pybind.cc 97.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
74
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
75
#include "paddle/fluid/operators/py_func_op.h"
76
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
77
#include "paddle/fluid/platform/cpu_info.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
95
#include "paddle/fluid/pybind/xpu_streams_py.h"
96 97
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
98
#include "paddle/utils/none.h"
99 100 101
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
112
#include "paddle/fluid/pybind/generator_py.h"
113
#include "paddle/fluid/pybind/global_value_getter_setter.h"
114
#include "paddle/fluid/pybind/gloo_context_py.h"
115
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/ir.h"
119
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
121
#include "paddle/fluid/pybind/pybind_variant_caster.h"
122
#include "paddle/phi/backends/device_manager.h"
123

124
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
125
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
126
#endif
127
#include "paddle/fluid/framework/data_type.h"
128 129
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
130 131
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
132
#include "paddle/fluid/pybind/reader_py.h"
133
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
134
#include "paddle/fluid/pybind/tensor_py.h"
135
#include "paddle/fluid/string/to_string.h"
136 137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
138
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
139
#endif
140
#ifndef PADDLE_WITH_HIP
141
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
142
#endif
143
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
144 145
#endif

146
#ifdef PADDLE_WITH_ASCEND_CL
147
#include "paddle/fluid/platform/collective_helper.h"
148 149
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
150 151
#endif

152
#ifdef PADDLE_WITH_XPU
153
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
154
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
155 156
#endif

157
#ifdef PADDLE_WITH_CUSTOM_DEVICE
158
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
159 160 161
#include "paddle/phi/capi/capi.h"
#endif

162
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
163

J
jianghaicheng 已提交
164
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
165 166
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
167
#endif
168

169 170 171 172
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
173 174 175 176
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
177
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
178 179 180
#include "paddle/fluid/pybind/fleet_py.h"
#endif

181 182 183 184
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
185
#if defined(PADDLE_WITH_RPC)
186 187 188
#include "paddle/fluid/pybind/rpc.h"
#endif

189
#include "paddle/fluid/eager/api/utils/global_utils.h"
190
#include "paddle/fluid/imperative/layout_autotune.h"
191 192
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
193 194
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
195 196
#include "pybind11/stl.h"

197
DECLARE_bool(use_mkldnn);
198

Q
Qiao Longfei 已提交
199 200
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
201 202 203
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
204

205
namespace paddle {
206
namespace pybind {
207

0
0x45f 已提交
208
PyTypeObject *g_framework_scope_pytype = nullptr;
209
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
210
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
211

212 213 214 215 216 217 218 219
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

220
bool IsCompiledWithCUDA() {
221 222 223 224 225 226 227
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

253 254
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
255 256 257 258 259 260
  return false;
#else
  return true;
#endif
}

261 262 263 264 265 266 267 268
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
285 286 287 288 289 290 291 292
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

293 294 295 296 297 298 299 300
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

301 302 303 304 305 306 307 308
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

309 310 311 312 313 314 315 316
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

317 318 319 320 321 322 323 324
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

325 326 327 328 329 330 331 332 333 334 335
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

336 337 338 339 340 341 342 343 344 345 346
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

364
bool IsCompiledWithBrpc() {
365
#ifndef PADDLE_WITH_DISTRIBUTE
366
  return false;
367
#else
368
  return true;
369
#endif
370 371
}

Y
update  
Yancey1989 已提交
372
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
373
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
374 375 376 377 378 379
  return true;
#else
  return false;
#endif
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
448 449
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
450 451
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
465 466
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
467 468
    }
    vec_res.emplace_back(
469
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
470 471 472 473 474 475 476 477 478 479 480 481
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
482 483
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
484 485 486 487 488 489 490 491 492 493 494 495
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
496 497 498
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
499 500 501 502
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
503 504
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
505 506 507 508
  }
  return vec_res;
}

O
OccupyMars2025 已提交
509
static void inline CreateVariableIfNotExist(
510 511
    const py::handle &py_handle,
    const framework::Scope &scope,
512 513 514 515 516 517
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
518 519
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
520 521 522 523 524 525 526 527 528 529 530 531 532
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
533 534 535
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
536 537 538 539 540
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
541 542 543 544 545
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
546 547
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
548
        PADDLE_ENFORCE_NOT_NULL(
549 550 551
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
552 553 554
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
555
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
556
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
557 558
        tensor_temp->mutable_data(
            exe->GetPlace(),
559
            framework::TransToPhiDataType(var_desc.GetDataType()));
560 561 562
      }
    }
  } else {
563 564
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
565 566 567 568 569
  }

  return;
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
586 587
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
588 589 590 591 592 593 594
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
595 596 597 598
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
599
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
600 601 602 603 604 605 606 607
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

608
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
609
  BindImperative(&m);
610
  BindEager(&m);
J
Jack Zhou 已提交
611
  BindEagerStringTensor(&m);
612
  BindCudaStream(&m);
J
james 已提交
613
  BindXpuStream(&m);
614
  BindJit(&m);
615

Y
Yu Yang 已提交
616 617 618
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
619
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
620

621 622
  AssertStaticGraphAndDygraphGradMakerNoDiff();

623
  m.doc() = "C++ core of PaddlePaddle";
624

625 626 627 628
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

629
  BindException(&m);
Y
Yu Yang 已提交
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

646 647
  m.def("set_num_threads", &platform::SetNumThreads);

648 649
  m.def("disable_signal_handler", &DisableSignalHandler);

650 651 652 653 654 655 656 657
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

658
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
659
  m.def("cudnn_version", &platform::DnnVersion);
660 661 662 663 664 665
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
666
#endif
667

Z
Zeng Jinle 已提交
668 669 670 671
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

672 673 674 675 676 677 678 679 680
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
681 682
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
683
      .def("replay", &platform::CUDAGraph::Replay)
684 685
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
686 687
#endif

Z
Zeng Jinle 已提交
688 689 690 691
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
692 693 694
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
695 696

    PADDLE_ENFORCE_NOT_NULL(
697 698 699 700
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
701

6
633WHU 已提交
702 703
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
704
    phi::DenseTensor tensor;
6
633WHU 已提交
705

S
Siming Dai 已提交
706
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
707
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
708
    }
709
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
710
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
711
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
712 713 714 715
    }
#endif
    return tensor;
  });
H
hong 已提交
716

717
  m.def("_create_loaded_parameter",
718 719
        [](const py::handle &vec_var_list,
           const Scope &scope,
720
           const Executor *executor) {
O
OccupyMars2025 已提交
721
          CreateVariableIfNotExist(vec_var_list, scope, executor);
722 723
        });

724 725 726 727 728 729
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
730 731
  });

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

757 758 759 760 761 762
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
763

S
sneaxiy 已提交
764
  m.def(
S
sneaxiy 已提交
765
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
766 767 768 769
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
770 771 772
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
789
            }
790
            all_kernels_info.emplace(op_type, kernel_types);
791
          }
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
808
                }
809 810
              } else {
                kernel_types.emplace_back(kernel_type_str);
811
              }
812
            }
813 814 815
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
816
          }
817
        }
818

819 820 821 822
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
823 824 825
           Return the registered kernels in paddle.

           Args:
826
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
827
           )DOC");
828

829 830 831 832 833 834
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
835 836 837 838 839
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
840

S
sneaxiy 已提交
841 842 843
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
844
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
845

846
  m.def("_set_fuse_parameter_group_size",
847
        &paddle::framework::ir::SetFuseParameterGroupsSize);
848
  m.def("_set_fuse_parameter_memory_size",
849
        &paddle::framework::ir::SetFuseParameterMemorySize);
850

S
sneaxiy 已提交
851 852 853
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

854 855
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
856 857
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

858 859 860
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
902 903 904 905 906 907 908 909 910 911 912 913 914
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
915 916 917 918 919
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
920

921
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
922 923 924

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
925
      .def(py::init<>())
926
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
927
      .def("set_int",
928 929
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
930 931 932 933 934 935 936
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
937 938
      .def(
          "get_tensor",
939 940
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
941 942
          },
          py::return_value_policy::reference)
943 944 945 946
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
947 948 949 950
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
951 952 953 954
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
981
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
982 983 984 985 986 987
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
988
#endif
989 990 991
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
992 993
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
994 995 996 997 998 999 1000 1001 1002 1003
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1004 1005
                scope_vec->size(),
                0,
1006 1007 1008 1009 1010
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1011 1012 1013 1014
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1015

S
sneaxiy 已提交
1016
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1017

0
0x45f 已提交
1018
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1032
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1033 1034 1035 1036 1037
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1038 1039 1040
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1041 1042
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1043 1044 1045 1046 1047 1048 1049
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1050
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1051

1052
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1053
           current scope, the variable would be created. Otherwise,
1054
           return the existing variable.
S
sneaxiy 已提交
1055 1056

           Args:
1057 1058
               name (str): the variable name.

S
sneaxiy 已提交
1059
           Returns:
1060
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1061
           )DOC",
1062
          py::return_value_policy::reference)
1063 1064 1065
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1066
           R"DOC(
1067
           Find variable named :code:`name` in the current scope or
1068
           its parent scope. Return None if not found.
1069

S
sneaxiy 已提交
1070 1071
           Args:
               name (str): the variable name.
1072

S
sneaxiy 已提交
1073
           Returns:
1074
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1075
           )DOC",
1076
           py::return_value_policy::reference)
1077
      .def("size", &Scope::Size)
1078 1079 1080
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1081 1082
           R"DOC(
           Find variable named :code:`name` in the current scope or
1083
           its parent scope. Return None if not found.
1084 1085 1086 1087 1088 1089 1090 1091

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1092
      .def(
1093 1094
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1095
          R"DOC(
S
sneaxiy 已提交
1096 1097 1098 1099 1100
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1101
          py::return_value_policy::reference)
1102 1103
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1104 1105
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1106
           )DOC")
1107 1108
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1109

1110 1111 1112 1113 1114 1115 1116 1117
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1118
        Create a new scope.
1119

S
sneaxiy 已提交
1120 1121 1122
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1123
      py::return_value_policy::reference);
S
sneaxiy 已提交
1124

Y
Yu Yang 已提交
1125 1126
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1127 1128
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1129 1130 1131 1132
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1133
        PADDLE_ENFORCE_EQ(
1134 1135
            info.Proto().SerializeToString(&str),
            true,
1136 1137
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1138 1139 1140
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1141 1142
    return ret_values;
  });
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1181 1182 1183 1184 1185 1186 1187 1188
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1189
              res = op_checker->GetDefaultAttrsMap();
1190 1191 1192 1193
            }
          }
          return res;
        });
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1229 1230 1231
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1232 1233 1234 1235 1236
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1237 1238 1239
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1240
  m.def("infer_no_need_buffer_slots",
1241 1242
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1270 1271 1272 1273 1274 1275
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1276 1277
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1278

1279
            Args:
1280 1281 1282
                   program (ProgramDesc): The original program.

             Returns:
1283
                   tuple(ProgramDesc, map<int, int>): The first part is
1284 1285 1286 1287
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1288 1289 1290 1291
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1292 1293
    VLOG(4) << s;
    return s;
1294 1295 1296 1297 1298 1299
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1300
  });
1301 1302 1303 1304
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1305 1306 1307
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1308 1309
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1310

Y
Yu Yang 已提交
1311
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1312
      .def_static("create",
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1328 1329 1330 1331
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1332
                    return context;
Q
qijun 已提交
1333
                  })
1334 1335 1336 1337
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1338
#ifndef PADDLE_WITH_XPU
1339 1340 1341
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1342
#else
W
Wilber 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1356 1357 1358 1359
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1360
      return context;
1361
#endif
1362 1363 1364 1365 1366
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1367
#ifndef PADDLE_WITH_MLU
1368 1369 1370
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1371 1372
#else
                    return new paddle::platform::MLUDeviceContext(place);
1373
#endif
1374 1375 1376 1377 1378
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1379
#ifndef PADDLE_WITH_ASCEND_CL
1380 1381 1382
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1383 1384
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1385
#endif
1386 1387 1388 1389
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1390
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1391 1392 1393 1394
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1395 1396
#else
                return new paddle::platform::CustomDeviceContext(place);
1397
#endif
1398 1399 1400 1401 1402
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1403
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1404 1405 1406
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1407
#else
L
Leo Chen 已提交
1408
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1421 1422 1423 1424
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1425 1426 1427 1428
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1429 1430
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1431
#endif
1432 1433 1434 1435 1436
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1437
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1438 1439 1440
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1441 1442 1443
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1444
          });
1445
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1446 1447
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1448 1449 1450
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1451
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1452
#else
R
ronnywang 已提交
1453
          VLOG(1) << string::Sprintf(
1454 1455 1456 1457
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1458
              "PaddlePaddle by: pip install paddlepaddle\n");
1459 1460 1461 1462 1463 1464
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1465
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1466
#else
R
ronnywang 已提交
1467
          VLOG(1) << string::Sprintf(
1468 1469 1470 1471
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1472
              "PaddlePaddle by: pip install paddlepaddle\n");
1473 1474 1475 1476 1477 1478
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1479
    devices = phi::DeviceManager::GetAllDeviceList();
1480
#else
R
ronnywang 已提交
1481
          VLOG(1) << string::Sprintf(
1482 1483 1484 1485
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1486
              "PaddlePaddle by: pip install paddlepaddle\n");
1487 1488 1489 1490 1491 1492
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1493
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1494
#else
R
ronnywang 已提交
1495
          VLOG(1) << string::Sprintf(
1496 1497 1498 1499 1500 1501
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1502
              "PaddlePaddle by: pip install paddlepaddle\n");
1503 1504 1505
#endif
    return devices;
  });
Y
Yu Yang 已提交
1506

Y
Yu Yang 已提交
1507
  py::class_<OperatorBase>(m, "Operator")
1508 1509 1510 1511 1512 1513 1514
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1515 1516
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1517 1518 1519 1520 1521 1522
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1523
      .def("run",
1524 1525
           [](OperatorBase &self,
              const Scope &scope,
1526 1527 1528 1529
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1530
      .def("run",
1531 1532
           [](OperatorBase &self,
              const Scope &scope,
1533 1534 1535 1536
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1537
      .def("run",
1538 1539
           [](OperatorBase &self,
              const Scope &scope,
1540 1541 1542 1543
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1544
      .def("run",
1545 1546
           [](OperatorBase &self,
              const Scope &scope,
1547 1548 1549 1550
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1551
      .def("run",
1552 1553
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1554
              const platform::CUDAPinnedPlace &place) {
1555
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1556 1557
             self.Run(scope, place);
           })
1558
      .def("run",
1559 1560
           [](OperatorBase &self,
              const Scope &scope,
1561 1562 1563 1564
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1565
      .def("run",
1566 1567
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1568 1569 1570 1571
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1572 1573 1574 1575 1576
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1577 1578
             return op.Outputs();
           })
Q
qijun 已提交
1579 1580
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1581
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1582
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1583 1584 1585 1586
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1587

1588 1589 1590
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1591 1592
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1593 1594 1595 1596 1597 1598
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1599 1600
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1601

1602 1603
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1604
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1605
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1606
      .def("close", &Executor::Close)
1607 1608
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1609
           py::call_guard<py::gil_scoped_release>())
1610 1611
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1612
           py::call_guard<py::gil_scoped_release>())
1613
      .def("init_for_dataset",
1614 1615 1616 1617
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1618
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1619
             pybind11::gil_scoped_release release;
1620 1621 1622 1623 1624 1625 1626
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1627
      .def("run_prepared_ctx",
1628 1629 1630
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1631
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1632
              std::map<std::string, FetchType *> *fetch_targets,
1633 1634
              bool create_local_scope = true,
              bool create_vars = true,
1635 1636 1637
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1638 1639 1640 1641 1642 1643 1644 1645
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1646
           })
1647
      .def("run_prepared_ctx",
1648 1649 1650 1651 1652
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1653 1654
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1655 1656
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1657
           })
1658
      .def("prepare",
1659 1660 1661
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1662 1663 1664 1665
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1666 1667
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1668 1669
           })
      .def("create_variables", &Executor::CreateVariables)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1686

1687
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1688
      .def(py::init<>())
1689 1690 1691 1692 1693
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1694

1695
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1696
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1697
      .def("run",
1698
           [](StandaloneExecutor &self,
1699
              Scope *scope,
1700
              std::vector<std::string> feed_names,
1701 1702 1703 1704
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1705
               ret = self.Run(scope, feed_names, fetch_names);
1706 1707 1708
             }
             return py::cast(std::move(ret));
           })
1709 1710
      .def("dry_run",
           [](StandaloneExecutor &self,
1711
              Scope *scope,
1712
              const std::unordered_map<std::string, py::array> &input_dict) {
1713
             std::vector<phi::DenseTensor> feed_tensors;
1714 1715 1716
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1717
               phi::DenseTensor t;
1718 1719 1720 1721 1722 1723
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1724
             framework::interpreter::CostInfo cost_info;
1725 1726
             {
               pybind11::gil_scoped_release release;
1727
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1728 1729
             }
             return cost_info;
H
hong 已提交
1730 1731
           });

D
dzhwinter 已提交
1732
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1733
  m.def("init_glog", framework::InitGLOG);
1734 1735 1736 1737
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1738 1739 1740 1741 1742 1743 1744 1745
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1746 1747
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1748
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1749
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1750
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1751
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1752
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1753
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1754
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1755
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1756
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1757 1758
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1759
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1760
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1761
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1762
  m.def("supports_bfloat16", SupportsBfloat16);
1763
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1764 1765
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1766
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1767
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1768
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1769 1770 1771
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1791 1792 1793
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1794 1795
  m.def(
      "run_cmd",
1796 1797
      [](const std::string &cmd,
         int time_out = -1,
1798
         int sleep_inter = -1) -> const std::string {
1799 1800
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1801
      },
1802 1803 1804
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1805 1806
  m.def(
      "shell_execute_cmd",
1807 1808 1809
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1810
         bool redirect_stderr = false) -> std::vector<std::string> {
1811 1812
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1813
      },
1814 1815 1816
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1817
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1818

1819
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1820 1821
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1822
    return platform::GetGPUComputeCapability(place.device) >= 53;
1823
  });
1824 1825 1826 1827
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1828
#endif
1829

S
Steffy-zxf 已提交
1830
  m.def("set_feed_variable",
1831 1832
        static_cast<void (*)(  // NOLINT
            Scope *,
1833
            const phi::DenseTensor &,
1834 1835
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1836
  m.def("set_feed_variable",
1837 1838 1839 1840 1841
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1842
  m.def("get_fetch_variable",
1843 1844
        [](const Scope &scope,
           const std::string &var_name,
1845 1846 1847
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1848
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1849
          } else {
R
Ruibiao Chen 已提交
1850
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1851 1852
          }
        });
1853
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1854

X
Xin Pan 已提交
1855 1856
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1857 1858 1859 1860
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1861
  BindCostModel(&m);
1862
  BindConstValue(&m);
1863
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1864
  BindFleetExecutor(&m);
1865
  BindTCPStore(&m);
1866
  BindAutoParallel(&m);
1867
  BindJitProperty(&m);
Y
Yu Yang 已提交
1868

Y
Yu Yang 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1878
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1879
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1880 1881 1882

    Examples:
        .. code-block:: python
1883

Z
Zeng Jinle 已提交
1884 1885 1886
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1887 1888 1889 1890
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1891 1892
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1893 1894 1895 1896
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1897 1898
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1899
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1900 1901
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1902 1903 1904
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1905 1906 1907
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1908 1909
      .def(
          "append",
1910
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1911 1912 1913 1914
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1915 1916
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1917
             Append a LoDensor to LoDTensorArray.
1918

1919 1920 1921 1922 1923
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1935
           )DOC")
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1947

1948
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1949
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1950
        )DOC")
1951 1952 1953 1954 1955 1956
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
1957
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
1958
                res[i] = py::cast(std::move(data));
1959 1960 1961
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1962
              } else {
R
Ruibiao Chen 已提交
1963
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1975

1976 1977
      .def(
          "append",
1978
          [](FetchList &self, const phi::DenseTensor &t) {
1979
            self.emplace_back();
1980
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
1981 1982 1983 1984 1985 1986 1987 1988 1989
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1990
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1991 1992 1993 1994 1995 1996
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1997 1998

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1999
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2000
        )DOC")
2001 2002 2003 2004 2005 2006 2007 2008
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2009
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2010 2011
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2012
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2027

Y
Yu Yang 已提交
2028
  m.def("op_support_gpu", OpSupportGPU);
2029
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2030
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2031
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2032 2033 2034 2035 2036 2037 2038 2039
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2040 2041 2042 2043 2044 2045
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2046 2047

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2073
      });
D
dangqingqing 已提交
2074

2075
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2076 2077 2078
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2079 2080 2081
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2082 2083 2084
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2085
#endif
P
peizhilin 已提交
2086
#endif
Y
Yu Yang 已提交
2087

2088 2089
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2090
  m.def("npu_finalize", []() {
2091 2092
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2093 2094 2095
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2096
      platform::NPUDeviceGuard guard(devices[i]);
2097 2098 2099 2100
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2121 2122 2123 2124
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2125 2126 2127 2128
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2129 2130 2131 2132 2133 2134
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2135 2136 2137 2138
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2139
      .value("kAll", platform::ProfilerState::kAll)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2151
  m.def("set_tracer_option", platform::SetTracerOption);
2152 2153
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2154
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2155
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2156
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2157
    PADDLE_ENFORCE_EQ(
2158 2159
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2160 2161 2162
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2163
    callable.inc_ref();
2164 2165 2166 2167 2168 2169 2170 2171
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2172
  });
2173
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2174 2175 2176
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2177

2178
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2179 2180
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2181 2182
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2183 2184
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2185 2186 2187 2188 2189 2190 2191 2192 2193
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2194

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2258 2259
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2260 2261 2262 2263
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2264 2265 2266 2267 2268
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2269 2270 2271
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2272 2273

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2274 2275
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2276
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2277
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2278 2279
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2280 2281 2282 2283 2284 2285
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2309 2310 2311 2312 2313 2314 2315 2316
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2335 2336 2337 2338 2339 2340
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2341

2342
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2343 2344
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2345 2346
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2347
#endif  // PADDLE_WITH_CUDA
2348 2349 2350 2351 2352 2353 2354 2355
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2356

J
jianghaicheng 已提交
2357 2358
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2359 2360 2361
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2362 2363 2364 2365 2366 2367 2368
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2369
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2370 2371
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2372
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2383 2384 2385 2386
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2409 2410
                         option.get_type(),
                         option_name));
2411 2412 2413 2414 2415 2416 2417
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2418 2419
                         option_name,
                         option.first.cast<std::string>(),
2420 2421
                         option.second.cast<std::uint64_t>());
                   }
2422 2423 2424 2425 2426 2427
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2473 2474
                           option.second.get_type(),
                           option_key));
2475
                     }
2476 2477
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2478 2479 2480 2481 2482 2483
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2484 2485
                     element.second.get_type(),
                     option_name));
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2516 2517
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2518 2519 2520
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2521 2522
#endif

2523 2524 2525 2526 2527 2528 2529 2530
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2531
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2541
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2542 2543 2544 2545 2546 2547 2548
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2549 2550
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2551

2552 2553
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2554

2555 2556
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2557

D
dongdaxiang 已提交
2558
  BindFleetWrapper(&m);
2559
  BindIO(&m);
2560 2561 2562
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2563

T
Thunderbrook 已提交
2564
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2565
  BindHeterWrapper(&m);
2566
  BindMetrics(&m);
T
Thunderbrook 已提交
2567
#endif
T
Thunderbrook 已提交
2568
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2569
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2570 2571 2572
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2573
#endif
2574
  BindGlooWrapper(&m);
H
hutuxian 已提交
2575
  BindBoxHelper(&m);
H
hutuxian 已提交
2576 2577 2578
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2579
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2580
  BindNCCLWrapper(&m);
2581 2582 2583
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2584
#endif
F
flame 已提交
2585 2586
  BindGraph(&m);
  BindNode(&m);
2587
  BindPass(&m);
F
flame 已提交
2588
  BindInferenceApi(&m);
2589
  BindCompatible(&m);
2590
  BindDataset(&m);
Y
yaoxuefeng 已提交
2591
  BindGenerator(&m);
2592
#ifndef PADDLE_NO_PYTHON
2593 2594
  BindDistributed(&m);
#endif
2595 2596 2597
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2598
  BindAscendDevice(&m);
2599
#endif
Y
Yanghello 已提交
2600 2601 2602
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2603

T
tangwei12 已提交
2604
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2605 2606
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2607
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2608 2609
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2610 2611 2612 2613 2614
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2615 2616 2617 2618
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2619
#ifdef PADDLE_WITH_HETERPS
2620 2621
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2622 2623 2624
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2625
#endif
X
Xinger 已提交
2626
#if defined(PADDLE_WITH_RPC)
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2639
}
2640
}  // namespace pybind
2641
}  // namespace paddle