pybind.cc 110.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17
#include "paddle/fluid/eager/grad_node_info.h"

18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

C
chengduoZH 已提交
23
#include <algorithm>
24
#include <cctype>
25
#include <cstdlib>
26
#include <iterator>
C
chengduoZH 已提交
27
#include <map>
S
sneaxiy 已提交
28
#include <memory>
C
chengduoZH 已提交
29
#include <mutex>  // NOLINT // for call_once
30
#include <sstream>
C
chengduoZH 已提交
31
#include <string>
32 33
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
34
#include <unordered_map>
35
#include <unordered_set>
C
chengduoZH 已提交
36 37
#include <utility>
#include <vector>
38

39
#include "paddle/fluid/framework/convert_utils.h"
40
#include "paddle/fluid/framework/custom_operator.h"
41
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
42
#include "paddle/fluid/framework/data_type_transform.h"
43
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/executor.h"
45
#include "paddle/fluid/framework/executor_cache.h"
46
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
48
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
50
#include "paddle/fluid/framework/io/fs.h"
51
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
52
#include "paddle/fluid/framework/ir/cost_model.h"
53
#include "paddle/fluid/framework/ir/generate_pass.h"
54
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
57
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
58 59
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
60
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/op_info.h"
62
#include "paddle/fluid/framework/op_registry.h"
63
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/framework/parallel_executor.h"
65
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/framework/prune.h"
67
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/framework/scope_pool.h"
70
#include "paddle/fluid/framework/selected_rows_utils.h"
71
#include "paddle/fluid/framework/tensor_util.h"
72
#include "paddle/fluid/framework/trainer.h"
73
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
74
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
76
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
77
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
78 79
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
80
#include "paddle/fluid/prim/utils/utils.h"
81 82 83
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
84
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
85
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
86
#include "paddle/fluid/operators/common_infer_shape_functions.h"
87
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
88
#include "paddle/fluid/operators/py_func_op.h"
89
#include "paddle/fluid/platform/cpu_helper.h"
90
#include "paddle/fluid/platform/device/device_wrapper.h"
91
#include "paddle/fluid/platform/device_context.h"
92
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/platform/enforce.h"
94
#include "paddle/fluid/platform/init.h"
95
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
96
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
99 100 101
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
109 110
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
112 113
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
120
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/heter_wrapper_py.h"
122
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/inference_api.h"
124
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/ir.h"
126
#include "paddle/fluid/pybind/jit.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130 131
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
132
#include "paddle/phi/backends/device_manager.h"
133 134 135
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
136

137
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
138
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
139
#endif
140
#include "paddle/fluid/framework/data_type.h"
141 142
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
143 144
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
145
#include "paddle/fluid/pybind/reader_py.h"
146
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
147
#include "paddle/fluid/pybind/tensor_py.h"
148
#include "paddle/fluid/string/to_string.h"
149 150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
151
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
152
#endif
153
#ifndef PADDLE_WITH_HIP
154
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
155
#endif
156
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
157 158
#endif

159
#ifdef PADDLE_WITH_XPU
160
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
161
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
162 163
#endif

164
#ifdef PADDLE_WITH_CUSTOM_DEVICE
165
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
166
#include "paddle/fluid/platform/collective_helper.h"
167 168
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

Y
Yanghello 已提交
179 180 181 182
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
183
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
184 185 186
#include "paddle/fluid/pybind/fleet_py.h"
#endif

187 188 189 190
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
191
#if defined(PADDLE_WITH_RPC)
192 193 194
#include "paddle/fluid/pybind/rpc.h"
#endif

195
#include "paddle/fluid/eager/api/utils/global_utils.h"
196
#include "paddle/fluid/eager/nan_inf_utils.h"
197
#include "paddle/fluid/imperative/layout_autotune.h"
198
#include "paddle/fluid/ir/interface/vjp.h"
199 200
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
201 202
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
203 204
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
205
#include "paddle/phi/core/flags.h"
206 207
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
208 209
#include "pybind11/stl.h"

210
PHI_DECLARE_bool(use_mkldnn);
211

Q
Qiao Longfei 已提交
212 213
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
214 215 216
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
217

218
DECLARE_FILE_SYMBOLS(init_phi);
219
DECLARE_FILE_SYMBOLS(kernel_dialect);
220
namespace paddle {
221
namespace pybind {
222

0
0x45f 已提交
223
PyTypeObject *g_framework_scope_pytype = nullptr;
224
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
225
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
226
PyTypeObject *g_data_type_pytype = nullptr;
227

228 229 230 231 232 233 234 235
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

236
bool IsCompiledWithCUDA() {
237 238 239 240 241 242 243
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

269 270
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
271 272 273 274 275 276
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
299 300 301 302 303 304 305 306
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

307 308 309 310 311 312 313 314
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

315 316 317 318 319 320 321 322
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

323 324 325 326 327 328 329 330 331
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

332 333 334 335 336 337 338 339
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

340 341 342 343
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
344
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
345 346 347 348 349 350
    return true;
  else
    return false;
#endif
}

351 352 353 354
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
355
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
356 357 358 359 360 361
    return true;
  else
    return false;
#endif
}

362 363 364 365
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
366 367
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
368 369 370 371 372 373 374
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
375 376
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
377 378 379
#endif
}

380
bool IsCompiledWithBrpc() {
381
#ifndef PADDLE_WITH_DISTRIBUTE
382
  return false;
383
#else
384
  return true;
385
#endif
386 387
}

Y
update  
Yancey1989 已提交
388
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
389
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
390 391 392 393 394 395
  return true;
#else
  return false;
#endif
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
531 532
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
533 534
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
548 549
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
550 551
    }
    vec_res.emplace_back(
552
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
553 554 555 556 557 558 559 560 561 562 563 564
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
565 566
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
567 568 569 570 571 572 573 574 575 576 577 578
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
579 580 581
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
582 583 584 585
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
586 587
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
588 589 590 591
  }
  return vec_res;
}

O
OccupyMars2025 已提交
592
static void inline CreateVariableIfNotExist(
593 594
    const py::handle &py_handle,
    const framework::Scope &scope,
595 596 597 598 599 600
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
601 602
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
603 604 605 606 607 608 609 610 611 612 613 614 615
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
616 617 618
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
619 620 621 622 623
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
624 625 626 627 628
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
629 630
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
631
        PADDLE_ENFORCE_NOT_NULL(
632 633 634
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
635 636 637
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
638
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
639
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
640 641
        tensor_temp->mutable_data(
            exe->GetPlace(),
642
            framework::TransToPhiDataType(var_desc.GetDataType()));
643 644 645
      }
    }
  } else {
646 647
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
648 649 650 651 652
  }

  return;
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
669 670
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
671 672 673 674 675 676 677
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
678 679 680 681
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
682
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
683 684 685 686 687 688 689 690
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
void BindVjp(pybind11::module *m) {
  m->def(
      "call_vjp",
      [](ir::Operation &fwd_op,
         const std::vector<std::vector<ir::OpResult>> &out_grads,
         const std::vector<std::vector<int>> &stop_gradients) {
        py::list res;
        ir::IrContext *ctx = ir::IrContext::Instance();
        ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
        auto vjp_interface_impl =
            fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
        if (vjp_interface_impl == nullptr) {
          PADDLE_THROW(phi::errors::InvalidArgument(
              "The vjp function is not registered in %s op ", fwd_op.name()));
        }
        std::vector<std::vector<ir::OpResult>> vjp_res =
            vjp_interface_impl->vjp_(&fwd_op, out_grads, stop_gradients);
        PADDLE_ENFORCE_EQ(
            stop_gradients.size(),
            vjp_res.size(),
            phi::errors::InvalidArgument(
                "The size of stop_gradients should be the same as vjp_res "
                "size."
                "But the size of stop_gradients: %d, vjp_res size: %d",
                stop_gradients.size(),
                vjp_res.size()));
        for (size_t i = 0; i < vjp_res.size(); ++i) {
          PADDLE_ENFORCE_EQ(stop_gradients[i].size(),
                            vjp_res[i].size(),
                            phi::errors::InvalidArgument(
                                "The size of stop_gradients[%d] should be the "
                                "same as vjp_res[%d] "
                                "size."
                                "But the size of stop_gradients[%d]: %d, "
                                "vjp_res[%d] size: %d",
                                i,
                                i,
                                i,
                                stop_gradients[i].size(),
                                i,
                                vjp_res[i].size()));
          py::list sub_res;
          for (size_t j = 0; j < vjp_res[i].size(); ++j) {
            if (stop_gradients[i][j]) {
              sub_res.append(nullptr);
            } else {
              sub_res.append(vjp_res[i][j]);
            }
          }
          res.append(sub_res);
        }
        return res;
      });

  m->def("has_vjp", [](ir::Operation &fwd_op) {
    ir::IrContext *ctx = ir::IrContext::Instance();
    ir::OpInfo fwd_op_info = ctx->GetRegisteredOpInfo(fwd_op.name());
    auto vjp_interface_impl =
        fwd_op_info.GetInterfaceImpl<paddle::dialect::VjpInterface>();
    if (vjp_interface_impl == nullptr) return false;
    return true;
  });
}
754
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
755
  BindImperative(&m);
756
  BindEager(&m);
J
Jack Zhou 已提交
757
  BindEagerStringTensor(&m);
758
  BindCudaStream(&m);
J
james 已提交
759
  BindXpuStream(&m);
760
  BindJit(&m);
761
  BindEvalFrame(&m);
762
  BindCustomDevicePy(&m);
763

Y
Yu Yang 已提交
764
  // Not used, just make sure cpu_info.cc is linked.
765
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
766

Y
Refine  
Yu Yang 已提交
767
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
768

769 770
  AssertStaticGraphAndDygraphGradMakerNoDiff();

771
  m.doc() = "C++ core of PaddlePaddle";
772

773 774 775 776
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

777
  BindException(&m);
Y
Yu Yang 已提交
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

817 818 819 820 821 822 823 824 825 826
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
827 828 829 830
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
831 832
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
833 834
  m.def("set_num_threads", &platform::SetNumThreads);

835 836
  m.def("disable_signal_handler", &DisableSignalHandler);

837 838 839 840 841 842 843 844
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  py::class_<egr::GradNodeBase, std::shared_ptr<egr::GradNodeBase>>(
      m, "GradNodeBase")
      .def("name",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->name();
           })
      .def_property_readonly(
          "next_functions",
          [](const std::shared_ptr<egr::GradNodeBase> &self) {
            return self->NextFunctions();
          })
      .def("input_meta",
           [](const std::shared_ptr<egr::GradNodeBase> &self) {
             return self->InputMeta();
           })
      .def("output_meta", [](const std::shared_ptr<egr::GradNodeBase> &self) {
        return self->OutputMeta();
      });
863

864
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
865
  m.def("cudnn_version", &platform::DnnVersion);
866 867 868 869 870 871
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
872
#endif
873

Z
Zeng Jinle 已提交
874 875 876 877
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

878 879
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
880
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
881 882 883 884 885 886
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
887
      .def_static("gen_new_memory_pool_id",
888 889 890 891 892
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
893 894
#endif

Z
Zeng Jinle 已提交
895 896 897 898
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
899 900 901
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
902 903

    PADDLE_ENFORCE_NOT_NULL(
904 905 906 907
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
908

6
633WHU 已提交
909 910
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
911
    phi::DenseTensor tensor;
6
633WHU 已提交
912

S
Siming Dai 已提交
913
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
914
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
915
    }
916
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
917
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
918
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
919 920 921 922
    }
#endif
    return tensor;
  });
H
hong 已提交
923

924
  m.def("_create_loaded_parameter",
925 926
        [](const py::handle &vec_var_list,
           const Scope &scope,
927
           const Executor *executor) {
O
OccupyMars2025 已提交
928
          CreateVariableIfNotExist(vec_var_list, scope, executor);
929 930
        });

931 932 933 934 935 936
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
937 938
  });

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

964 965 966 967 968 969
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
970

S
sneaxiy 已提交
971
  m.def(
S
sneaxiy 已提交
972
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
973 974 975 976
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
977 978 979
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
996
            }
997
            all_kernels_info.emplace(op_type, kernel_types);
998
          }
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
1015
                }
1016 1017
              } else {
                kernel_types.emplace_back(kernel_type_str);
1018
              }
1019
            }
1020 1021 1022
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
1023
          }
1024
        }
1025

1026 1027 1028 1029
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
1030 1031 1032
           Return the registered kernels in paddle.

           Args:
1033
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
1034
           )DOC");
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1088 1089 1090 1091 1092 1093
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1094 1095
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1096
    platform::XCCLCommContext::Release();
1097 1098 1099
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1100
    phi::DeviceManager::Release();
1101 1102
#endif
  });
1103

S
sneaxiy 已提交
1104 1105 1106
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1107
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1108

1109
  m.def("_set_fuse_parameter_group_size",
1110
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1111
  m.def("_set_fuse_parameter_memory_size",
1112
        &paddle::framework::ir::SetFuseParameterMemorySize);
1113

S
sneaxiy 已提交
1114 1115 1116
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1117 1118
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1119 1120
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1121 1122 1123
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1124
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1125 1126 1127

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1128
      .def(py::init<>())
1129
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1130
      .def("set_int",
1131 1132
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1133 1134 1135 1136 1137 1138 1139
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1140 1141
      .def(
          "get_tensor",
1142 1143
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1144 1145
          },
          py::return_value_policy::reference)
1146 1147
      .def("get_bytes",
           [](Variable &self) {
1148 1149 1150 1151 1152 1153
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1154
           })
S
Steffy-zxf 已提交
1155
      .def("set_string_list",
1156
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1157 1158
             *self.GetMutable<Strings>() = str_list;
           })
1159
      .def("set_vocab",
1160 1161
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1162 1163
             *self.GetMutable<Vocab>() = vocab;
           })
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1190
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1191 1192 1193 1194 1195 1196
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1197
#endif
1198 1199 1200
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1201 1202
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1213 1214
                scope_vec->size(),
                0,
1215 1216 1217 1218 1219
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1220 1221 1222 1223
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1224

S
sneaxiy 已提交
1225
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1226

0
0x45f 已提交
1227
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1241
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1242 1243 1244 1245 1246
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1247 1248 1249
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1250 1251
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1252 1253
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1254 1255 1256 1257 1258 1259 1260
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1261
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1262

1263
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1264
           current scope, the variable would be created. Otherwise,
1265
           return the existing variable.
S
sneaxiy 已提交
1266 1267

           Args:
1268 1269
               name (str): the variable name.

S
sneaxiy 已提交
1270
           Returns:
1271
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1272
           )DOC",
1273
          py::return_value_policy::reference)
1274 1275 1276
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1277
           R"DOC(
1278
           Find variable named :code:`name` in the current scope or
1279
           its parent scope. Return None if not found.
1280

S
sneaxiy 已提交
1281 1282
           Args:
               name (str): the variable name.
1283

S
sneaxiy 已提交
1284
           Returns:
1285
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1286
           )DOC",
1287
           py::return_value_policy::reference)
1288
      .def("size", &Scope::Size)
1289 1290 1291
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1292 1293
           R"DOC(
           Find variable named :code:`name` in the current scope or
1294
           its parent scope. Return None if not found.
1295 1296 1297 1298 1299 1300 1301 1302

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1303
      .def(
1304 1305
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1306
          R"DOC(
S
sneaxiy 已提交
1307 1308 1309 1310 1311
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1312
          py::return_value_policy::reference)
1313 1314
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1315 1316
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1317
           )DOC")
1318
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1319
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1320

1321 1322 1323 1324 1325 1326 1327 1328
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1329
        Create a new scope.
1330

S
sneaxiy 已提交
1331 1332 1333
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1334
      py::return_value_policy::reference);
S
sneaxiy 已提交
1335

Y
Yu Yang 已提交
1336 1337
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1338 1339
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1340 1341 1342 1343
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1344
        PADDLE_ENFORCE_EQ(
1345 1346
            info.Proto().SerializeToString(&str),
            true,
1347 1348
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1349 1350 1351
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1352 1353
    return ret_values;
  });
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1392 1393 1394 1395 1396 1397 1398 1399
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1400
              res = op_checker->GetDefaultAttrsMap();
1401 1402 1403 1404
            }
          }
          return res;
        });
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1421 1422 1423
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1424 1425 1426 1427 1428
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1429 1430 1431

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1432
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1433 1434 1435 1436

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1437
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1438
            PADDLE_THROW(platform::errors::NotFound(
1439
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1440 1441 1442 1443 1444 1445 1446 1447
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1448
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1449 1450
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1451
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1452 1453
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1454 1455 1456
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1457
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1458
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1459 1460
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1472
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1473
                      << op_desc.Type();
J
Jiabin Yang 已提交
1474 1475 1476
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1477
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1478
                      << op_desc.Type();
J
Jiabin Yang 已提交
1479 1480 1481 1482 1483 1484 1485 1486
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1487 1488 1489 1490 1491 1492 1493 1494
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1495 1496 1497
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1498 1499 1500
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1501 1502 1503 1504 1505
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1506 1507 1508
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1509 1510 1511
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1512
  m.def("infer_no_need_buffer_slots",
1513 1514
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1542 1543 1544 1545 1546 1547
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1548 1549
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1550

1551
            Args:
1552 1553 1554
                   program (ProgramDesc): The original program.

             Returns:
1555
                   tuple(ProgramDesc, map<int, int>): The first part is
1556 1557 1558 1559
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1560 1561 1562 1563
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1564 1565
    VLOG(4) << s;
    return s;
1566 1567 1568 1569 1570 1571
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1572
  });
1573 1574 1575 1576
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1577 1578 1579
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1580 1581
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1582

Y
Yu Yang 已提交
1583
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1584
      .def_static("create",
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1600 1601 1602 1603
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1604
                    return context;
Q
qijun 已提交
1605
                  })
1606 1607 1608 1609
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1610
#ifndef PADDLE_WITH_XPU
1611 1612 1613
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1614
#else
W
Wilber 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1628 1629 1630 1631
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1632
      return context;
1633
#endif
1634 1635 1636 1637
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1638
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1639 1640 1641 1642
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1643 1644
#else
                return new paddle::platform::CustomDeviceContext(place);
1645
#endif
1646 1647 1648 1649 1650
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1651
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1652 1653 1654
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1655
#else
L
Leo Chen 已提交
1656
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1669 1670 1671 1672
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1673 1674 1675 1676
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1677 1678
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1679
#endif
1680 1681 1682 1683 1684
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1685
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1686 1687 1688
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1689 1690 1691
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1692
          });
1693
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1694 1695
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1696 1697 1698
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1699
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1700
#else
R
ronnywang 已提交
1701
          VLOG(1) << string::Sprintf(
1702 1703 1704 1705
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1706
              "PaddlePaddle by: pip install paddlepaddle\n");
1707 1708 1709 1710 1711 1712
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1713
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1714
#else
R
ronnywang 已提交
1715
          VLOG(1) << string::Sprintf(
1716 1717 1718 1719
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1720
              "PaddlePaddle by: pip install paddlepaddle\n");
1721 1722 1723 1724 1725 1726
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1727
    devices = phi::DeviceManager::GetAllDeviceList();
1728
#else
R
ronnywang 已提交
1729
          VLOG(1) << string::Sprintf(
1730 1731 1732 1733
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1734
              "PaddlePaddle by: pip install paddlepaddle\n");
1735 1736 1737 1738 1739 1740
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1741
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1742
#else
R
ronnywang 已提交
1743
          VLOG(1) << string::Sprintf(
1744 1745 1746 1747 1748 1749
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1750
              "PaddlePaddle by: pip install paddlepaddle\n");
1751 1752 1753
#endif
    return devices;
  });
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1773

Y
Yu Yang 已提交
1774
  py::class_<OperatorBase>(m, "Operator")
1775 1776 1777 1778 1779 1780 1781
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1782 1783
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1784 1785 1786 1787 1788 1789
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1790
      .def("run",
1791 1792
           [](OperatorBase &self,
              const Scope &scope,
1793 1794 1795 1796
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1797
      .def("run",
1798 1799
           [](OperatorBase &self,
              const Scope &scope,
1800 1801 1802 1803
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1804
      .def("run",
1805 1806
           [](OperatorBase &self,
              const Scope &scope,
1807 1808 1809 1810
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1811
      .def("run",
1812 1813
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1814
              const platform::CUDAPinnedPlace &place) {
1815
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1816 1817
             self.Run(scope, place);
           })
R
ronnywang 已提交
1818
      .def("run",
1819 1820
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1821 1822 1823 1824
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1825 1826 1827 1828 1829
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1830 1831
             return op.Outputs();
           })
Q
qijun 已提交
1832 1833
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1834
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1835
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1836 1837 1838 1839
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1840

1841 1842 1843
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1844 1845
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1846 1847 1848 1849 1850 1851
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1852 1853
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1854

1855 1856
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1857
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1858
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1859
      .def("close", &Executor::Close)
1860 1861
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1862
           py::call_guard<py::gil_scoped_release>())
1863 1864
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1865
           py::call_guard<py::gil_scoped_release>())
1866
      .def("init_for_dataset",
1867 1868 1869 1870
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1871
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1872
             pybind11::gil_scoped_release release;
1873 1874 1875 1876 1877 1878 1879
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1880
      .def("run_prepared_ctx",
1881 1882 1883
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1884
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1885
              std::map<std::string, FetchType *> *fetch_targets,
1886 1887
              bool create_local_scope = true,
              bool create_vars = true,
1888 1889 1890
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1891 1892 1893 1894 1895 1896 1897 1898
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1899
           })
1900
      .def("run_prepared_ctx",
1901 1902 1903 1904 1905
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1906 1907
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1908 1909
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1910
           })
1911
      .def("prepare",
1912 1913 1914
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1915 1916 1917 1918
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1919 1920
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1921 1922
           })
      .def("create_variables", &Executor::CreateVariables)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1939

1940
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1941
      .def(py::init<>())
1942 1943 1944 1945 1946
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1947

1948
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1949 1950 1951
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1952
      .def("run",
1953
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1954 1955 1956
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1957
               ret = self.Run(feed_names);
1958 1959
             }
             return py::cast(std::move(ret));
H
hong 已提交
1960 1961
           });

1962 1963
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1964
      .def(py::init<const std::string &>(), py::arg("type"))
1965 1966 1967 1968
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1969 1970
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1983

D
dzhwinter 已提交
1984
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1985
  m.def("init_glog", framework::InitGLOG);
1986
  m.def("init_memory_method", framework::InitMemoryMethod);
1987 1988 1989 1990
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1991 1992 1993 1994 1995 1996 1997 1998
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1999 2000
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2001
  m.def("init_tensor_operants", []() {
2002 2003 2004 2005 2006 2007
    paddle::OperantsManager::Instance().eager_operants =
        std::make_unique<paddle::prim::EagerTensorOperants>();
    paddle::OperantsManager::Instance().static_operants =
        std::make_unique<paddle::prim::StaticTensorOperants>();
    paddle::OperantsManager::Instance().phi_operants =
        std::make_unique<paddle::operants::PhiTensorOperants>();
2008 2009
    VLOG(4) << "Initialize tensor operants successfully";
  });
2010
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2011
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2012
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2013
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2014
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2015
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2016
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2017
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2018 2019
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2020
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2021
  m.def("is_run_with_cinn", IsRunWithCINN);
2022
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2023
  m.def("supports_bfloat16", SupportsBfloat16);
2024
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2025 2026
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2027
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2028
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2029
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2030 2031 2032
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
2033 2034 2035 2036 2037
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2057 2058 2059
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
2060 2061
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
2062 2063
  m.def(
      "run_cmd",
2064 2065
      [](const std::string &cmd,
         int time_out = -1,
2066
         int sleep_inter = -1) -> const std::string {
2067 2068
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2069
      },
2070 2071 2072
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2073 2074
  m.def(
      "shell_execute_cmd",
2075 2076 2077
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2078
         bool redirect_stderr = false) -> std::vector<std::string> {
2079 2080
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2081
      },
2082 2083 2084
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2085
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2086

S
Steffy-zxf 已提交
2087
  m.def("set_feed_variable",
2088 2089
        static_cast<void (*)(  // NOLINT
            Scope *,
2090
            const phi::DenseTensor &,
2091 2092
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2093
  m.def("set_feed_variable",
2094 2095
        static_cast<void (*)(  // NOLINT
            Scope *,
2096
            const std::vector<std::string> &,
2097 2098
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2099
  m.def("get_fetch_variable",
2100 2101
        [](const Scope &scope,
           const std::string &var_name,
2102 2103 2104
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2105
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2106
          } else {
R
Ruibiao Chen 已提交
2107
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2108 2109
          }
        });
2110
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2111

X
Xin Pan 已提交
2112 2113
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2114 2115 2116 2117
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2118
  BindCostModel(&m);
2119
  BindConstValue(&m);
2120
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2121
  BindFleetExecutor(&m);
2122
  BindTCPStore(&m);
2123
  BindCommContextManager(&m);
2124
  BindAutoParallel(&m);
2125
  BindJitProperty(&m);
Y
Yu Yang 已提交
2126

Y
Yu Yang 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2136
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2137
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2138 2139 2140

    Examples:
        .. code-block:: python
2141

Z
Zeng Jinle 已提交
2142 2143 2144
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2145 2146 2147 2148
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2149 2150
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2151 2152 2153 2154
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2155 2156
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2157
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2158 2159
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2160 2161 2162
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2163 2164 2165
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2166 2167
      .def(
          "append",
2168
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2169 2170 2171 2172
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2173 2174
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2175
             Append a LoDensor to LoDTensorArray.
2176

2177 2178 2179 2180 2181
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2193
           )DOC")
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2205

2206
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2207
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2208
        )DOC")
2209 2210 2211 2212 2213 2214
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2215
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2216
                res[i] = py::cast(std::move(data));
2217 2218 2219
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2220
              } else {
R
Ruibiao Chen 已提交
2221
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2233

2234 2235
      .def(
          "append",
2236
          [](FetchList &self, const phi::DenseTensor &t) {
2237
            self.emplace_back();
2238
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2239 2240 2241 2242 2243 2244 2245 2246 2247
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2248
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2249 2250 2251 2252 2253 2254
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2255 2256

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2257
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2258
        )DOC")
2259 2260 2261 2262 2263 2264 2265 2266
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2267
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2268 2269
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2270
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2285

Y
Yu Yang 已提交
2286
  m.def("op_support_gpu", OpSupportGPU);
2287
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2288
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2289
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2290 2291 2292 2293 2294 2295 2296 2297
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2298 2299 2300 2301 2302 2303
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2304 2305

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2331
      });
D
dangqingqing 已提交
2332

2333
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2334 2335 2336
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2337 2338 2339
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2340 2341 2342
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2343
#endif
P
peizhilin 已提交
2344
#endif
Y
Yu Yang 已提交
2345

J
jianghaicheng 已提交
2346 2347 2348 2349
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2350 2351 2352 2353 2354 2355
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2356 2357 2358 2359
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2360
      .value("kAll", platform::ProfilerState::kAll)
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2372
  m.def("set_tracer_option", platform::SetTracerOption);
2373 2374
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2375
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2376
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2377
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2378
    PADDLE_ENFORCE_EQ(
2379 2380
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2381 2382 2383
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2384
    callable.inc_ref();
2385 2386 2387 2388
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2389 2390
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2391 2392
          return pass;
        });
2393
  });
2394
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2395 2396 2397
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
2398 2399 2400
  m.def("register_subgraph_pass", [](const std::string &pass_type) {
    framework::ir::Pass::AddSupportSubgraphPass(pass_type);
  });
Y
Yu Yang 已提交
2401

2402
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2403 2404
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2405 2406
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2407 2408
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2409 2410 2411 2412 2413 2414 2415 2416 2417
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2482 2483
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2484 2485 2486 2487
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2488 2489 2490
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2491 2492 2493 2494 2495
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2496 2497 2498
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2499 2500

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2501 2502
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2503
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2504
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2505 2506
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2507
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2508 2509 2510 2511 2512 2513
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2537 2538 2539 2540 2541 2542 2543 2544
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2563 2564
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2565 2566
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2567

2568
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2569 2570 2571 2572
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2573
#endif  // PADDLE_WITH_CUDA
2574 2575 2576 2577 2578 2579 2580 2581
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2582

J
jianghaicheng 已提交
2583 2584
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2585 2586 2587
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2588 2589 2590 2591 2592 2593 2594
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2595
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2596 2597
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2598
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2609 2610 2611 2612
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2635 2636
                         option.get_type(),
                         option_name));
2637 2638 2639 2640 2641 2642 2643
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2644 2645
                         option_name,
                         option.first.cast<std::string>(),
2646 2647
                         option.second.cast<std::uint64_t>());
                   }
2648 2649 2650 2651 2652 2653
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2699 2700
                           option.second.get_type(),
                           option_key));
2701
                     }
2702 2703
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2704 2705 2706 2707 2708 2709
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2710 2711
                     element.second.get_type(),
                     option_name));
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2742 2743
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2744 2745 2746
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2747 2748
#endif

2749 2750 2751
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
2752 2753 2754
    for (auto &op_item : list_op) {
      auto op_name = (op_item.first).c_str();
      auto counts = op_item.second;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2766 2767 2768 2769 2770 2771 2772 2773
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2774
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2775 2776 2777 2778 2779 2780 2781 2782 2783
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2784
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2785 2786 2787 2788 2789 2790 2791
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2792 2793
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2794

2795 2796
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2797

2798 2799
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2800
  // Add the api for nan op debug
2801 2802 2803 2804
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2805 2806
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2807

2808 2809 2810 2811 2812 2813 2814
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
D
dongdaxiang 已提交
2815
  BindFleetWrapper(&m);
2816
  BindIO(&m);
2817 2818 2819
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2820

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
  py::enum_<phi::DataType> data_type(m, "DataType");
  g_data_type_pytype = (PyTypeObject *)data_type.ptr();  // NOLINT
  data_type.value("UNDEFINED", phi::DataType::UNDEFINED)
      .value("BOOL", phi::DataType::BOOL)
      .value("UINT8", phi::DataType::UINT8)
      .value("INT8", phi::DataType::INT8)
      .value("UINT16", phi::DataType::UINT16)
      .value("INT16", phi::DataType::INT16)
      .value("UINT32", phi::DataType::UINT32)
      .value("INT32", phi::DataType::INT32)
      .value("UINT64", phi::DataType::UINT64)
      .value("INT64", phi::DataType::INT64)
      .value("FLOAT32", phi::DataType::FLOAT32)
      .value("FLOAT64", phi::DataType::FLOAT64)
      .value("COMPLEX64", phi::DataType::COMPLEX64)
      .value("COMPLEX128", phi::DataType::COMPLEX128)
      .value("FLOAT16", phi::DataType::FLOAT16)
      .value("BFLOAT16", phi::DataType::BFLOAT16)
      .export_values();

T
Thunderbrook 已提交
2841
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2842
  BindHeterWrapper(&m);
2843
  BindMetrics(&m);
T
Thunderbrook 已提交
2844
#endif
T
Thunderbrook 已提交
2845
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2846
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2847 2848 2849
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2850
#endif
2851
  BindGlooWrapper(&m);
H
hutuxian 已提交
2852
  BindBoxHelper(&m);
H
hutuxian 已提交
2853 2854 2855
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2856
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2857
  BindNCCLWrapper(&m);
2858 2859 2860
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2861
#endif
F
flame 已提交
2862 2863
  BindGraph(&m);
  BindNode(&m);
2864
  BindPass(&m);
F
flame 已提交
2865
  BindInferenceApi(&m);
2866
  BindCompatible(&m);
2867
  BindDataset(&m);
Y
yaoxuefeng 已提交
2868
  BindGenerator(&m);
2869
#ifndef PADDLE_NO_PYTHON
2870 2871
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2872 2873 2874
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2875

T
tangwei12 已提交
2876
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2877 2878
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2879
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2880 2881
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2882 2883 2884 2885 2886
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2887 2888 2889 2890
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2891
#ifdef PADDLE_WITH_HETERPS
2892 2893
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2894 2895 2896
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2897
#endif
X
Xinger 已提交
2898
#if defined(PADDLE_WITH_RPC)
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2911 2912

  BindNewIR(&m);
2913
  BindVjp(&m);
L
Luo Tao 已提交
2914
}
2915
}  // namespace pybind
2916
}  // namespace paddle