1662 1663 1664
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1665
              "PaddlePaddle by: pip install paddlepaddle\n");
1666 1667 1668
#endif
    return devices;
  });
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1688

Y
Yu Yang 已提交
1689
  py::class_<OperatorBase>(m, "Operator")
1690 1691 1692 1693 1694 1695 1696
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1697 1698
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1699 1700 1701 1702 1703 1704
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1705
      .def("run",
1706 1707
           [](OperatorBase &self,
              const Scope &scope,
1708 1709 1710 1711
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1712
      .def("run",
1713 1714
           [](OperatorBase &self,
              const Scope &scope,
1715 1716 1717 1718
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1719
      .def("run",
1720 1721
           [](OperatorBase &self,
              const Scope &scope,
1722 1723 1724 1725
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1726
      .def("run",
1727 1728
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1729
              const platform::CUDAPinnedPlace &place) {
1730
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1731 1732
             self.Run(scope, place);
           })
R
ronnywang 已提交
1733
      .def("run",
1734 1735
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1736 1737 1738 1739
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1740 1741 1742 1743 1744
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1745 1746
             return op.Outputs();
           })
Q
qijun 已提交
1747 1748
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1749
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1750
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1751 1752 1753 1754
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1755

1756 1757 1758
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1759 1760
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1761 1762 1763 1764 1765 1766
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1767 1768
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1769

1770 1771
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1772
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1773
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1774
      .def("close", &Executor::Close)
1775 1776
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1777
           py::call_guard<py::gil_scoped_release>())
1778 1779
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1780
           py::call_guard<py::gil_scoped_release>())
1781
      .def("init_for_dataset",
1782 1783 1784 1785
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1786
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1787
             pybind11::gil_scoped_release release;
1788 1789 1790 1791 1792 1793 1794
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1795
      .def("run_prepared_ctx",
1796 1797 1798
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1799
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1800
              std::map<std::string, FetchType *> *fetch_targets,
1801 1802
              bool create_local_scope = true,
              bool create_vars = true,
1803 1804 1805
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1806 1807 1808 1809 1810 1811 1812 1813
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1814
           })
1815
      .def("run_prepared_ctx",
1816 1817 1818 1819 1820
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1821 1822
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1823 1824
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1825
           })
1826
      .def("prepare",
1827 1828 1829
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1830 1831 1832 1833
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1834 1835
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1836 1837
           })
      .def("create_variables", &Executor::CreateVariables)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1854

1855
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1856
      .def(py::init<>())
1857 1858 1859 1860 1861
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1862

1863
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1864 1865 1866
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1867
      .def("run",
1868
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1869 1870 1871
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1872
               ret = self.Run(feed_names);
1873 1874
             }
             return py::cast(std::move(ret));
H
hong 已提交
1875 1876
           });

1877 1878
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1879
      .def(py::init<const std::string &>(), py::arg("type"))
1880 1881 1882 1883
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1884 1885
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1898

D
dzhwinter 已提交
1899
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1900
  m.def("init_glog", framework::InitGLOG);
1901
  m.def("init_memory_method", framework::InitMemoryMethod);
1902 1903 1904 1905
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1906 1907 1908 1909 1910 1911 1912 1913
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1914 1915
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1916 1917 1918 1919 1920 1921 1922 1923 1924
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1925
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1926
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1927
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1928
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1929
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1930
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1931
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1932
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1933 1934
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1935
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1936
  m.def("is_run_with_cinn", IsRunWithCINN);
1937
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1938
  m.def("supports_bfloat16", SupportsBfloat16);
1939
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1940 1941
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1942
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1943
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1944
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1945 1946 1947
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1948 1949 1950 1951 1952
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1972 1973 1974
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1975 1976
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1977 1978
  m.def(
      "run_cmd",
1979 1980
      [](const std::string &cmd,
         int time_out = -1,
1981
         int sleep_inter = -1) -> const std::string {
1982 1983
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1984
      },
1985 1986 1987
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1988 1989
  m.def(
      "shell_execute_cmd",
1990 1991 1992
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1993
         bool redirect_stderr = false) -> std::vector<std::string> {
1994 1995
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1996
      },
1997 1998 1999
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2000
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2001

S
Steffy-zxf 已提交
2002
  m.def("set_feed_variable",
2003 2004
        static_cast<void (*)(  // NOLINT
            Scope *,
2005
            const phi::DenseTensor &,
2006 2007
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2008
  m.def("set_feed_variable",
2009 2010
        static_cast<void (*)(  // NOLINT
            Scope *,
2011
            const std::vector<std::string> &,
2012 2013
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2014
  m.def("get_fetch_variable",
2015 2016
        [](const Scope &scope,
           const std::string &var_name,
2017 2018 2019
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2020
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2021
          } else {
R
Ruibiao Chen 已提交
2022
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2023 2024
          }
        });
2025
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2026

X
Xin Pan 已提交
2027 2028
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2029 2030 2031 2032
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2033
  BindCostModel(&m);
2034
  BindConstValue(&m);
2035
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2036
  BindFleetExecutor(&m);
2037
  BindTCPStore(&m);
2038
  BindCommContextManager(&m);
2039
  BindAutoParallel(&m);
2040
  BindJitProperty(&m);
Y
Yu Yang 已提交
2041

Y
Yu Yang 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2051
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2052
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2053 2054 2055

    Examples:
        .. code-block:: python
2056

Z
Zeng Jinle 已提交
2057 2058 2059
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2060 2061 2062 2063
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2064 2065
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2066 2067 2068 2069
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2070 2071
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2072
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2073 2074
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2075 2076 2077
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2078 2079 2080
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2081 2082
      .def(
          "append",
2083
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2084 2085 2086 2087
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2088 2089
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2090
             Append a LoDensor to LoDTensorArray.
2091

2092 2093 2094 2095 2096
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2108
           )DOC")
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2120

2121
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2122
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2123
        )DOC")
2124 2125 2126 2127 2128 2129
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2130
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2131
                res[i] = py::cast(std::move(data));
2132 2133 2134
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2135
              } else {
R
Ruibiao Chen 已提交
2136
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2148

2149 2150
      .def(
          "append",
2151
          [](FetchList &self, const phi::DenseTensor &t) {
2152
            self.emplace_back();
2153
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2154 2155 2156 2157 2158 2159 2160 2161 2162
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2163
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2164 2165 2166 2167 2168 2169
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2170 2171

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2172
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2173
        )DOC")
2174 2175 2176 2177 2178 2179 2180 2181
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2182
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2183 2184
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2185
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2200

Y
Yu Yang 已提交
2201
  m.def("op_support_gpu", OpSupportGPU);
2202
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2203
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2204
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2205 2206 2207 2208 2209 2210 2211 2212
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2213 2214 2215 2216 2217 2218
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2219 2220

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2246
      });
D
dangqingqing 已提交
2247

2248
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2249 2250 2251
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2252 2253 2254
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2255 2256 2257
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2258
#endif
P
peizhilin 已提交
2259
#endif
Y
Yu Yang 已提交
2260

J
jianghaicheng 已提交
2261 2262 2263 2264
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2265 2266 2267 2268 2269 2270
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2271 2272 2273 2274
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2275
      .value("kAll", platform::ProfilerState::kAll)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2287
  m.def("set_tracer_option", platform::SetTracerOption);
2288 2289
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2290
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2291
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2292
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2293
    PADDLE_ENFORCE_EQ(
2294 2295
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2296 2297 2298
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2299
    callable.inc_ref();
2300 2301 2302 2303
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2304 2305
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2306 2307
          return pass;
        });
2308
  });
2309
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2310 2311 2312
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2313

2314
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2315 2316
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2317 2318
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2319 2320
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2321 2322 2323 2324 2325 2326 2327 2328 2329
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2394 2395
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2396 2397 2398 2399
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2400 2401 2402
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2403 2404 2405 2406 2407
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2408 2409 2410
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2411 2412

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2413 2414
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2415
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2416
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2417 2418
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2419
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2420 2421 2422 2423 2424 2425
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2449 2450 2451 2452 2453 2454 2455 2456
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2475 2476
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2477 2478
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2479

2480
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2481 2482 2483 2484
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2485
#endif  // PADDLE_WITH_CUDA
2486 2487 2488 2489 2490 2491 2492 2493
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2494

J
jianghaicheng 已提交
2495 2496
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2497 2498 2499
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2500 2501 2502 2503 2504 2505 2506
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2507
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2508 2509
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2510
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2521 2522 2523 2524
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2547 2548
                         option.get_type(),
                         option_name));
2549 2550 2551 2552 2553 2554 2555
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2556 2557
                         option_name,
                         option.first.cast<std::string>(),
2558 2559
                         option.second.cast<std::uint64_t>());
                   }
2560 2561 2562 2563 2564 2565
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2611 2612
                           option.second.get_type(),
                           option_key));
2613
                     }
2614 2615
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2616 2617 2618 2619 2620 2621
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2622 2623
                     element.second.get_type(),
                     option_name));
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2654 2655
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2656 2657 2658
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2659 2660
#endif

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2678 2679 2680 2681 2682 2683 2684 2685
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2686
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2687 2688 2689 2690 2691 2692 2693 2694 2695
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2696
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2697 2698 2699 2700 2701 2702 2703
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2704 2705
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2706

2707 2708
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2709

2710 2711
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2712
  // Add the api for nan op debug
2713 2714 2715 2716
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2717 2718
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2719

2720 2721 2722 2723 2724 2725 2726
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
2727
  m.def("translate_newirprogram", &paddle::TranslateLegacyProgramToProgram);
D
dongdaxiang 已提交
2728
  BindFleetWrapper(&m);
2729
  BindIO(&m);
2730 2731 2732
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2733

T
Thunderbrook 已提交
2734
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2735
  BindHeterWrapper(&m);
2736
  BindMetrics(&m);
T
Thunderbrook 已提交
2737
#endif
T
Thunderbrook 已提交
2738
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2739
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2740 2741 2742
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2743
#endif
2744
  BindGlooWrapper(&m);
H
hutuxian 已提交
2745
  BindBoxHelper(&m);
H
hutuxian 已提交
2746 2747 2748
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2749
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2750
  BindNCCLWrapper(&m);
2751 2752 2753
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2754
#endif
F
flame 已提交
2755 2756
  BindGraph(&m);
  BindNode(&m);
2757
  BindPass(&m);
F
flame 已提交
2758
  BindInferenceApi(&m);
2759
  BindCompatible(&m);
2760
  BindDataset(&m);
Y
yaoxuefeng 已提交
2761
  BindGenerator(&m);
2762
#ifndef PADDLE_NO_PYTHON
2763 2764
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2765 2766 2767
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2768

T
tangwei12 已提交
2769
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2770 2771
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2772
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2773 2774
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2775 2776 2777 2778 2779
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2780 2781 2782 2783
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2784
#ifdef PADDLE_WITH_HETERPS
2785 2786
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2787 2788 2789
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2790
#endif
X
Xinger 已提交
2791
#if defined(PADDLE_WITH_RPC)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2804 2805

  BindNewIR(&m);
L
Luo Tao 已提交
2806
}
2807
}  // namespace pybind
2808
}  // namespace paddle