pybind.cc 22.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14 15 16 17 18 19 20
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
21

Y
Yi Wang 已提交
22
#include "paddle/fluid/pybind/protobuf.h"
Q
qijun 已提交
23

Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/backward.h"
25
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
26 27 28 29 30 31 32
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
35
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
36 37 38 39 40 41 42 43 44
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/pybind.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
47

48
#include "paddle/fluid/string/to_string.h"
49

D
Dong Zhihong 已提交
50
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
51 52 53
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
54 55
#endif

Q
Qiao Longfei 已提交
56 57 58
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

59
namespace paddle {
60
namespace pybind {
61
bool IsCompiledWithCUDA() {
62
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
63 64 65 66 67 68
  return false;
#else
  return true;
#endif
}

69 70
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
71

72 73 74 75
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
76 77
  BindException(m);

78 79 80
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
81
      .def("get_dims",
82
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
83
      .def("set_dims",
Q
qijun 已提交
84
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
85
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
86
           })
D
dzhwinter 已提交
87 88 89 90
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
91
      .def("alloc_float",
D
dzhwinter 已提交
92
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
93
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
94
           })
Q
qijun 已提交
95
      .def("alloc_float",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
98 99
           })
      .def("alloc_int",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
102
           })
Q
qijun 已提交
103
      .def("alloc_int",
D
dzhwinter 已提交
104
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<int>(place);
Q
qijun 已提交
106
           })
C
chengduoZH 已提交
107 108 109 110 111 112 113 114
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
115 116
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
117
      .def("set", PyCPUTensorSetFromArray<double>)
118
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
119
      .def("set", PyCPUTensorSetFromArray<bool>)
120
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
121
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
122 123
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
124
      .def("set", PyCUDATensorSetFromArray<double>)
125
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
126
      .def("set", PyCUDATensorSetFromArray<bool>)
127
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
C
chengduoZH 已提交
128 129 130 131 132 133
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
Q
qijun 已提交
134
#endif
135
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
136 137 138 139 140
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
141

142
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
143 144
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
145 146 147
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
148 149 150 151
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
152
          })
Y
Yu Yang 已提交
153
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
154
      .def("set_lod",
155
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
156
             LoD new_lod;
157 158 159
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
160
           })
161
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
162 163 164 165 166
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
167 168
      });

Q
qijun 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
182 183 184 185 186 187 188 189 190
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
191 192 193 194 195 196 197 198 199 200 201
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
202

203
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
204 205 206

All parameter, weight, gradient are variables in Paddle.
)DOC")
207
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
208
      .def("set_int",
209 210
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
211 212 213 214 215 216 217
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
218
      .def("get_tensor",
219 220
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
221 222
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
223 224 225
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
226 227 228 229 230
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
231 232 233
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
234 235 236 237 238 239 240
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
241
      .def("get_net",
D
dongzhihong 已提交
242 243
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
244
           },
Y
Refine  
Yu Yang 已提交
245 246 247 248 249 250
           py::return_value_policy::reference)
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
251
           py::return_value_policy::reference);
252

Y
Refine  
Yu Yang 已提交
253 254 255 256
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("has_next", &framework::ReaderHolder::HasNext)
      .def("reset", &framework::ReaderHolder::ReInit);

257
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
258
      .def("var",
259
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
260
             return self.Var(name);
Y
Yu Yang 已提交
261
           },
262
           py::return_value_policy::reference)
263
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
264
      .def(py::init<>())
265
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
266
           py::return_value_policy::reference)
Y
Yu Yang 已提交
267
      .def("drop_kids", &Scope::DropKids);
268

Y
Yu Yang 已提交
269 270
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
271 272
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
273 274 275 276 277 278 279 280 281 282
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
283 284
    return ret_values;
  });
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
301
  m.def("prune", [](const ProgramDesc &origin,
302
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
303
    ProgramDesc prog_with_targets(origin);
304
    for (const auto &t : targets) {
305
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
306
    }
307
    proto::ProgramDesc pruned_desc;
308
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
309
    return new ProgramDesc(pruned_desc);
310
  });
Y
Yu Yang 已提交
311
  m.def("inference_optimize", [](ProgramDesc &origin) {
312
    proto::ProgramDesc pruned_desc;
313
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
314
    return new ProgramDesc(pruned_desc);
315
  });
F
fengjiayi 已提交
316 317
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
318 319 320
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
321 322
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
323
  // clang-format off
Y
Yu Yang 已提交
324
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
325 326
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
327
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
328 329 330
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
331
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
332
                      -> paddle::platform::DeviceContext* {
333
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
334
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
335
#else
Q
qijun 已提交
336
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
337
#endif
C
chengduoZH 已提交
338 339 340 341 342 343 344 345 346 347 348
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
349 350 351 352
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
353
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
354
      .def(py::init<int>())
D
dzhwinter 已提交
355
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
356

357 358 359
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
360

C
chengduoZH 已提交
361 362 363 364
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
365 366 367 368 369 370 371
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
372
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
373
             self = gpu_place;
C
chengduoZH 已提交
374 375
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
376 377
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
378
      });
Y
Yu Yang 已提交
379

Y
Yu Yang 已提交
380 381 382
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
383
                    proto::OpDesc desc;
Y
Yu Yang 已提交
384 385 386 387 388
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
389
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
390 391 392 393 394 395
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
396
      .def("run",
397
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
398 399 400
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
401
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
402 403 404 405 406
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
407 408 409 410 411 412 413
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
414 415
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
416
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
417
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
418 419 420 421
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
422

Y
Yu Yang 已提交
423 424 425 426 427 428 429
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
430 431
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
432 433 434 435
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
436

Z
cond op  
zchen0211 已提交
437 438 439 440
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
441
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
442 443 444 445 446
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
447
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
448 449 450 451 452 453 454 455 456 457 458
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
459
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
460
      .def(py::init<const platform::Place &>())
461 462 463
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
464

D
dzhwinter 已提交
465
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
466
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
467
  m.def("init_devices", &framework::InitDevices);
468

469
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
470 471 472 473 474 475
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
476

477
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
478
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
479

F
fengjiayi 已提交
480 481 482 483
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
484
  BindConstValue(m);
Y
Yu Yang 已提交
485

Y
Yu Yang 已提交
486 487 488 489 490 491 492 493 494
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
512
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
513
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
514
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
515 516 517 518

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
519
#endif
Y
Yu Yang 已提交
520

521 522 523 524
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
525
      .value("kAll", platform::ProfilerState::kAll)
526 527 528 529 530 531 532 533 534 535 536 537 538 539
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
540

Y
Yu Yang 已提交
541
  py::class_<ParallelExecutor>(m, "ParallelExecutor")
Y
Yu Yang 已提交
542
      .def("__init__",
543
           [](ParallelExecutor &self, size_t num_threads, bool use_event,
Y
Yu Yang 已提交
544 545 546 547
              const std::vector<platform::Place> &places,
              const std::unordered_set<std::string> &params,
              const ProgramDesc &startup_program,
              const ProgramDesc &main_program, const std::string &loss_var_name,
X
Xin Pan 已提交
548
              Scope *scope, bool allow_op_delay) {
549 550
             new (&self) ParallelExecutor(num_threads, use_event, places,
                                          params, startup_program, main_program,
X
Xin Pan 已提交
551
                                          loss_var_name, scope, allow_op_delay);
Y
Yu Yang 已提交
552
           })
Y
Yu Yang 已提交
553
      .def("run", &ParallelExecutor::Run);
Y
Yu Yang 已提交
554

Y
Yu Yang 已提交
555
  BindRecordIOWriter(m);
556
  return m.ptr();
L
Luo Tao 已提交
557
}
558
}  // namespace pybind
559
}  // namespace paddle