pybind.cc 103.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
74
#include "paddle/fluid/prim/utils/utils.h"
75 76 77
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
78
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
79
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
80
#include "paddle/fluid/operators/common_infer_shape_functions.h"
81
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
82
#include "paddle/fluid/operators/py_func_op.h"
83
#include "paddle/fluid/platform/cpu_helper.h"
84
#include "paddle/fluid/platform/device/device_wrapper.h"
85
#include "paddle/fluid/platform/device_context.h"
86
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/platform/enforce.h"
88
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
89
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
90 91
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
92 93 94
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
95
#include "paddle/fluid/pybind/cuda_streams_py.h"
96
#include "paddle/fluid/pybind/custom_device_py.h"
97
#include "paddle/fluid/pybind/distributed_py.h"
98
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
99
#include "paddle/fluid/pybind/imperative.h"
100
#include "paddle/fluid/pybind/io.h"
101
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
102
#include "paddle/fluid/pybind/xpu_streams_py.h"
103
#include "paddle/phi/backends/cpu/cpu_info.h"
104 105
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
106
#include "paddle/utils/none.h"
107 108 109
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
110
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
111
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
112
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
113
#include "paddle/fluid/pybind/box_helper_py.h"
114
#include "paddle/fluid/pybind/communication.h"
115
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
116
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
117
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
118
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
119
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
120
#include "paddle/fluid/pybind/generator_py.h"
121
#include "paddle/fluid/pybind/global_value_getter_setter.h"
122
#include "paddle/fluid/pybind/gloo_context_py.h"
123
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
124
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
126
#include "paddle/fluid/pybind/ir.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130
#include "paddle/phi/backends/device_manager.h"
131

132
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
133
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
134
#endif
135
#include "paddle/fluid/framework/data_type.h"
136 137
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
138 139
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
140
#include "paddle/fluid/pybind/reader_py.h"
141
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
142
#include "paddle/fluid/pybind/tensor_py.h"
143
#include "paddle/fluid/string/to_string.h"
144 145
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
146
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
147
#endif
148
#ifndef PADDLE_WITH_HIP
149
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
150
#endif
151
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
152 153
#endif

154
#ifdef PADDLE_WITH_ASCEND_CL
155
#include "paddle/fluid/platform/collective_helper.h"
156 157
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
158 159
#endif

160
#ifdef PADDLE_WITH_XPU
161
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
162
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
163 164
#endif

165
#ifdef PADDLE_WITH_CUSTOM_DEVICE
166
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
167 168 169
#include "paddle/phi/capi/capi.h"
#endif

170
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
171

J
jianghaicheng 已提交
172
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
173 174
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
175
#endif
176

177 178 179 180
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
181 182 183 184
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
185
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
186 187 188
#include "paddle/fluid/pybind/fleet_py.h"
#endif

189 190 191 192
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
193
#if defined(PADDLE_WITH_RPC)
194 195 196
#include "paddle/fluid/pybind/rpc.h"
#endif

197
#include "paddle/fluid/eager/api/utils/global_utils.h"
198
#include "paddle/fluid/imperative/layout_autotune.h"
199 200
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
201 202
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
203 204
#include "pybind11/stl.h"

205
DECLARE_bool(use_mkldnn);
206

Q
Qiao Longfei 已提交
207 208
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
209 210 211
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
212

213
namespace paddle {
214
namespace pybind {
215

0
0x45f 已提交
216
PyTypeObject *g_framework_scope_pytype = nullptr;
217
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
218
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
219

220 221 222 223 224 225 226 227
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

228
bool IsCompiledWithCUDA() {
229 230 231 232 233 234 235
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

261 262
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
263 264 265 266 267 268
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

285 286 287 288 289 290 291 292
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
307 308 309 310 311 312 313 314
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

315 316 317 318 319 320 321 322
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

323 324 325 326 327 328 329 330
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

331 332 333 334 335 336 337 338
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

339 340 341 342 343 344 345 346
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

347 348 349 350
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
351
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
352 353 354 355 356 357
    return true;
  else
    return false;
#endif
}

358 359 360 361
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
362
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
363 364 365 366 367 368
    return true;
  else
    return false;
#endif
}

369 370 371 372
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
373 374
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
375 376 377 378 379 380 381
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
382 383
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
384 385 386
#endif
}

387
bool IsCompiledWithBrpc() {
388
#ifndef PADDLE_WITH_DISTRIBUTE
389
  return false;
390
#else
391
  return true;
392
#endif
393 394
}

Y
update  
Yancey1989 已提交
395
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
396
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
397 398 399 400 401 402
  return true;
#else
  return false;
#endif
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
471 472
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
473 474
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
488 489
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
490 491
    }
    vec_res.emplace_back(
492
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
493 494 495 496 497 498 499 500 501 502 503 504
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
505 506
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
507 508 509 510 511 512 513 514 515 516 517 518
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
519 520 521
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
522 523 524 525
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
526 527
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
528 529 530 531
  }
  return vec_res;
}

O
OccupyMars2025 已提交
532
static void inline CreateVariableIfNotExist(
533 534
    const py::handle &py_handle,
    const framework::Scope &scope,
535 536 537 538 539 540
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
541 542
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
543 544 545 546 547 548 549 550 551 552 553 554 555
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
556 557 558
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
559 560 561 562 563
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
564 565 566 567 568
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
569 570
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
571
        PADDLE_ENFORCE_NOT_NULL(
572 573 574
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
575 576 577
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
578
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
579
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
580 581
        tensor_temp->mutable_data(
            exe->GetPlace(),
582
            framework::TransToPhiDataType(var_desc.GetDataType()));
583 584 585
      }
    }
  } else {
586 587
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
588 589 590 591 592
  }

  return;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
609 610
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
611 612 613 614 615 616 617
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
618 619 620 621
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
622
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
623 624 625 626 627 628 629 630
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

631
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
632
  BindImperative(&m);
633
  BindEager(&m);
J
Jack Zhou 已提交
634
  BindEagerStringTensor(&m);
635
  BindCudaStream(&m);
J
james 已提交
636
  BindXpuStream(&m);
637
  BindJit(&m);
638
  BindCustomDevicePy(&m);
639

Y
Yu Yang 已提交
640
  // Not used, just make sure cpu_info.cc is linked.
641
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
642

Y
Refine  
Yu Yang 已提交
643
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
644

645 646
  AssertStaticGraphAndDygraphGradMakerNoDiff();

647
  m.doc() = "C++ core of PaddlePaddle";
648

649 650 651 652
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

653
  BindException(&m);
Y
Yu Yang 已提交
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

670 671 672 673 674 675 676 677 678 679
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
680 681
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
682 683
  m.def("set_num_threads", &platform::SetNumThreads);

684 685
  m.def("disable_signal_handler", &DisableSignalHandler);

686 687 688 689 690 691 692 693
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

694
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
695
  m.def("cudnn_version", &platform::DnnVersion);
696 697 698 699 700 701
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
702
#endif
703

Z
Zeng Jinle 已提交
704 705 706 707
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

708 709
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
710
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
711 712 713 714 715 716
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
717
      .def_static("gen_new_memory_pool_id",
718 719 720 721 722
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
723 724
#endif

Z
Zeng Jinle 已提交
725 726 727 728
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
729 730 731
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
732 733

    PADDLE_ENFORCE_NOT_NULL(
734 735 736 737
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
738

6
633WHU 已提交
739 740
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
741
    phi::DenseTensor tensor;
6
633WHU 已提交
742

S
Siming Dai 已提交
743
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
744
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
745
    }
746
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
747
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
748
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
749 750 751 752
    }
#endif
    return tensor;
  });
H
hong 已提交
753

754
  m.def("_create_loaded_parameter",
755 756
        [](const py::handle &vec_var_list,
           const Scope &scope,
757
           const Executor *executor) {
O
OccupyMars2025 已提交
758
          CreateVariableIfNotExist(vec_var_list, scope, executor);
759 760
        });

761 762 763 764 765 766
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
767 768
  });

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

794 795 796 797 798 799
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
800

S
sneaxiy 已提交
801
  m.def(
S
sneaxiy 已提交
802
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
803 804 805 806
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
807 808 809
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
826
            }
827
            all_kernels_info.emplace(op_type, kernel_types);
828
          }
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
845
                }
846 847
              } else {
                kernel_types.emplace_back(kernel_type_str);
848
              }
849
            }
850 851 852
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
853
          }
854
        }
855

856 857 858 859
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
860 861 862
           Return the registered kernels in paddle.

           Args:
863
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
864
           )DOC");
865

866 867 868 869 870 871
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
872 873 874 875 876
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
877

S
sneaxiy 已提交
878 879 880
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
881
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
882

883
  m.def("_set_fuse_parameter_group_size",
884
        &paddle::framework::ir::SetFuseParameterGroupsSize);
885
  m.def("_set_fuse_parameter_memory_size",
886
        &paddle::framework::ir::SetFuseParameterMemorySize);
887

S
sneaxiy 已提交
888 889 890
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

891 892
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
893 894
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

895 896 897
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
939 940 941 942 943 944 945 946 947 948 949 950 951
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
952 953 954 955 956
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
957

958
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
959 960 961

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
962
      .def(py::init<>())
963
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
964
      .def("set_int",
965 966
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
967 968 969 970 971 972 973
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
974 975
      .def(
          "get_tensor",
976 977
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
978 979
          },
          py::return_value_policy::reference)
980 981
      .def("get_bytes",
           [](Variable &self) {
982 983 984 985 986 987
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
988
           })
S
Steffy-zxf 已提交
989
      .def("set_string_list",
990
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
991 992
             *self.GetMutable<Strings>() = str_list;
           })
993
      .def("set_vocab",
994 995
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
996 997
             *self.GetMutable<Vocab>() = vocab;
           })
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1024
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1025 1026 1027 1028 1029 1030
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1031
#endif
1032 1033 1034
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1035 1036
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1047 1048
                scope_vec->size(),
                0,
1049 1050 1051 1052 1053
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1054 1055 1056 1057
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1058

S
sneaxiy 已提交
1059
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1060

0
0x45f 已提交
1061
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1075
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1076 1077 1078 1079 1080
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1081 1082 1083
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1084 1085
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1086 1087 1088 1089 1090 1091 1092
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1093
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1094

1095
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1096
           current scope, the variable would be created. Otherwise,
1097
           return the existing variable.
S
sneaxiy 已提交
1098 1099

           Args:
1100 1101
               name (str): the variable name.

S
sneaxiy 已提交
1102
           Returns:
1103
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1104
           )DOC",
1105
          py::return_value_policy::reference)
1106 1107 1108
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1109
           R"DOC(
1110
           Find variable named :code:`name` in the current scope or
1111
           its parent scope. Return None if not found.
1112

S
sneaxiy 已提交
1113 1114
           Args:
               name (str): the variable name.
1115

S
sneaxiy 已提交
1116
           Returns:
1117
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1118
           )DOC",
1119
           py::return_value_policy::reference)
1120
      .def("size", &Scope::Size)
1121 1122 1123
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1124 1125
           R"DOC(
           Find variable named :code:`name` in the current scope or
1126
           its parent scope. Return None if not found.
1127 1128 1129 1130 1131 1132 1133 1134

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1135
      .def(
1136 1137
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1138
          R"DOC(
S
sneaxiy 已提交
1139 1140 1141 1142 1143
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1144
          py::return_value_policy::reference)
1145 1146
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1147 1148
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1149
           )DOC")
1150 1151
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1152

1153 1154 1155 1156 1157 1158 1159 1160
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1161
        Create a new scope.
1162

S
sneaxiy 已提交
1163 1164 1165
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1166
      py::return_value_policy::reference);
S
sneaxiy 已提交
1167

Y
Yu Yang 已提交
1168 1169
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1170 1171
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1172 1173 1174 1175
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1176
        PADDLE_ENFORCE_EQ(
1177 1178
            info.Proto().SerializeToString(&str),
            true,
1179 1180
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1181 1182 1183
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1184 1185
    return ret_values;
  });
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1224 1225 1226 1227 1228 1229 1230 1231
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1232
              res = op_checker->GetDefaultAttrsMap();
1233 1234 1235 1236
            }
          }
          return res;
        });
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1253 1254 1255
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1256 1257 1258 1259 1260
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1261 1262 1263

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1264
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1265 1266 1267 1268 1269 1270 1271

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1272
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1273 1274 1275 1276 1277 1278 1279 1280
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1281
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1282 1283
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1284
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1285 1286
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1287 1288 1289
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1290
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1291
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1292
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1315 1316 1317 1318 1319 1320 1321 1322
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1323 1324 1325
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1326 1327 1328 1329 1330
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1331 1332 1333
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1334
  m.def("infer_no_need_buffer_slots",
1335 1336
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1364 1365 1366 1367 1368 1369
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1370 1371
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1372

1373
            Args:
1374 1375 1376
                   program (ProgramDesc): The original program.

             Returns:
1377
                   tuple(ProgramDesc, map<int, int>): The first part is
1378 1379 1380 1381
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1382 1383 1384 1385
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1386 1387
    VLOG(4) << s;
    return s;
1388 1389 1390 1391 1392 1393
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1394
  });
1395 1396 1397 1398
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1399 1400 1401
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1402 1403
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1404

Y
Yu Yang 已提交
1405
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1406
      .def_static("create",
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1422 1423 1424 1425
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1426
                    return context;
Q
qijun 已提交
1427
                  })
1428 1429 1430 1431
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1432
#ifndef PADDLE_WITH_XPU
1433 1434 1435
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1436
#else
W
Wilber 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1450 1451 1452 1453
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1454
      return context;
1455
#endif
1456 1457 1458 1459 1460
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1461
#ifndef PADDLE_WITH_MLU
1462 1463 1464
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1465 1466
#else
                    return new paddle::platform::MLUDeviceContext(place);
1467
#endif
1468 1469 1470 1471 1472
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1473
#ifndef PADDLE_WITH_ASCEND_CL
1474 1475 1476
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1477 1478
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1479
#endif
1480 1481 1482 1483
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1484
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1485 1486 1487 1488
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1489 1490
#else
                return new paddle::platform::CustomDeviceContext(place);
1491
#endif
1492 1493 1494 1495 1496
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1497
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1498 1499 1500
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1501
#else
L
Leo Chen 已提交
1502
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1515 1516 1517 1518
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1519 1520 1521 1522
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1523 1524
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1525
#endif
1526 1527 1528 1529 1530
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1531
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1532 1533 1534
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1535 1536 1537
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1538
          });
1539
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1540 1541
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1542 1543 1544
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1545
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1546
#else
R
ronnywang 已提交
1547
          VLOG(1) << string::Sprintf(
1548 1549 1550 1551
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1552
              "PaddlePaddle by: pip install paddlepaddle\n");
1553 1554 1555 1556 1557 1558
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1559
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1560
#else
R
ronnywang 已提交
1561
          VLOG(1) << string::Sprintf(
1562 1563 1564 1565
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1566
              "PaddlePaddle by: pip install paddlepaddle\n");
1567 1568 1569 1570 1571 1572
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1573
    devices = phi::DeviceManager::GetAllDeviceList();
1574
#else
R
ronnywang 已提交
1575
          VLOG(1) << string::Sprintf(
1576 1577 1578 1579
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1580
              "PaddlePaddle by: pip install paddlepaddle\n");
1581 1582 1583 1584 1585 1586
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1587
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1588
#else
R
ronnywang 已提交
1589
          VLOG(1) << string::Sprintf(
1590 1591 1592 1593 1594 1595
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1596
              "PaddlePaddle by: pip install paddlepaddle\n");
1597 1598 1599
#endif
    return devices;
  });
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1619

Y
Yu Yang 已提交
1620
  py::class_<OperatorBase>(m, "Operator")
1621 1622 1623 1624 1625 1626 1627
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1628 1629
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1630 1631 1632 1633 1634 1635
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1636
      .def("run",
1637 1638
           [](OperatorBase &self,
              const Scope &scope,
1639 1640 1641 1642
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1643
      .def("run",
1644 1645
           [](OperatorBase &self,
              const Scope &scope,
1646 1647 1648 1649
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1650
      .def("run",
1651 1652
           [](OperatorBase &self,
              const Scope &scope,
1653 1654 1655 1656
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1657
      .def("run",
1658 1659
           [](OperatorBase &self,
              const Scope &scope,
1660 1661 1662 1663
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1664
      .def("run",
1665 1666
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1667
              const platform::CUDAPinnedPlace &place) {
1668
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1669 1670
             self.Run(scope, place);
           })
1671
      .def("run",
1672 1673
           [](OperatorBase &self,
              const Scope &scope,
1674 1675 1676 1677
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1678
      .def("run",
1679 1680
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1681 1682 1683 1684
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1685 1686 1687 1688 1689
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1690 1691
             return op.Outputs();
           })
Q
qijun 已提交
1692 1693
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1694
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1695
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1696 1697 1698 1699
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1700

1701 1702 1703
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1704 1705
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1706 1707 1708 1709 1710 1711
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1712 1713
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1714

1715 1716
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1717
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1718
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1719
      .def("close", &Executor::Close)
1720 1721
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1722
           py::call_guard<py::gil_scoped_release>())
1723 1724
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1725
           py::call_guard<py::gil_scoped_release>())
1726
      .def("init_for_dataset",
1727 1728 1729 1730
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1731
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1732
             pybind11::gil_scoped_release release;
1733 1734 1735 1736 1737 1738 1739
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1740
      .def("run_prepared_ctx",
1741 1742 1743
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1744
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1745
              std::map<std::string, FetchType *> *fetch_targets,
1746 1747
              bool create_local_scope = true,
              bool create_vars = true,
1748 1749 1750
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1751 1752 1753 1754 1755 1756 1757 1758
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1759
           })
1760
      .def("run_prepared_ctx",
1761 1762 1763 1764 1765
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1766 1767
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1768 1769
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1770
           })
1771
      .def("prepare",
1772 1773 1774
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1775 1776 1777 1778
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1779 1780
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1781 1782
           })
      .def("create_variables", &Executor::CreateVariables)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1799

1800
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1801
      .def(py::init<>())
1802 1803 1804 1805 1806
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1807

1808
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1809
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1810
      .def("run",
1811
           [](StandaloneExecutor &self,
1812
              Scope *scope,
1813
              std::vector<std::string> feed_names,
1814 1815 1816 1817
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1818
               ret = self.Run(scope, feed_names, fetch_names);
1819 1820 1821
             }
             return py::cast(std::move(ret));
           })
1822 1823
      .def("dry_run",
           [](StandaloneExecutor &self,
1824
              Scope *scope,
1825
              const std::unordered_map<std::string, py::array> &input_dict) {
1826
             std::vector<phi::DenseTensor> feed_tensors;
1827 1828 1829
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1830
               phi::DenseTensor t;
1831 1832 1833 1834 1835 1836
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1837
             framework::interpreter::CostInfo cost_info;
1838 1839
             {
               pybind11::gil_scoped_release release;
1840
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1841 1842
             }
             return cost_info;
H
hong 已提交
1843 1844
           });

D
dzhwinter 已提交
1845
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1846
  m.def("init_glog", framework::InitGLOG);
1847
  m.def("init_memory_method", framework::InitMemoryMethod);
1848 1849 1850 1851
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1852 1853 1854 1855 1856 1857 1858 1859
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1860 1861
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1862
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1863
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1864
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1865
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1866
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1867
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1868
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1869
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1870
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1871
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1872 1873
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1874
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1875
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1876
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1877
  m.def("supports_bfloat16", SupportsBfloat16);
1878
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1879 1880
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1881
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1882
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1883
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1884 1885 1886
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1906 1907 1908
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1909 1910
  m.def(
      "run_cmd",
1911 1912
      [](const std::string &cmd,
         int time_out = -1,
1913
         int sleep_inter = -1) -> const std::string {
1914 1915
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1916
      },
1917 1918 1919
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1920 1921
  m.def(
      "shell_execute_cmd",
1922 1923 1924
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1925
         bool redirect_stderr = false) -> std::vector<std::string> {
1926 1927
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1928
      },
1929 1930 1931
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1932
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1933

1934
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1935 1936
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1937
    return platform::GetGPUComputeCapability(place.device) >= 53;
1938
  });
1939 1940 1941 1942
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1943
#endif
1944

S
Steffy-zxf 已提交
1945
  m.def("set_feed_variable",
1946 1947
        static_cast<void (*)(  // NOLINT
            Scope *,
1948
            const phi::DenseTensor &,
1949 1950
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1951
  m.def("set_feed_variable",
1952 1953
        static_cast<void (*)(  // NOLINT
            Scope *,
1954
            const std::vector<std::string> &,
1955 1956
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1957
  m.def("get_fetch_variable",
1958 1959
        [](const Scope &scope,
           const std::string &var_name,
1960 1961 1962
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1963
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1964
          } else {
R
Ruibiao Chen 已提交
1965
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1966 1967
          }
        });
1968
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1969

X
Xin Pan 已提交
1970 1971
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1972 1973 1974 1975
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1976
  BindCostModel(&m);
1977
  BindConstValue(&m);
1978
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1979
  BindFleetExecutor(&m);
1980
  BindTCPStore(&m);
1981
  BindCommContextManager(&m);
1982
  BindAutoParallel(&m);
1983
  BindJitProperty(&m);
Y
Yu Yang 已提交
1984

Y
Yu Yang 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1994
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1995
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1996 1997 1998

    Examples:
        .. code-block:: python
1999

Z
Zeng Jinle 已提交
2000 2001 2002
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2003 2004 2005 2006
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2007 2008
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2009 2010 2011 2012
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2013 2014
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2015
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2016 2017
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2018 2019 2020
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2021 2022 2023
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2024 2025
      .def(
          "append",
2026
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2027 2028 2029 2030
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2031 2032
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2033
             Append a LoDensor to LoDTensorArray.
2034

2035 2036 2037 2038 2039
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2051
           )DOC")
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2063

2064
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2065
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2066
        )DOC")
2067 2068 2069 2070 2071 2072
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2073
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2074
                res[i] = py::cast(std::move(data));
2075 2076 2077
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2078
              } else {
R
Ruibiao Chen 已提交
2079
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2091

2092 2093
      .def(
          "append",
2094
          [](FetchList &self, const phi::DenseTensor &t) {
2095
            self.emplace_back();
2096
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2097 2098 2099 2100 2101 2102 2103 2104 2105
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2106
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2107 2108 2109 2110 2111 2112
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2113 2114

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2115
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2116
        )DOC")
2117 2118 2119 2120 2121 2122 2123 2124
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2125
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2126 2127
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2128
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2143

Y
Yu Yang 已提交
2144
  m.def("op_support_gpu", OpSupportGPU);
2145
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2146
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2147
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2148 2149 2150 2151 2152 2153 2154 2155
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2156 2157 2158 2159 2160 2161
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2162 2163

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2189
      });
D
dangqingqing 已提交
2190

2191
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2192 2193 2194
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2195 2196 2197
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2198 2199 2200
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2201
#endif
P
peizhilin 已提交
2202
#endif
Y
Yu Yang 已提交
2203

2204 2205
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2206
  m.def("npu_finalize", []() {
2207 2208
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2209 2210 2211
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2212
      platform::NPUDeviceGuard guard(devices[i]);
2213 2214 2215 2216
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2237 2238 2239 2240
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2241 2242 2243 2244
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2245 2246 2247 2248 2249 2250
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2251 2252 2253 2254
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2255
      .value("kAll", platform::ProfilerState::kAll)
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2267
  m.def("set_tracer_option", platform::SetTracerOption);
2268 2269
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2270
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2271
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2272
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2273
    PADDLE_ENFORCE_EQ(
2274 2275
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2276 2277 2278
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2279
    callable.inc_ref();
2280 2281 2282 2283 2284 2285 2286 2287
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2288
  });
2289
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2290 2291 2292
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2293

2294
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2295 2296
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2297 2298
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2299 2300
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2301 2302 2303 2304 2305 2306 2307 2308 2309
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2310

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2374 2375
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2376 2377 2378 2379
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2380 2381 2382
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2383 2384 2385 2386 2387
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2388 2389 2390
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2391 2392

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2393 2394
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2395
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2396
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2397 2398
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2399 2400 2401 2402 2403 2404
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2428 2429 2430 2431 2432 2433 2434 2435
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2454 2455
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2456 2457
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2458

2459
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2460 2461
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2462 2463
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2464
#endif  // PADDLE_WITH_CUDA
2465 2466 2467 2468 2469 2470 2471 2472
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2473

J
jianghaicheng 已提交
2474 2475
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2476 2477 2478
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2479 2480 2481 2482 2483 2484 2485
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2486
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2487 2488
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2489
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2500 2501 2502 2503
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2526 2527
                         option.get_type(),
                         option_name));
2528 2529 2530 2531 2532 2533 2534
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2535 2536
                         option_name,
                         option.first.cast<std::string>(),
2537 2538
                         option.second.cast<std::uint64_t>());
                   }
2539 2540 2541 2542 2543 2544
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2590 2591
                           option.second.get_type(),
                           option_key));
2592
                     }
2593 2594
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2595 2596 2597 2598 2599 2600
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2601 2602
                     element.second.get_type(),
                     option_name));
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2633 2634
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2635 2636 2637
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2638 2639
#endif

2640 2641 2642 2643 2644 2645 2646 2647
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2648
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2649 2650 2651 2652 2653 2654 2655
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2656
  m.def("get_low_precision_op_list", [] {
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2668 2669
  });

2670 2671
  m.def("autotune_status", [] {
    py::dict res;
2672
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2673 2674 2675 2676 2677 2678 2679
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2680 2681
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2682

2683 2684
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2685

2686 2687
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2688 2689 2690
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2691

D
dongdaxiang 已提交
2692
  BindFleetWrapper(&m);
2693
  BindIO(&m);
2694 2695 2696
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2697

T
Thunderbrook 已提交
2698
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2699
  BindHeterWrapper(&m);
2700
  BindMetrics(&m);
T
Thunderbrook 已提交
2701
#endif
T
Thunderbrook 已提交
2702
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2703
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2704 2705 2706
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2707
#endif
2708
  BindGlooWrapper(&m);
H
hutuxian 已提交
2709
  BindBoxHelper(&m);
H
hutuxian 已提交
2710 2711 2712
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2713
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2714
  BindNCCLWrapper(&m);
2715 2716 2717
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2718
#endif
F
flame 已提交
2719 2720
  BindGraph(&m);
  BindNode(&m);
2721
  BindPass(&m);
F
flame 已提交
2722
  BindInferenceApi(&m);
2723
  BindCompatible(&m);
2724
  BindDataset(&m);
Y
yaoxuefeng 已提交
2725
  BindGenerator(&m);
2726
#ifndef PADDLE_NO_PYTHON
2727 2728
  BindDistributed(&m);
#endif
2729 2730 2731
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2732
  BindAscendDevice(&m);
2733
#endif
Y
Yanghello 已提交
2734 2735 2736
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2737

T
tangwei12 已提交
2738
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2739 2740
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2741
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2742 2743
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2744 2745 2746 2747 2748
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2749 2750 2751 2752
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2753
#ifdef PADDLE_WITH_HETERPS
2754 2755
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2756 2757 2758
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2759
#endif
X
Xinger 已提交
2760
#if defined(PADDLE_WITH_RPC)
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2773
}
2774
}  // namespace pybind
2775
}  // namespace paddle