pybind.cc 102.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
58
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
69
#include "paddle/fluid/prim/utils/utils.h"
70 71 72
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
73
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
74
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/operators/common_infer_shape_functions.h"
76
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
77
#include "paddle/fluid/operators/py_func_op.h"
78
#include "paddle/fluid/platform/cpu_helper.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/distributed_py.h"
92
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
93
#include "paddle/fluid/pybind/imperative.h"
94
#include "paddle/fluid/pybind/io.h"
95
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
96
#include "paddle/fluid/pybind/xpu_streams_py.h"
97
#include "paddle/phi/backends/cpu/cpu_info.h"
98 99
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
100
#include "paddle/utils/none.h"
101 102 103
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
104
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
105
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
106
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
107
#include "paddle/fluid/pybind/box_helper_py.h"
108
#include "paddle/fluid/pybind/communication.h"
109
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
119
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/ir.h"
121
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
122
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
123
#include "paddle/fluid/pybind/pybind_variant_caster.h"
124
#include "paddle/phi/backends/device_manager.h"
125

126
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
127
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
128
#endif
129
#include "paddle/fluid/framework/data_type.h"
130 131
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
132 133
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
134
#include "paddle/fluid/pybind/reader_py.h"
135
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
136
#include "paddle/fluid/pybind/tensor_py.h"
137
#include "paddle/fluid/string/to_string.h"
138 139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
140
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
141
#endif
142
#ifndef PADDLE_WITH_HIP
143
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
144
#endif
145
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
146 147
#endif

148
#ifdef PADDLE_WITH_ASCEND_CL
149
#include "paddle/fluid/platform/collective_helper.h"
150 151
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
152 153
#endif

154
#ifdef PADDLE_WITH_XPU
155
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
156
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
157 158
#endif

159
#ifdef PADDLE_WITH_CUSTOM_DEVICE
160
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
161 162 163
#include "paddle/phi/capi/capi.h"
#endif

164
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
165

J
jianghaicheng 已提交
166
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
167 168
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
169
#endif
170

171 172 173 174
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
175 176 177 178
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
179
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
180 181 182
#include "paddle/fluid/pybind/fleet_py.h"
#endif

183 184 185 186
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
187
#if defined(PADDLE_WITH_RPC)
188 189 190
#include "paddle/fluid/pybind/rpc.h"
#endif

191
#include "paddle/fluid/eager/api/utils/global_utils.h"
192
#include "paddle/fluid/imperative/layout_autotune.h"
193 194
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
195 196
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
197 198
#include "pybind11/stl.h"

199
DECLARE_bool(use_mkldnn);
200

Q
Qiao Longfei 已提交
201 202
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
203 204 205
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
206

207
namespace paddle {
208
namespace pybind {
209

0
0x45f 已提交
210
PyTypeObject *g_framework_scope_pytype = nullptr;
211
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
212
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
213

214 215 216 217 218 219 220 221
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

222
bool IsCompiledWithCUDA() {
223 224 225 226 227 228 229
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

230 231 232 233 234 235 236 237
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

255 256
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
257 258 259 260 261 262
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

279 280 281 282 283 284 285 286
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
301 302 303 304 305 306 307 308
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

309 310 311 312 313 314 315 316
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

317 318 319 320 321 322 323 324
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

325 326 327 328 329 330 331 332
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

333 334 335 336 337 338 339 340
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

341 342 343 344
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
345
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
346 347 348 349 350 351
    return true;
  else
    return false;
#endif
}

352 353 354 355
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
356
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
357 358 359 360 361 362
    return true;
  else
    return false;
#endif
}

363 364 365 366
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
367 368
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
369 370 371 372 373 374 375
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
376 377
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
378 379 380
#endif
}

381
bool IsCompiledWithBrpc() {
382
#ifndef PADDLE_WITH_DISTRIBUTE
383
  return false;
384
#else
385
  return true;
386
#endif
387 388
}

Y
update  
Yancey1989 已提交
389
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
390
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
391 392 393 394 395 396
  return true;
#else
  return false;
#endif
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
465 466
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
467 468
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
482 483
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
484 485
    }
    vec_res.emplace_back(
486
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
487 488 489 490 491 492 493 494 495 496 497 498
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
499 500
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
501 502 503 504 505 506 507 508 509 510 511 512
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
513 514 515
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
516 517 518 519
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
520 521
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
522 523 524 525
  }
  return vec_res;
}

O
OccupyMars2025 已提交
526
static void inline CreateVariableIfNotExist(
527 528
    const py::handle &py_handle,
    const framework::Scope &scope,
529 530 531 532 533 534
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
535 536
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
537 538 539 540 541 542 543 544 545 546 547 548 549
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
550 551 552
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
553 554 555 556 557
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
558 559 560 561 562
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
563 564
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
565
        PADDLE_ENFORCE_NOT_NULL(
566 567 568
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
569 570 571
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
572
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
573
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
574 575
        tensor_temp->mutable_data(
            exe->GetPlace(),
576
            framework::TransToPhiDataType(var_desc.GetDataType()));
577 578 579
      }
    }
  } else {
580 581
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
582 583 584 585 586
  }

  return;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
603 604
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
605 606 607 608 609 610 611
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
612 613 614 615
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
616
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
617 618 619 620 621 622 623 624
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

625
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
626
  BindImperative(&m);
627
  BindEager(&m);
J
Jack Zhou 已提交
628
  BindEagerStringTensor(&m);
629
  BindCudaStream(&m);
J
james 已提交
630
  BindXpuStream(&m);
631
  BindJit(&m);
632

Y
Yu Yang 已提交
633
  // Not used, just make sure cpu_info.cc is linked.
634
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
635

Y
Refine  
Yu Yang 已提交
636
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
637

638 639
  AssertStaticGraphAndDygraphGradMakerNoDiff();

640
  m.doc() = "C++ core of PaddlePaddle";
641

642 643 644 645
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

646
  BindException(&m);
Y
Yu Yang 已提交
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

J
Jiabin Yang 已提交
663 664
  m.def("set_prim_enabled", &paddle::prim::PrimCommonUtils::SetPrimEnabled);
  m.def("is_prim_enabled", &paddle::prim::PrimCommonUtils::IsPrimEnabled);
665 666
  m.def("set_num_threads", &platform::SetNumThreads);

667 668
  m.def("disable_signal_handler", &DisableSignalHandler);

669 670 671 672 673 674 675 676
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

677
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
678
  m.def("cudnn_version", &platform::DnnVersion);
679 680 681 682 683 684
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
685
#endif
686

Z
Zeng Jinle 已提交
687 688 689 690
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

691 692
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
693
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
694 695 696 697 698 699
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
700
      .def_static("gen_new_memory_pool_id",
701 702 703 704 705
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
706 707
#endif

Z
Zeng Jinle 已提交
708 709 710 711
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
712 713 714
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
715 716

    PADDLE_ENFORCE_NOT_NULL(
717 718 719 720
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
721

6
633WHU 已提交
722 723
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
724
    phi::DenseTensor tensor;
6
633WHU 已提交
725

S
Siming Dai 已提交
726
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
727
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
728
    }
729
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
730
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
731
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
732 733 734 735
    }
#endif
    return tensor;
  });
H
hong 已提交
736

737
  m.def("_create_loaded_parameter",
738 739
        [](const py::handle &vec_var_list,
           const Scope &scope,
740
           const Executor *executor) {
O
OccupyMars2025 已提交
741
          CreateVariableIfNotExist(vec_var_list, scope, executor);
742 743
        });

744 745 746 747 748 749
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
750 751
  });

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

777 778 779 780 781 782
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
783

S
sneaxiy 已提交
784
  m.def(
S
sneaxiy 已提交
785
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
786 787 788 789
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
790 791 792
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
809
            }
810
            all_kernels_info.emplace(op_type, kernel_types);
811
          }
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
828
                }
829 830
              } else {
                kernel_types.emplace_back(kernel_type_str);
831
              }
832
            }
833 834 835
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
836
          }
837
        }
838

839 840 841 842
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
843 844 845
           Return the registered kernels in paddle.

           Args:
846
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
847
           )DOC");
848

849 850 851 852 853 854
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
855 856 857 858 859
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
860

S
sneaxiy 已提交
861 862 863
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
864
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
865

866
  m.def("_set_fuse_parameter_group_size",
867
        &paddle::framework::ir::SetFuseParameterGroupsSize);
868
  m.def("_set_fuse_parameter_memory_size",
869
        &paddle::framework::ir::SetFuseParameterMemorySize);
870

S
sneaxiy 已提交
871 872 873
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

874 875
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
876 877
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

878 879 880
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
922 923 924 925 926 927 928 929 930 931 932 933 934
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
935 936 937 938 939
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
940

941
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
942 943 944

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
945
      .def(py::init<>())
946
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
947
      .def("set_int",
948 949
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
950 951 952 953 954 955 956
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
957 958
      .def(
          "get_tensor",
959 960
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
961 962
          },
          py::return_value_policy::reference)
963 964
      .def("get_bytes",
           [](Variable &self) {
965 966 967 968 969 970
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
971
           })
S
Steffy-zxf 已提交
972 973 974 975
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
976
      .def("set_vocab",
977 978
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
979 980
             *self.GetMutable<Vocab>() = vocab;
           })
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1007
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1008 1009 1010 1011 1012 1013
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1014
#endif
1015 1016 1017
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1018 1019
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1030 1031
                scope_vec->size(),
                0,
1032 1033 1034 1035 1036
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1037 1038 1039 1040
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1041

S
sneaxiy 已提交
1042
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1043

0
0x45f 已提交
1044
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1058
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1059 1060 1061 1062 1063
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1064 1065 1066
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1067 1068
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1069 1070 1071 1072 1073 1074 1075
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1076
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1077

1078
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1079
           current scope, the variable would be created. Otherwise,
1080
           return the existing variable.
S
sneaxiy 已提交
1081 1082

           Args:
1083 1084
               name (str): the variable name.

S
sneaxiy 已提交
1085
           Returns:
1086
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1087
           )DOC",
1088
          py::return_value_policy::reference)
1089 1090 1091
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1092
           R"DOC(
1093
           Find variable named :code:`name` in the current scope or
1094
           its parent scope. Return None if not found.
1095

S
sneaxiy 已提交
1096 1097
           Args:
               name (str): the variable name.
1098

S
sneaxiy 已提交
1099
           Returns:
1100
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1101
           )DOC",
1102
           py::return_value_policy::reference)
1103
      .def("size", &Scope::Size)
1104 1105 1106
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1107 1108
           R"DOC(
           Find variable named :code:`name` in the current scope or
1109
           its parent scope. Return None if not found.
1110 1111 1112 1113 1114 1115 1116 1117

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1118
      .def(
1119 1120
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1121
          R"DOC(
S
sneaxiy 已提交
1122 1123 1124 1125 1126
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1127
          py::return_value_policy::reference)
1128 1129
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1130 1131
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1132
           )DOC")
1133 1134
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1135

1136 1137 1138 1139 1140 1141 1142 1143
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1144
        Create a new scope.
1145

S
sneaxiy 已提交
1146 1147 1148
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1149
      py::return_value_policy::reference);
S
sneaxiy 已提交
1150

Y
Yu Yang 已提交
1151 1152
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1153 1154
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1155 1156 1157 1158
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1159
        PADDLE_ENFORCE_EQ(
1160 1161
            info.Proto().SerializeToString(&str),
            true,
1162 1163
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1164 1165 1166
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1167 1168
    return ret_values;
  });
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1207 1208 1209 1210 1211 1212 1213 1214
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1215
              res = op_checker->GetDefaultAttrsMap();
1216 1217 1218 1219
            }
          }
          return res;
        });
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1236 1237 1238 1239 1240
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
          auto grad_comp_op_maker = op_info.GradCompOpMaker();

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
                "Neither operator %s's GradOpMaker nor GradCompOpMaker has "
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

          // In PrimEnabled mode, the priority of GradCompOpMaker is greater
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
          // priority of GradCompOpMaker is less than GradCompMaker for better
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
          if (paddle::prim::PrimCommonUtils::IsPrimEnabled()) {
            if (grad_comp_op_maker != nullptr) {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1291 1292 1293 1294 1295 1296 1297 1298
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1299 1300 1301
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1302 1303 1304 1305 1306
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1307 1308 1309
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1310
  m.def("infer_no_need_buffer_slots",
1311 1312
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1340 1341 1342 1343 1344 1345
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1346 1347
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1348

1349
            Args:
1350 1351 1352
                   program (ProgramDesc): The original program.

             Returns:
1353
                   tuple(ProgramDesc, map<int, int>): The first part is
1354 1355 1356 1357
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1358 1359 1360 1361
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1362 1363
    VLOG(4) << s;
    return s;
1364 1365 1366 1367 1368 1369
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1370
  });
1371 1372 1373 1374
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1375 1376 1377
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1378 1379
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1380

Y
Yu Yang 已提交
1381
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1382
      .def_static("create",
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1398 1399 1400 1401
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1402
                    return context;
Q
qijun 已提交
1403
                  })
1404 1405 1406 1407
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1408
#ifndef PADDLE_WITH_XPU
1409 1410 1411
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1412
#else
W
Wilber 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1426 1427 1428 1429
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1430
      return context;
1431
#endif
1432 1433 1434 1435 1436
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1437
#ifndef PADDLE_WITH_MLU
1438 1439 1440
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1441 1442
#else
                    return new paddle::platform::MLUDeviceContext(place);
1443
#endif
1444 1445 1446 1447 1448
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1449
#ifndef PADDLE_WITH_ASCEND_CL
1450 1451 1452
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1453 1454
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1455
#endif
1456 1457 1458 1459
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1460
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1461 1462 1463 1464
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1465 1466
#else
                return new paddle::platform::CustomDeviceContext(place);
1467
#endif
1468 1469 1470 1471 1472
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1473
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1474 1475 1476
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1477
#else
L
Leo Chen 已提交
1478
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1491 1492 1493 1494
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1495 1496 1497 1498
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1499 1500
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1501
#endif
1502 1503 1504 1505 1506
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1507
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1508 1509 1510
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1511 1512 1513
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1514
          });
1515
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1516 1517
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1518 1519 1520
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1521
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1522
#else
R
ronnywang 已提交
1523
          VLOG(1) << string::Sprintf(
1524 1525 1526 1527
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1528
              "PaddlePaddle by: pip install paddlepaddle\n");
1529 1530 1531 1532 1533 1534
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1535
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1536
#else
R
ronnywang 已提交
1537
          VLOG(1) << string::Sprintf(
1538 1539 1540 1541
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1542
              "PaddlePaddle by: pip install paddlepaddle\n");
1543 1544 1545 1546 1547 1548
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1549
    devices = phi::DeviceManager::GetAllDeviceList();
1550
#else
R
ronnywang 已提交
1551
          VLOG(1) << string::Sprintf(
1552 1553 1554 1555
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1556
              "PaddlePaddle by: pip install paddlepaddle\n");
1557 1558 1559 1560 1561 1562
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1563
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1564
#else
R
ronnywang 已提交
1565
          VLOG(1) << string::Sprintf(
1566 1567 1568 1569 1570 1571
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1572
              "PaddlePaddle by: pip install paddlepaddle\n");
1573 1574 1575
#endif
    return devices;
  });
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1595

Y
Yu Yang 已提交
1596
  py::class_<OperatorBase>(m, "Operator")
1597 1598 1599 1600 1601 1602 1603
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1604 1605
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1606 1607 1608 1609 1610 1611
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1612
      .def("run",
1613 1614
           [](OperatorBase &self,
              const Scope &scope,
1615 1616 1617 1618
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1619
      .def("run",
1620 1621
           [](OperatorBase &self,
              const Scope &scope,
1622 1623 1624 1625
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1626
      .def("run",
1627 1628
           [](OperatorBase &self,
              const Scope &scope,
1629 1630 1631 1632
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1633
      .def("run",
1634 1635
           [](OperatorBase &self,
              const Scope &scope,
1636 1637 1638 1639
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1640
      .def("run",
1641 1642
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1643
              const platform::CUDAPinnedPlace &place) {
1644
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1645 1646
             self.Run(scope, place);
           })
1647
      .def("run",
1648 1649
           [](OperatorBase &self,
              const Scope &scope,
1650 1651 1652 1653
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1654
      .def("run",
1655 1656
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1657 1658 1659 1660
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1661 1662 1663 1664 1665
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1666 1667
             return op.Outputs();
           })
Q
qijun 已提交
1668 1669
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1670
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1671
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1672 1673 1674 1675
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1676

1677 1678 1679
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1680 1681
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1682 1683 1684 1685 1686 1687
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1688 1689
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1690

1691 1692
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1693
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1694
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1695
      .def("close", &Executor::Close)
1696 1697
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1698
           py::call_guard<py::gil_scoped_release>())
1699 1700
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1701
           py::call_guard<py::gil_scoped_release>())
1702
      .def("init_for_dataset",
1703 1704 1705 1706
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1707
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1708
             pybind11::gil_scoped_release release;
1709 1710 1711 1712 1713 1714 1715
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1716
      .def("run_prepared_ctx",
1717 1718 1719
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1720
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1721
              std::map<std::string, FetchType *> *fetch_targets,
1722 1723
              bool create_local_scope = true,
              bool create_vars = true,
1724 1725 1726
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1727 1728 1729 1730 1731 1732 1733 1734
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1735
           })
1736
      .def("run_prepared_ctx",
1737 1738 1739 1740 1741
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1742 1743
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1744 1745
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1746
           })
1747
      .def("prepare",
1748 1749 1750
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1751 1752 1753 1754
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1755 1756
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1757 1758
           })
      .def("create_variables", &Executor::CreateVariables)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1775

1776
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1777
      .def(py::init<>())
1778 1779 1780 1781 1782
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1783

1784
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1785
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1786
      .def("run",
1787
           [](StandaloneExecutor &self,
1788
              Scope *scope,
1789
              std::vector<std::string> feed_names,
1790 1791 1792 1793
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1794
               ret = self.Run(scope, feed_names, fetch_names);
1795 1796 1797
             }
             return py::cast(std::move(ret));
           })
1798 1799
      .def("dry_run",
           [](StandaloneExecutor &self,
1800
              Scope *scope,
1801
              const std::unordered_map<std::string, py::array> &input_dict) {
1802
             std::vector<phi::DenseTensor> feed_tensors;
1803 1804 1805
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1806
               phi::DenseTensor t;
1807 1808 1809 1810 1811 1812
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1813
             framework::interpreter::CostInfo cost_info;
1814 1815
             {
               pybind11::gil_scoped_release release;
1816
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1817 1818
             }
             return cost_info;
H
hong 已提交
1819 1820
           });

D
dzhwinter 已提交
1821
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1822
  m.def("init_glog", framework::InitGLOG);
1823 1824 1825 1826
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1827 1828 1829 1830 1831 1832 1833 1834
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1835 1836
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1837
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1838
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1839
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1840
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1841
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1842
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1843
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1844
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1845
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1846
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1847 1848
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1849
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1850
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1851
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1852
  m.def("supports_bfloat16", SupportsBfloat16);
1853
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1854 1855
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1856
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1857
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1858
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1859 1860 1861
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1881 1882 1883
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1884 1885
  m.def(
      "run_cmd",
1886 1887
      [](const std::string &cmd,
         int time_out = -1,
1888
         int sleep_inter = -1) -> const std::string {
1889 1890
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1891
      },
1892 1893 1894
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1895 1896
  m.def(
      "shell_execute_cmd",
1897 1898 1899
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1900
         bool redirect_stderr = false) -> std::vector<std::string> {
1901 1902
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1903
      },
1904 1905 1906
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1907
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1908

1909
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1910 1911
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1912
    return platform::GetGPUComputeCapability(place.device) >= 53;
1913
  });
1914 1915 1916 1917
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1918
#endif
1919

S
Steffy-zxf 已提交
1920
  m.def("set_feed_variable",
1921 1922
        static_cast<void (*)(  // NOLINT
            Scope *,
1923
            const phi::DenseTensor &,
1924 1925
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1926
  m.def("set_feed_variable",
1927 1928 1929 1930 1931
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1932
  m.def("get_fetch_variable",
1933 1934
        [](const Scope &scope,
           const std::string &var_name,
1935 1936 1937
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1938
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1939
          } else {
R
Ruibiao Chen 已提交
1940
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1941 1942
          }
        });
1943
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1944

X
Xin Pan 已提交
1945 1946
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1947 1948 1949 1950
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1951
  BindCostModel(&m);
1952
  BindConstValue(&m);
1953
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1954
  BindFleetExecutor(&m);
1955
  BindTCPStore(&m);
1956
  BindCommContextManager(&m);
1957
  BindAutoParallel(&m);
1958
  BindJitProperty(&m);
Y
Yu Yang 已提交
1959

Y
Yu Yang 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1969
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1970
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1971 1972 1973

    Examples:
        .. code-block:: python
1974

Z
Zeng Jinle 已提交
1975 1976 1977
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1978 1979 1980 1981
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1982 1983
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1984 1985 1986 1987
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1988 1989
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1990
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1991 1992
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1993 1994 1995
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1996 1997 1998
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1999 2000
      .def(
          "append",
2001
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2002 2003 2004 2005
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2006 2007
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2008
             Append a LoDensor to LoDTensorArray.
2009

2010 2011 2012 2013 2014
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2026
           )DOC")
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2038

2039
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2040
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2041
        )DOC")
2042 2043 2044 2045 2046 2047
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2048
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2049
                res[i] = py::cast(std::move(data));
2050 2051 2052
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2053
              } else {
R
Ruibiao Chen 已提交
2054
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2066

2067 2068
      .def(
          "append",
2069
          [](FetchList &self, const phi::DenseTensor &t) {
2070
            self.emplace_back();
2071
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2072 2073 2074 2075 2076 2077 2078 2079 2080
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2081
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2082 2083 2084 2085 2086 2087
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2088 2089

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2090
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2091
        )DOC")
2092 2093 2094 2095 2096 2097 2098 2099
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2100
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2101 2102
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2103
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2118

Y
Yu Yang 已提交
2119
  m.def("op_support_gpu", OpSupportGPU);
2120
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2121
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2122
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2123 2124 2125 2126 2127 2128 2129 2130
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2131 2132 2133 2134 2135 2136
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2137 2138

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2164
      });
D
dangqingqing 已提交
2165

2166
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2167 2168 2169
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2170 2171 2172
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2173 2174 2175
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2176
#endif
P
peizhilin 已提交
2177
#endif
Y
Yu Yang 已提交
2178

2179 2180
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2181
  m.def("npu_finalize", []() {
2182 2183
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2184 2185 2186
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2187
      platform::NPUDeviceGuard guard(devices[i]);
2188 2189 2190 2191
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2212 2213 2214 2215
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2216 2217 2218 2219
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2220 2221 2222 2223 2224 2225
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2226 2227 2228 2229
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2230
      .value("kAll", platform::ProfilerState::kAll)
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2242
  m.def("set_tracer_option", platform::SetTracerOption);
2243 2244
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2245
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2246
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2247
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2248
    PADDLE_ENFORCE_EQ(
2249 2250
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2251 2252 2253
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2254
    callable.inc_ref();
2255 2256 2257 2258 2259 2260 2261 2262
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2263
  });
2264
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2265 2266 2267
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2268

2269
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2270 2271
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2272 2273
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2274 2275
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2276 2277 2278 2279 2280 2281 2282 2283 2284
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2349 2350
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2351 2352 2353 2354
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2355 2356 2357
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2358 2359 2360 2361 2362
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2363 2364 2365
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2366 2367

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2368 2369
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2370
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2371
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2372 2373
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2374 2375 2376 2377 2378 2379
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2403 2404 2405 2406 2407 2408 2409 2410
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2429 2430
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2431 2432
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2433

2434
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2435 2436
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2437 2438
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2439
#endif  // PADDLE_WITH_CUDA
2440 2441 2442 2443 2444 2445 2446 2447
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2448

J
jianghaicheng 已提交
2449 2450
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2451 2452 2453
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2454 2455 2456 2457 2458 2459 2460
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2461
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2462 2463
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2464
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2475 2476 2477 2478
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2501 2502
                         option.get_type(),
                         option_name));
2503 2504 2505 2506 2507 2508 2509
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2510 2511
                         option_name,
                         option.first.cast<std::string>(),
2512 2513
                         option.second.cast<std::uint64_t>());
                   }
2514 2515 2516 2517 2518 2519
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2565 2566
                           option.second.get_type(),
                           option_key));
2567
                     }
2568 2569
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2570 2571 2572 2573 2574 2575
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2576 2577
                     element.second.get_type(),
                     option_name));
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2608 2609
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2610 2611 2612
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2613 2614
#endif

2615 2616 2617 2618 2619 2620 2621 2622
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2623
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2624 2625 2626 2627 2628 2629 2630
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2631
  m.def("get_low_precision_op_list", [] {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2643 2644
  });

2645 2646
  m.def("autotune_status", [] {
    py::dict res;
2647
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2648 2649 2650 2651 2652 2653 2654
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2655 2656
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2657

2658 2659
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2660

2661 2662
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2663

D
dongdaxiang 已提交
2664
  BindFleetWrapper(&m);
2665
  BindIO(&m);
2666 2667 2668
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2669

T
Thunderbrook 已提交
2670
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2671
  BindHeterWrapper(&m);
2672
  BindMetrics(&m);
T
Thunderbrook 已提交
2673
#endif
T
Thunderbrook 已提交
2674
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2675
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2676 2677 2678
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2679
#endif
2680
  BindGlooWrapper(&m);
H
hutuxian 已提交
2681
  BindBoxHelper(&m);
H
hutuxian 已提交
2682 2683 2684
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2685
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2686
  BindNCCLWrapper(&m);
2687 2688 2689
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2690
#endif
F
flame 已提交
2691 2692
  BindGraph(&m);
  BindNode(&m);
2693
  BindPass(&m);
F
flame 已提交
2694
  BindInferenceApi(&m);
2695
  BindCompatible(&m);
2696
  BindDataset(&m);
Y
yaoxuefeng 已提交
2697
  BindGenerator(&m);
2698
#ifndef PADDLE_NO_PYTHON
2699 2700
  BindDistributed(&m);
#endif
2701 2702 2703
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2704
  BindAscendDevice(&m);
2705
#endif
Y
Yanghello 已提交
2706 2707 2708
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2709

T
tangwei12 已提交
2710
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2711 2712
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2713
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2714 2715
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2716 2717 2718 2719 2720
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2721 2722 2723 2724
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2725
#ifdef PADDLE_WITH_HETERPS
2726 2727
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2728 2729 2730
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2731
#endif
X
Xinger 已提交
2732
#if defined(PADDLE_WITH_RPC)
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2745
}
2746
}  // namespace pybind
2747
}  // namespace paddle