pybind.cc 60.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

M
minqiyang 已提交
79 80
#include "pybind11/stl.h"

81 82 83 84
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
85 86 87
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

88
namespace paddle {
89
namespace pybind {
90
bool IsCompiledWithCUDA() {
91
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
92 93 94 95 96 97
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

106 107 108 109 110 111 112 113
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

114
bool IsCompiledWithBrpc() {
115
#ifndef PADDLE_WITH_DISTRIBUTE
116 117
  return false;
#endif
118 119 120 121 122 123

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
124 125
}

Y
update  
Yancey1989 已提交
126
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
127
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
128 129 130 131 132 133
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

144
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
145 146 147
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
148
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
149

150
  m.doc() = "C++ core of PaddlePaddle";
151

152 153 154 155
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

156
  BindException(&m);
Y
Yu Yang 已提交
157

S
sneaxiy 已提交
158
  m.def(
S
sneaxiy 已提交
159
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
160 161 162 163
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
164 165 166
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
167 168 169
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
170
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
171

172 173 174 175 176
  m.def("_set_fuse_parameter_group_size",
        &paddle::framework::details::SetFuseParameterGroupsSize);
  m.def("_set_fuse_parameter_memory_size",
        &paddle::framework::details::SetFuseParameterMemorySize);

S
sneaxiy 已提交
177 178 179
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

180 181 182 183 184 185 186
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
187
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
188 189
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
190
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
191

M
minqiyang 已提交
192
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
193 194 195 196 197 198 199 200
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
201
      .def("_run_backward",
X
Xin Pan 已提交
202
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
203
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
204
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
205
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
206
      .def("_grad_ivar",
M
minqiyang 已提交
207
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
208
           py::return_value_policy::reference)
M
minqiyang 已提交
209
      .def("_copy_to",
P
Paddle CI 已提交
210
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
211 212 213 214 215
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
216
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
217
      .def("_copy_to",
P
Paddle CI 已提交
218
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
219 220 221 222 223
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
224
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
225
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
226
           py::return_value_policy::reference)
227 228 229
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
230
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
231 232 233 234
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
235

236
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
237
      .def(py::init<const std::string &>())
238
      .def("register_backward_hooks",
239 240 241 242 243
           [](imperative::OpBase &self, const py::object &callable,
              bool front = false) {
             self.RegisterBackwardHooks(callable, front);
           },
           py::arg("callable"), py::arg("front") = false)
M
minqiyang 已提交
244 245 246 247 248 249 250 251 252 253
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
254 255 256 257 258 259
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
260
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
261
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
262 263 264 265 266 267
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
268 269
          py::return_value_policy::reference);

X
Xin Pan 已提交
270
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
271
  layer.def(py::init<>())
X
Xin Pan 已提交
272 273 274
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
275
      });
X
Xin Pan 已提交
276

X
polish  
Xin Pan 已提交
277
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
278
      .def(py::init<>())
X
Xin Pan 已提交
279 280
      .def_static(
          "apply",
X
Xin Pan 已提交
281
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
282
              -> std::vector<imperative::VarBase *> {
283 284 285 286 287 288 289 290 291 292 293
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
294 295
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
296 297 298 299 300
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
301

302
  BindImperative(&m);
303

304
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
305
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
306 307
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
308
      .def("_get_dims",
309
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
310
      .def("_set_dims",
Q
qijun 已提交
311
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
312
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
313
           })
Y
yuyang18 已提交
314
      .def("_set_layout",
D
dzhwinter 已提交
315 316 317
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
318
      .def("_alloc_float",
D
dzhwinter 已提交
319
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
320
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
321
           })
Y
yuyang18 已提交
322
      .def("_alloc_float",
Y
Yu Yang 已提交
323
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
324
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
325
           })
Y
yuyang18 已提交
326
      .def("_alloc_int",
Y
Yu Yang 已提交
327
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
328
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
329
           })
Y
yuyang18 已提交
330
      .def("_alloc_int",
D
dzhwinter 已提交
331
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
332
             self.mutable_data<int>(place);
Q
qijun 已提交
333
           })
Y
yuyang18 已提交
334
      .def("_alloc_int",
C
chengduoZH 已提交
335 336 337
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
338
      .def("_alloc_float",
C
chengduoZH 已提交
339 340 341
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
342 343
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
344
      .def("set", PyCPUTensorSetFromArray<double>)
345
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
346
      .def("set", PyCPUTensorSetFromArray<bool>)
347
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
348
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
349
      .def("set", PyCPUTensorSetFromArray<int8_t>)
350
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
351 352
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
353
      .def("set", PyCUDATensorSetFromArray<double>)
354
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
355
      .def("set", PyCUDATensorSetFromArray<bool>)
356
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
357
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
358
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
359 360 361 362 363 364
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
365
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
366
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
367
#endif
368
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
369 370 371 372
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
373
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
374 375
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
376

X
Xin Pan 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
390
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
391
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
392
     columns, hence [5, 2].
X
Xin Pan 已提交
393 394 395

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
396 397
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
421
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
422 423 424 425 426 427 428 429 430 431 432 433 434 435
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
436
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
437 438 439 440 441
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
442
      .def("set_lod",
443
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
444
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
445
             LoD new_lod;
446 447
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
448 449
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
450
             self.set_lod(new_lod);
S
sneaxiy 已提交
451 452 453 454 455 456 457
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
473 474 475 476
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
477
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
478 479
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
480 481

           Args:
482
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
483
           )DOC")
484 485 486 487 488 489 490 491
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
492 493 494 495 496 497 498
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
499
      // Set above comments of set_lod.
500 501 502 503 504 505 506 507
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
508 509 510 511 512
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
513
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
514 515 516 517 518 519 520 521 522 523 524 525
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
526 527 528 529 530 531 532
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
533
           )DOC");
D
dangqingqing 已提交
534

Q
qijun 已提交
535 536 537 538 539 540 541 542 543 544 545
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
546 547
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
548 549
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
550 551 552 553 554 555 556 557 558
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
559
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
560
      .def("rows", [](SelectedRows &self) {
561 562 563 564 565
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
566
      });
Q
qijun 已提交
567

568
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
569 570 571

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
572
      .def(py::init<>())
573
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
574
      .def("set_int",
575 576
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
577 578 579 580 581 582 583
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
584
      .def("get_tensor",
585 586
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
587 588
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
589 590 591
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
592 593 594 595 596
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
597 598 599
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
600
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
601 602 603 604 605
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
606
#endif
Y
Refine  
Yu Yang 已提交
607 608 609 610 611
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
612
           py::return_value_policy::reference);
613

S
sneaxiy 已提交
614
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
615

S
sneaxiy 已提交
616 617 618 619
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
620

S
sneaxiy 已提交
621 622
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
623
      .def("push",
S
sneaxiy 已提交
624
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
625
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
626
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
627
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
628
           })
S
sneaxiy 已提交
629 630 631 632
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
633

S
sneaxiy 已提交
634
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
635 636
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
637
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
638 639 640 641
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
642
        py::return_value_policy::copy);
S
sneaxiy 已提交
643

S
sneaxiy 已提交
644
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
664 665
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
666
      .def("var",
667
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
668
             return self.Var(name);
Y
Yu Yang 已提交
669
           },
S
sneaxiy 已提交
670 671
           py::arg("name"),
           R"DOC(
672
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
673

674
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
675
           current scope, the variable would be created. Otherwise,
676
           return the existing variable.
S
sneaxiy 已提交
677 678

           Args:
679 680
               name (str): the variable name.

S
sneaxiy 已提交
681
           Returns:
682
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
683 684 685 686
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
687
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
688
           its parent scope. Return None if not found.
689

S
sneaxiy 已提交
690 691
           Args:
               name (str): the variable name.
692

S
sneaxiy 已提交
693
           Returns:
694
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
695
           )DOC",
696
           py::return_value_policy::reference)
697
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
698 699 700 701 702 703
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
704
           py::return_value_policy::reference)
S
sneaxiy 已提交
705 706 707
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
708 709
           )DOC")
      .def("_kids", &Scope::kids);
710

S
sneaxiy 已提交
711 712 713 714 715 716
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
717 718
        R"DOC(
        Create a new scope.
719

S
sneaxiy 已提交
720 721 722
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
723 724
        py::return_value_policy::reference);

Y
Yu Yang 已提交
725 726
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
727 728
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
729 730 731 732 733 734 735 736 737 738
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
739 740
    return ret_values;
  });
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
757
  m.def("prune", [](const ProgramDesc &origin,
758
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
759
    ProgramDesc prog_with_targets(origin);
760
    for (const auto &t : targets) {
761
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
762
    }
763
    proto::ProgramDesc pruned_desc;
764
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
765
    return new ProgramDesc(pruned_desc);
766
  });
767 768 769 770
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
771 772 773
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
774 775
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
776
  // clang-format off
Y
Yu Yang 已提交
777
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
778 779
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
780
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
781 782 783
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
784
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
785
                      -> paddle::platform::DeviceContext* {
786
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
787
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
788
#else
Q
qijun 已提交
789
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
790
#endif
C
chengduoZH 已提交
791 792 793 794 795 796 797 798 799 800 801
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
802
// clang-format on
P
peizhilin 已提交
803
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
804 805
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
806 807 808 809 810
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
811 812 813 814 815 816 817 818 819 820 821 822
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
823 824 825 826 827 828
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
829
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
830

831 832 833 834
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
835
      .def(py::init<>())
S
sneaxiy 已提交
836 837 838 839 840 841
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
842
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
843

844 845 846 847
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
848
      .def("__init__",
S
sneaxiy 已提交
849
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
850 851 852
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
853
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
854
           })
S
sneaxiy 已提交
855 856 857 858 859 860 861 862
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
863 864
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
865 866
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
867 868 869 870 871
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
872 873
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
874 875 876 877 878 879
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
880 881 882 883
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
884 885
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
886 887 888 889 890
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
891
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
892
             self = gpu_place;
C
chengduoZH 已提交
893 894
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
895 896
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
897
      });
Y
Yu Yang 已提交
898

Y
Yu Yang 已提交
899 900 901
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
902
                    proto::OpDesc desc;
Y
Yu Yang 已提交
903 904 905 906 907
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
908
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
909
                  })
910
      .def("run",
911
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
912 913 914
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
915
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
916 917 918 919 920
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
921 922 923 924 925 926 927
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
928 929
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
930
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
931
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
932 933 934 935
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
936

F
fengjiayi 已提交
937
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
938
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
939
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
940
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
941
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
942 943
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
944
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
945 946
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
947
      });
S
sneaxiy 已提交
948

D
dzhwinter 已提交
949
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
950
  m.def("init_glog", framework::InitGLOG);
951
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
952 953
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
954

955
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
956
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
957
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
958
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
959
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
960 961 962 963 964 965
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
966

967
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
968
  m.def("get_fetch_variable", framework::GetFetchVariable);
969
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
970

X
Xin Pan 已提交
971 972
  m.def("_is_program_version_supported", IsProgramVersionSupported);

973 974 975 976 977
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
978

Y
Yu Yang 已提交
979 980 981 982 983 984 985 986 987
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
988
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
989 990
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
991 992 993 994 995 996 997 998 999 1000
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1001 1002 1003 1004 1005 1006 1007
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
1008

D
dzhwinter 已提交
1009 1010 1011
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1012
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1013
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1014
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1015

P
peizhilin 已提交
1016
#ifndef _WIN32
D
dangqingqing 已提交
1017 1018 1019
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1020
#endif
P
peizhilin 已提交
1021
#endif
Y
Yu Yang 已提交
1022

1023 1024 1025 1026
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1027
      .value("kAll", platform::ProfilerState::kAll)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1041
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1042
  m.def("reset_profiler", platform::ResetProfiler);
1043
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1044 1045 1046
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1047

1048 1049
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1050
      .def("has", &ir::Pass::Has)
1051 1052 1053
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1054
           })
1055
      .def(
1056
          "set",
1057 1058 1059
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1060 1061
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1062 1063
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1064
        self.Apply(graph.get());
F
flame 已提交
1065
      });
1066

X
fix  
Xin Pan 已提交
1067 1068
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1083
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1084

Y
yuyang18 已提交
1085
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1086 1087 1088 1089
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1101 1102 1103

        )DOC");

Y
yuyang18 已提交
1104
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1105 1106 1107 1108 1109
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1120
      .def_property(
1121 1122 1123 1124
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1125 1126 1127 1128
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1129 1130 1131 1132 1133
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1134 1135 1136 1137
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1138 1139 1140 1141 1142 1143 1144
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1156
              )DOC")
Q
Qiao Longfei 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1168 1169 1170 1171 1172
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1173

Y
yuyang18 已提交
1174
  exec_strategy.def_property(
Y
yuyang18 已提交
1175 1176 1177 1178 1179 1180 1181
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1182 1183
      });

C
chengduo 已提交
1184 1185 1186 1187
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1199
)DOC");
Y
yuyang18 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1216
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1217
            self.reduce_ = strategy;
C
chengduo 已提交
1218 1219 1220 1221 1222 1223 1224
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1225 1226 1227 1228 1229
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1230
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1231
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1232 1233 1234 1235 1236 1237
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1238 1239 1240 1241
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1242
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1243
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1244 1245 1246 1247
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1248 1249 1250 1251 1252 1253
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1254
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1264
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1265 1266
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1267
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1268 1269 1270 1271 1272 1273
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1286 1287 1288 1289 1290 1291
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1292
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1293 1294 1295 1296 1297
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1349 1350 1351
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1362 1363 1364 1365
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1366 1367 1368
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1369
      .def_property(
D
dzhwinter 已提交
1370 1371 1372
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1373 1374 1375 1376
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1377 1378 1379 1380
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1381 1382 1383 1384
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1385
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1386
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1387 1388 1389 1390 1391
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1392 1393

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1394
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1395
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1396
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1397 1398 1399 1400
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1401 1402 1403 1404 1405
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1406 1407 1408 1409
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1410 1411 1412 1413 1414 1415
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1416

1417
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1418
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1419
  BindFleetWrapper(&m);
W
wopeizl 已提交
1420
#ifndef _WIN32
D
dongdaxiang 已提交
1421
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1422
#endif
F
flame 已提交
1423 1424
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1425
  BindInferenceApi(&m);
1426
  BindDataset(&m);
L
Luo Tao 已提交
1427
}
1428
}  // namespace pybind
1429
}  // namespace paddle