pybind.cc 111.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17
#include "paddle/fluid/eager/grad_node_info.h"

18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

C
chengduoZH 已提交
23
#include <algorithm>
24
#include <cctype>
25
#include <cstdlib>
26
#include <iterator>
C
chengduoZH 已提交
27
#include <map>
S
sneaxiy 已提交
28
#include <memory>
C
chengduoZH 已提交
29
#include <mutex>  // NOLINT // for call_once
30
#include <sstream>
C
chengduoZH 已提交
31
#include <string>
32 33
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
34
#include <unordered_map>
35
#include <unordered_set>
C
chengduoZH 已提交
36 37
#include <utility>
#include <vector>
38

39
#include "paddle/fluid/framework/convert_utils.h"
40
#include "paddle/fluid/framework/custom_operator.h"
41
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
42
#include "paddle/fluid/framework/data_type_transform.h"
43
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/executor.h"
45
#include "paddle/fluid/framework/executor_cache.h"
46
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
48
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
50
#include "paddle/fluid/framework/io/fs.h"
51
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
52
#include "paddle/fluid/framework/ir/cost_model.h"
53
#include "paddle/fluid/framework/ir/generate_pass.h"
54
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
57
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
58 59
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
60
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/op_info.h"
62
#include "paddle/fluid/framework/op_registry.h"
63
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/framework/parallel_executor.h"
65
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/framework/prune.h"
67
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/framework/scope_pool.h"
70
#include "paddle/fluid/framework/selected_rows_utils.h"
71
#include "paddle/fluid/framework/tensor_util.h"
72
#include "paddle/fluid/framework/trainer.h"
73
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
74
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
76
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
77
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
78 79
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
80
#include "paddle/fluid/prim/utils/utils.h"
81 82 83
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
84
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
85
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
86
#include "paddle/fluid/operators/common_infer_shape_functions.h"
87
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
88
#include "paddle/fluid/operators/py_func_op.h"
89
#include "paddle/fluid/platform/cpu_helper.h"
90
#include "paddle/fluid/platform/device/device_wrapper.h"
91
#include "paddle/fluid/platform/device_context.h"
92
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/platform/enforce.h"
94
#include "paddle/fluid/platform/init.h"
95
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
96
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
99 100 101
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
109 110
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
112 113
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
120
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/heter_wrapper_py.h"
122
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/inference_api.h"
124
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/ir.h"
126
#include "paddle/fluid/pybind/jit.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130 131
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
132
#include "paddle/phi/backends/device_manager.h"
133 134 135
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
136

137
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
138
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
139
#endif
140
#include "paddle/fluid/framework/data_type.h"
141 142
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
143 144
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
145
#include "paddle/fluid/pybind/reader_py.h"
146
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
147
#include "paddle/fluid/pybind/tensor_py.h"
148
#include "paddle/fluid/string/to_string.h"
149 150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
151
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
152
#endif
153
#ifndef PADDLE_WITH_HIP
154
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
155
#endif
156
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
157 158
#endif

159
#ifdef PADDLE_WITH_XPU
160
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
161
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
162 163
#endif

164
#ifdef PADDLE_WITH_CUSTOM_DEVICE
165
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
166
#include "paddle/fluid/platform/collective_helper.h"
167 168
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

Y
Yanghello 已提交
179 180 181 182
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
183
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
184 185 186
#include "paddle/fluid/pybind/fleet_py.h"
#endif

187 188 189 190
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
191
#if defined(PADDLE_WITH_RPC)
192 193 194
#include "paddle/fluid/pybind/rpc.h"
#endif

195
#include "paddle/fluid/eager/api/utils/global_utils.h"
196
#include "paddle/fluid/eager/nan_inf_utils.h"
197
#include "paddle/fluid/imperative/layout_autotune.h"
198
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/vjp.h"
199 200
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
201 202
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
203 204
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
205
#include "paddle/phi/core/flags.h"
206 207
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
208 209
#include "pybind11/stl.h"

210
PHI_DECLARE_bool(use_mkldnn);
211

Q
Qiao Longfei 已提交
212 213
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
214 215 216
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
217

218
DECLARE_FILE_SYMBOLS(init_phi);
219
DECLARE_FILE_SYMBOLS(kernel_dialect);
220
namespace paddle {
221
namespace pybind {
222

0
0x45f 已提交
223
PyTypeObject *g_framework_scope_pytype = nullptr;
224
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
225
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
226
PyTypeObject *g_data_type_pytype = nullptr;
227

228 229 230 231 232 233 234 235
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

236
bool IsCompiledWithCUDA() {
237 238 239 240 241 242 243
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

269 270
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
271 272 273 274 275 276
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
299 300 301 302 303 304 305 306
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

307
bool IsCompiledWithMKLDNN() {
308
#ifndef PADDLE_WITH_DNNL
309 310 311 312 313 314
  return false;
#else
  return true;
#endif
}

315 316 317 318 319 320 321 322
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

323 324 325 326 327 328 329 330 331
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

332 333 334 335 336 337 338 339
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

340
bool SupportsBfloat16() {
341
#ifndef PADDLE_WITH_DNNL
342 343
  return false;
#else
344
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
345 346 347 348 349 350
    return true;
  else
    return false;
#endif
}

351
bool SupportsBfloat16FastPerformance() {
352
#ifndef PADDLE_WITH_DNNL
353 354
  return false;
#else
355
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
356 357 358 359 360 361
    return true;
  else
    return false;
#endif
}

362
bool SupportsInt8() {
363
#ifndef PADDLE_WITH_DNNL
364 365
  return false;
#else
366 367
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
368 369 370 371
#endif
}

bool SupportsVNNI() {
372
#ifndef PADDLE_WITH_DNNL
373 374
  return false;
#else
375 376
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
377 378 379
#endif
}

380
bool IsCompiledWithBrpc() {
381
#ifndef PADDLE_WITH_DISTRIBUTE
382
  return false;
383
#else
384
  return true;
385
#endif
386 387
}

Y
update  
Yancey1989 已提交
388
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
389
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
390 391 392 393 394 395
  return true;
#else
  return false;
#endif
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
531 532
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
533 534
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
548 549
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
550 551
    }
    vec_res.emplace_back(
552
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
553 554 555 556 557 558 559 560 561 562 563 564
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
565 566
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
567 568 569 570 571 572 573 574 575 576 577 578
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
579 580 581
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
582 583 584 585
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
586 587
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
588 589 590 591
  }
  return vec_res;
}

O
OccupyMars2025 已提交
592
static void inline CreateVariableIfNotExist(
593 594
    const py::handle &py_handle,
    const framework::Scope &scope,
595 596 597 598 599 600
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
601 602
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
603 604 605 606 607 608 609 610 611 612 613 614 615
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
616 617 618
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
619 620 621 622 623
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
624 625 626 627 628
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
629 630
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
631
        PADDLE_ENFORCE_NOT_NULL(
632 633 634
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
635 636 637
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
638
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
639
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
640 641
        tensor_temp->mutable_data(
            exe->GetPlace(),
642
            framework::TransToPhiDataType(var_desc.GetDataType()));
643 644 645
      }
    }
  } else {
646 647
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
648 649 650 651 652
  }

  return;
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
669 670
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
671 672 673 674 675 676 677
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
678 679 680 681
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
682
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
683 684 685 686 687 688 689 690
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

691 692 693 694 695
void BindVjp(pybind11::module *m) {
  m->def(
      "call_vjp",
      [](ir::Operation &fwd_op,
         const std::vector<std::vector<ir::OpResult>> &out_grads,
696
         const std::vector<std::vector<bool>> &stop_gradients) {
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        py::list res;
        ir::IrContext *ctx = ir::IrContext::Instance();
        ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
        auto vjp_interface_impl =
            fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
        if (vjp_interface_impl == nullptr) {
          PADDLE_THROW(phi::errors::InvalidArgument(
              "The vjp function is not registered in %s op ", fwd_op.name()));
        }
        std::vector<std::vector<ir::OpResult>> vjp_res =
            vjp_interface_impl->vjp_(&fwd_op, out_grads, stop_gradients);
        PADDLE_ENFORCE_EQ(
            stop_gradients.size(),
            vjp_res.size(),
            phi::errors::InvalidArgument(
                "The size of stop_gradients should be the same as vjp_res "
                "size."
                "But the size of stop_gradients: %d, vjp_res size: %d",
                stop_gradients.size(),
                vjp_res.size()));
        for (size_t i = 0; i < vjp_res.size(); ++i) {
          PADDLE_ENFORCE_EQ(stop_gradients[i].size(),
                            vjp_res[i].size(),
                            phi::errors::InvalidArgument(
                                "The size of stop_gradients[%d] should be the "
                                "same as vjp_res[%d] "
                                "size."
                                "But the size of stop_gradients[%d]: %d, "
                                "vjp_res[%d] size: %d",
                                i,
                                i,
                                i,
                                stop_gradients[i].size(),
                                i,
                                vjp_res[i].size()));
          py::list sub_res;
          for (size_t j = 0; j < vjp_res[i].size(); ++j) {
734
            if (!vjp_res[i][j]) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
              sub_res.append(nullptr);
            } else {
              sub_res.append(vjp_res[i][j]);
            }
          }
          res.append(sub_res);
        }
        return res;
      });

  m->def("has_vjp", [](ir::Operation &fwd_op) {
    ir::IrContext *ctx = ir::IrContext::Instance();
    ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
    auto vjp_interface_impl =
        fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
    if (vjp_interface_impl == nullptr) return false;
    return true;
  });
}
754
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
755
  BindImperative(&m);
756
  BindEager(&m);
J
Jack Zhou 已提交
757
  BindEagerStringTensor(&m);
758
  BindCudaStream(&m);
J
james 已提交
759
  BindXpuStream(&m);
760
  BindJit(&m);
761
  BindEvalFrame(&m);
762
  BindCustomDevicePy(&m);
763

Y
Yu Yang 已提交
764
  // Not used, just make sure cpu_info.cc is linked.
765
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
766

Y
Refine  
Yu Yang 已提交
767
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
768

769 770
  AssertStaticGraphAndDygraphGradMakerNoDiff();

771
  m.doc() = "C++ core of PaddlePaddle";
772

773 774 775 776
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

777
  BindException(&m);
Y
Yu Yang 已提交
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

817 818 819 820 821 822 823 824 825 826
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
827 828 829 830
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
831 832
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
833 834
  m.def("set_num_threads", &platform::SetNumThreads);

835 836
  m.def("disable_signal_handler", &DisableSignalHandler);

837 838 839 840 841 842 843 844
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  py::class_<egr::GradNodeBase, std::shared_ptr<egr::GradNodeBase>>(
      m, "GradNodeBase")
      .def("name",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->name();
           })
      .def_property_readonly(
          "next_functions",
          [](const std::shared_ptr<egr::GradNodeBase> &self) {
            return self->NextFunctions();
          })
      .def("input_meta",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->InputMeta();
           })
      .def("output_meta", [](const std::shared_ptr<egr::GradNodeBase> &self) {
        return self->OutputMeta();
      });
863

864
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
865
  m.def("cudnn_version", &platform::DnnVersion);
866 867 868 869 870 871
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
872
#endif
873

Z
Zeng Jinle 已提交
874 875 876 877
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

878 879
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
880
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
881 882 883 884 885 886
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
887
      .def_static("gen_new_memory_pool_id",
888 889 890 891 892
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
893 894
#endif

Z
Zeng Jinle 已提交
895 896 897 898
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
899 900 901
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
902 903

    PADDLE_ENFORCE_NOT_NULL(
904 905 906 907
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
908

6
633WHU 已提交
909 910
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
911
    phi::DenseTensor tensor;
6
633WHU 已提交
912

S
Siming Dai 已提交
913
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
914
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
915
    }
916
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
917
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
918
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
919 920 921 922
    }
#endif
    return tensor;
  });
H
hong 已提交
923

924
  m.def("_create_loaded_parameter",
925 926
        [](const py::handle &vec_var_list,
           const Scope &scope,
927
           const Executor *executor) {
O
OccupyMars2025 已提交
928
          CreateVariableIfNotExist(vec_var_list, scope, executor);
929 930
        });

931 932 933 934 935 936
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
937 938
  });

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

964 965 966 967 968 969
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
970

S
sneaxiy 已提交
971
  m.def(
S
sneaxiy 已提交
972
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
973 974 975 976
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
977 978 979
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
996
            }
997
            all_kernels_info.emplace(op_type, kernel_types);
998
          }
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
1015
                }
1016 1017
              } else {
                kernel_types.emplace_back(kernel_type_str);
1018
              }
1019
            }
1020 1021 1022
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
1023
          }
1024
        }
1025

1026 1027 1028 1029
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
1030 1031 1032
           Return the registered kernels in paddle.

           Args:
1033
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
1034
           )DOC");
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1088 1089 1090 1091 1092 1093
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1094 1095
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1096
    platform::XCCLCommContext::Release();
1097 1098 1099
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1100
    phi::DeviceManager::Release();
1101 1102
#endif
  });
1103

S
sneaxiy 已提交
1104 1105 1106
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1107
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1108

1109
  m.def("_set_fuse_parameter_group_size",
1110
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1111
  m.def("_set_fuse_parameter_memory_size",
1112
        &paddle::framework::ir::SetFuseParameterMemorySize);
1113

S
sneaxiy 已提交
1114 1115 1116
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1117 1118
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1119 1120
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1121 1122 1123
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1124
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1125 1126 1127

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1128
      .def(py::init<>())
1129
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1130
      .def("set_int",
1131 1132
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1133 1134 1135 1136 1137 1138 1139
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1140 1141
      .def(
          "get_tensor",
1142 1143
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1144 1145
          },
          py::return_value_policy::reference)
1146 1147
      .def("get_bytes",
           [](Variable &self) {
1148 1149 1150 1151 1152 1153
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1154
           })
S
Steffy-zxf 已提交
1155
      .def("set_string_list",
1156
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1157 1158
             *self.GetMutable<Strings>() = str_list;
           })
1159
      .def("set_vocab",
1160 1161
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1162 1163
             *self.GetMutable<Vocab>() = vocab;
           })
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1190
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1191 1192 1193 1194 1195 1196
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1197
#endif
1198 1199 1200
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1201 1202
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1213 1214
                scope_vec->size(),
                0,
1215 1216 1217 1218 1219
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1220 1221 1222 1223
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1224

S
sneaxiy 已提交
1225
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1226

0
0x45f 已提交
1227
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1241
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1242 1243 1244 1245 1246
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1247 1248 1249
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1250 1251
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1252 1253
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1254 1255 1256 1257 1258 1259 1260
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1261
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1262

1263
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1264
           current scope, the variable would be created. Otherwise,
1265
           return the existing variable.
S
sneaxiy 已提交
1266 1267

           Args:
1268 1269
               name (str): the variable name.

S
sneaxiy 已提交
1270
           Returns:
1271
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1272
           )DOC",
1273
          py::return_value_policy::reference)
1274 1275 1276
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1277
           R"DOC(
1278
           Find variable named :code:`name` in the current scope or
1279
           its parent scope. Return None if not found.
1280

S
sneaxiy 已提交
1281 1282
           Args:
               name (str): the variable name.
1283

S
sneaxiy 已提交
1284
           Returns:
1285
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1286
           )DOC",
1287
           py::return_value_policy::reference)
1288
      .def("size", &Scope::Size)
1289 1290 1291
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1292 1293
           R"DOC(
           Find variable named :code:`name` in the current scope or
1294
           its parent scope. Return None if not found.
1295 1296 1297 1298 1299 1300 1301 1302

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1303
      .def(
1304 1305
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1306
          R"DOC(
S
sneaxiy 已提交
1307 1308 1309 1310 1311
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1312
          py::return_value_policy::reference)
1313 1314
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1315 1316
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1317
           )DOC")
1318
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1319
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1320

1321 1322 1323 1324 1325 1326 1327 1328
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1329
        Create a new scope.
1330

S
sneaxiy 已提交
1331 1332 1333
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1334
      py::return_value_policy::reference);
S
sneaxiy 已提交
1335

Y
Yu Yang 已提交
1336 1337
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1338 1339
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1340 1341 1342 1343
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1344
        PADDLE_ENFORCE_EQ(
1345 1346
            info.Proto().SerializeToString(&str),
            true,
1347 1348
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1349 1350 1351
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1352 1353
    return ret_values;
  });
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1392 1393 1394 1395 1396 1397 1398 1399
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1400
              res = op_checker->GetDefaultAttrsMap();
1401 1402 1403 1404
            }
          }
          return res;
        });
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1421
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
1422 1423
  m.def("_set_bwd_prim_blacklist",
        &paddle::prim::PrimCommonUtils::SetPrimBackwardBlacklist);
1424 1425
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1426 1427 1428 1429 1430
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1431 1432 1433

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1434
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1435 1436 1437 1438

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1439
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1440
            PADDLE_THROW(platform::errors::NotFound(
1441
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1442 1443 1444 1445 1446 1447 1448 1449
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1450
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1451 1452
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1453
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1454 1455
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1456 1457 1458
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1459
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1460
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1461 1462
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1474
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1475
                      << op_desc.Type();
J
Jiabin Yang 已提交
1476 1477 1478
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1479
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1480
                      << op_desc.Type();
J
Jiabin Yang 已提交
1481 1482 1483 1484 1485 1486 1487 1488
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1489 1490 1491 1492 1493 1494 1495 1496
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1497 1498 1499
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1500 1501 1502
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1503 1504 1505 1506 1507
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1508 1509 1510
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1511 1512 1513
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1514
  m.def("infer_no_need_buffer_slots",
1515 1516
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1544 1545 1546 1547 1548 1549
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1550 1551
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1552

1553
            Args:
1554 1555 1556
                   program (ProgramDesc): The original program.

             Returns:
1557
                   tuple(ProgramDesc, map<int, int>): The first part is
1558 1559 1560 1561
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1562 1563 1564 1565
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1566 1567
    VLOG(4) << s;
    return s;
1568 1569 1570 1571 1572 1573
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1574
  });
1575 1576 1577 1578
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1579 1580 1581
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1582 1583
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1584

Y
Yu Yang 已提交
1585
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1586
      .def_static("create",
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1602 1603 1604 1605
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1606
                    return context;
Q
qijun 已提交
1607
                  })
1608 1609 1610 1611
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1612
#ifndef PADDLE_WITH_XPU
1613 1614 1615
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1616
#else
W
Wilber 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1630 1631 1632 1633
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1634
      return context;
1635
#endif
1636 1637 1638 1639
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1640
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1641 1642 1643 1644
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1645 1646
#else
                return new paddle::platform::CustomDeviceContext(place);
1647
#endif
1648 1649 1650 1651 1652
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1653
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1654 1655 1656
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1657
#else
L
Leo Chen 已提交
1658
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1671 1672 1673 1674
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1675 1676 1677 1678
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1679 1680
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1681
#endif
1682 1683 1684 1685 1686
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1687
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1688 1689 1690
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1691 1692 1693
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1694
          });
1695
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1696 1697
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1698 1699 1700
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1701
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1702
#else
R
ronnywang 已提交
1703
          VLOG(1) << string::Sprintf(
1704 1705 1706 1707
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1708
              "PaddlePaddle by: pip install paddlepaddle\n");
1709 1710 1711 1712 1713 1714
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1715
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1716
#else
R
ronnywang 已提交
1717
          VLOG(1) << string::Sprintf(
1718 1719 1720 1721
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1722
              "PaddlePaddle by: pip install paddlepaddle\n");
1723 1724 1725 1726 1727 1728
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1729
    devices = phi::DeviceManager::GetAllDeviceList();
1730
#else
R
ronnywang 已提交
1731
          VLOG(1) << string::Sprintf(
1732 1733 1734 1735
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1736
              "PaddlePaddle by: pip install paddlepaddle\n");
1737 1738 1739 1740 1741 1742
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1743
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1744
#else
R
ronnywang 已提交
1745
          VLOG(1) << string::Sprintf(
1746 1747 1748 1749 1750 1751
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1752
              "PaddlePaddle by: pip install paddlepaddle\n");
1753 1754 1755
#endif
    return devices;
  });
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1775

Y
Yu Yang 已提交
1776
  py::class_<OperatorBase>(m, "Operator")
1777 1778 1779 1780 1781 1782 1783
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1784 1785
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1786 1787 1788 1789 1790 1791
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1792
      .def("run",
1793 1794
           [](OperatorBase &self,
              const Scope &scope,
1795 1796 1797 1798
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1799
      .def("run",
1800 1801
           [](OperatorBase &self,
              const Scope &scope,
1802 1803 1804 1805
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1806
      .def("run",
1807 1808
           [](OperatorBase &self,
              const Scope &scope,
1809 1810 1811 1812
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1813
      .def("run",
1814 1815
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1816
              const platform::CUDAPinnedPlace &place) {
1817
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1818 1819
             self.Run(scope, place);
           })
R
ronnywang 已提交
1820
      .def("run",
1821 1822
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1823 1824 1825 1826
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1827 1828 1829 1830 1831
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1832 1833
             return op.Outputs();
           })
Q
qijun 已提交
1834 1835
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1836
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1837
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1838 1839 1840 1841
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1842

1843 1844 1845
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1846 1847
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1848 1849 1850 1851 1852 1853
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1854 1855
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1856

1857 1858
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1859
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1860
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1861
      .def("close", &Executor::Close)
1862 1863
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1864
           py::call_guard<py::gil_scoped_release>())
1865 1866
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1867
           py::call_guard<py::gil_scoped_release>())
1868
      .def("init_for_dataset",
1869 1870 1871 1872
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1873
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1874
             pybind11::gil_scoped_release release;
1875 1876 1877 1878 1879 1880 1881
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1882
      .def("run_prepared_ctx",
1883 1884 1885
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1886
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1887
              std::map<std::string, FetchType *> *fetch_targets,
1888 1889
              bool create_local_scope = true,
              bool create_vars = true,
1890 1891 1892
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1893 1894 1895 1896 1897 1898 1899 1900
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1901
           })
1902
      .def("run_prepared_ctx",
1903 1904 1905 1906 1907
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1908 1909
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1910 1911
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1912
           })
1913
      .def("prepare",
1914 1915 1916
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1917 1918 1919 1920
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1921 1922
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1923 1924
           })
      .def("create_variables", &Executor::CreateVariables)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1941

1942
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1943
      .def(py::init<>())
1944 1945 1946 1947 1948
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1949

1950
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1951 1952 1953
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1954
      .def("run",
1955
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1956 1957 1958
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1959
               ret = self.Run(feed_names);
1960 1961
             }
             return py::cast(std::move(ret));
H
hong 已提交
1962 1963
           });

1964 1965
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1966
      .def(py::init<const std::string &>(), py::arg("type"))
1967 1968 1969 1970
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1971 1972
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1985

D
dzhwinter 已提交
1986
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1987
  m.def("init_glog", framework::InitGLOG);
1988
  m.def("init_memory_method", framework::InitMemoryMethod);
1989 1990 1991 1992
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1993 1994 1995 1996 1997 1998 1999 2000
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
2001 2002
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2003
  m.def("init_tensor_operants", []() {
2004 2005 2006 2007 2008 2009
    paddle::OperantsManager::Instance().eager_operants =
        std::make_unique<paddle::prim::EagerTensorOperants>();
    paddle::OperantsManager::Instance().static_operants =
        std::make_unique<paddle::prim::StaticTensorOperants>();
    paddle::OperantsManager::Instance().phi_operants =
        std::make_unique<paddle::operants::PhiTensorOperants>();
2010 2011
    VLOG(4) << "Initialize tensor operants successfully";
  });
2012
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2013
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2014
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2015
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2016
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2017
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2018
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2019
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2020 2021
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2022
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2023
  m.def("is_run_with_cinn", IsRunWithCINN);
2024
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2025
  m.def("supports_bfloat16", SupportsBfloat16);
2026
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2027 2028
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2029
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2030
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2031
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2032 2033 2034
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
2035 2036 2037 2038 2039
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2059 2060 2061
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
2062 2063
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
2064 2065
  m.def(
      "run_cmd",
2066 2067
      [](const std::string &cmd,
         int time_out = -1,
2068
         int sleep_inter = -1) -> const std::string {
2069 2070
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2071
      },
2072 2073 2074
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2075 2076
  m.def(
      "shell_execute_cmd",
2077 2078 2079
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2080
         bool redirect_stderr = false) -> std::vector<std::string> {
2081 2082
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2083
      },
2084 2085 2086
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2087
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2088

S
Steffy-zxf 已提交
2089
  m.def("set_feed_variable",
2090 2091
        static_cast<void (*)(  // NOLINT
            Scope *,
2092
            const phi::DenseTensor &,
2093 2094
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2095
  m.def("set_feed_variable",
2096 2097
        static_cast<void (*)(  // NOLINT
            Scope *,
2098
            const std::vector<std::string> &,
2099 2100
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2101
  m.def("get_fetch_variable",
2102 2103
        [](const Scope &scope,
           const std::string &var_name,
2104 2105 2106
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2107
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2108
          } else {
R
Ruibiao Chen 已提交
2109
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2110 2111
          }
        });
2112
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2113

X
Xin Pan 已提交
2114 2115
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2116 2117 2118 2119
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2120
  BindCostModel(&m);
2121
  BindConstValue(&m);
2122
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2123
  BindFleetExecutor(&m);
2124
  BindTCPStore(&m);
2125
  BindCommContextManager(&m);
2126
  BindAutoParallel(&m);
2127
  BindJitProperty(&m);
Y
Yu Yang 已提交
2128

Y
Yu Yang 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2138
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2139
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2140 2141 2142

    Examples:
        .. code-block:: python
2143

Z
Zeng Jinle 已提交
2144 2145 2146
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2147 2148 2149 2150
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2151 2152
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2153 2154 2155 2156
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2157 2158
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2159
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2160 2161
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2162 2163 2164
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2165 2166 2167
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2168 2169
      .def(
          "append",
2170
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2171 2172 2173 2174
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2175 2176
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2177
             Append a LoDensor to LoDTensorArray.
2178

2179 2180 2181 2182 2183
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2195
           )DOC")
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2207

2208
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2209
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2210
        )DOC")
2211 2212 2213 2214 2215 2216
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2217
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2218
                res[i] = py::cast(std::move(data));
2219 2220 2221
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2222
              } else {
R
Ruibiao Chen 已提交
2223
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2235

2236 2237
      .def(
          "append",
2238
          [](FetchList &self, const phi::DenseTensor &t) {
2239
            self.emplace_back();
2240
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2241 2242 2243 2244 2245 2246 2247 2248 2249
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2250
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2251 2252 2253 2254 2255 2256
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2257 2258

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2259
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2260
        )DOC")
2261 2262 2263 2264 2265 2266 2267 2268
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2269
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2270 2271
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2272
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2287

Y
Yu Yang 已提交
2288
  m.def("op_support_gpu", OpSupportGPU);
2289
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2290
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2291
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2292 2293 2294 2295 2296 2297 2298 2299
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2300 2301 2302 2303 2304 2305
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2306 2307

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2333
      });
D
dangqingqing 已提交
2334

2335
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2336 2337 2338
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2339 2340 2341
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2342 2343 2344
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2345
#endif
P
peizhilin 已提交
2346
#endif
Y
Yu Yang 已提交
2347

J
jianghaicheng 已提交
2348 2349 2350 2351
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2352 2353 2354 2355 2356 2357
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2358 2359 2360 2361
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2362
      .value("kAll", platform::ProfilerState::kAll)
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2374
  m.def("set_tracer_option", platform::SetTracerOption);
2375 2376
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2377
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2378
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2379
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2380
    PADDLE_ENFORCE_EQ(
2381 2382
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2383 2384 2385
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2386
    callable.inc_ref();
2387 2388 2389 2390
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2391 2392
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2393 2394
          return pass;
        });
2395
  });
2396
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2397 2398 2399
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
2400 2401 2402
  m.def("register_subgraph_pass", [](const std::string &pass_type) {
    framework::ir::Pass::AddSupportSubgraphPass(pass_type);
  });
Y
Yu Yang 已提交
2403

2404
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2405 2406
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2407 2408
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2409 2410
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2411 2412 2413 2414 2415 2416 2417 2418 2419
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2484 2485
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2486 2487 2488 2489
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2490 2491 2492
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2493 2494 2495 2496 2497
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2498 2499 2500
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2501 2502

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2503 2504
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2505
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2506
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2507 2508
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2509
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2510 2511 2512 2513 2514 2515
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2539 2540 2541 2542 2543 2544 2545 2546
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2565 2566
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2567 2568
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2569

2570
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2571 2572 2573 2574
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2575
#endif  // PADDLE_WITH_CUDA
2576 2577 2578 2579 2580 2581 2582 2583
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2584

J
jianghaicheng 已提交
2585 2586
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2587 2588 2589
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2590 2591 2592 2593 2594 2595 2596
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2597
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2598 2599
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2600
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2611 2612 2613 2614
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2637 2638
                         option.get_type(),
                         option_name));
2639 2640 2641 2642 2643 2644 2645
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2646 2647
                         option_name,
                         option.first.cast<std::string>(),
2648 2649
                         option.second.cast<std::uint64_t>());
                   }
2650 2651 2652 2653 2654 2655
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2701 2702
                           option.second.get_type(),
                           option_key));
2703
                     }
2704 2705
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2706 2707 2708 2709 2710 2711
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2712 2713
                     element.second.get_type(),
                     option_name));
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2744 2745
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2746 2747 2748
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2749 2750
#endif

2751 2752 2753
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
2754 2755 2756
    for (auto &op_item : list_op) {
      auto op_name = (op_item.first).c_str();
      auto counts = op_item.second;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2768 2769 2770 2771 2772 2773 2774 2775
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2776
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2777 2778 2779 2780 2781 2782 2783 2784 2785
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2786
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2787 2788 2789 2790 2791 2792 2793
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2794 2795
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2796

2797 2798
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2799

2800 2801
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2802
  // Add the api for nan op debug
2803 2804 2805 2806
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2807 2808
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2809

2810 2811 2812 2813 2814 2815 2816
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
D
dongdaxiang 已提交
2817
  BindFleetWrapper(&m);
2818
  BindIO(&m);
2819 2820 2821
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
  py::enum_<phi::DataType> data_type(m, "DataType");
  g_data_type_pytype = (PyTypeObject *)data_type.ptr();  // NOLINT
  data_type.value("UNDEFINED", phi::DataType::UNDEFINED)
      .value("BOOL", phi::DataType::BOOL)
      .value("UINT8", phi::DataType::UINT8)
      .value("INT8", phi::DataType::INT8)
      .value("UINT16", phi::DataType::UINT16)
      .value("INT16", phi::DataType::INT16)
      .value("UINT32", phi::DataType::UINT32)
      .value("INT32", phi::DataType::INT32)
      .value("UINT64", phi::DataType::UINT64)
      .value("INT64", phi::DataType::INT64)
      .value("FLOAT32", phi::DataType::FLOAT32)
      .value("FLOAT64", phi::DataType::FLOAT64)
      .value("COMPLEX64", phi::DataType::COMPLEX64)
      .value("COMPLEX128", phi::DataType::COMPLEX128)
      .value("FLOAT16", phi::DataType::FLOAT16)
      .value("BFLOAT16", phi::DataType::BFLOAT16)
      .export_values();

T
Thunderbrook 已提交
2843
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2844
  BindHeterWrapper(&m);
2845
  BindMetrics(&m);
T
Thunderbrook 已提交
2846
#endif
T
Thunderbrook 已提交
2847
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2848
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2849 2850 2851
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2852
#endif
2853
  BindGlooWrapper(&m);
H
hutuxian 已提交
2854
  BindBoxHelper(&m);
H
hutuxian 已提交
2855 2856 2857
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2858
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2859
  BindNCCLWrapper(&m);
2860 2861 2862
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2863
#endif
F
flame 已提交
2864 2865
  BindGraph(&m);
  BindNode(&m);
2866
  BindPass(&m);
F
flame 已提交
2867
  BindInferenceApi(&m);
2868
  BindCompatible(&m);
2869
  BindDataset(&m);
Y
yaoxuefeng 已提交
2870
  BindGenerator(&m);
2871
#ifndef PADDLE_NO_PYTHON
2872 2873
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2874 2875 2876
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2877

T
tangwei12 已提交
2878
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2879 2880
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2881
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2882 2883
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2884 2885 2886 2887 2888
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2889 2890 2891 2892
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2893
#ifdef PADDLE_WITH_HETERPS
2894 2895
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2896 2897 2898
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2899
#endif
X
Xinger 已提交
2900
#if defined(PADDLE_WITH_RPC)
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2913 2914

  BindNewIR(&m);
2915
  BindVjp(&m);
L
Luo Tao 已提交
2916
}
2917
}  // namespace pybind
2918
}  // namespace paddle