pybind.cc 98.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
58
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
69 70 71
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
72
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
73
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
74
#include "paddle/fluid/operators/common_infer_shape_functions.h"
75
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
76
#include "paddle/fluid/operators/py_func_op.h"
77
#include "paddle/fluid/platform/cpu_helper.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
95
#include "paddle/fluid/pybind/xpu_streams_py.h"
96
#include "paddle/phi/backends/cpu/cpu_info.h"
97 98
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
99
#include "paddle/utils/none.h"
100 101 102
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
103
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
104
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
105
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
106
#include "paddle/fluid/pybind/box_helper_py.h"
107
#include "paddle/fluid/pybind/communication.h"
108
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
111
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
112
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
113
#include "paddle/fluid/pybind/generator_py.h"
114
#include "paddle/fluid/pybind/global_value_getter_setter.h"
115
#include "paddle/fluid/pybind/gloo_context_py.h"
116
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
117
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
119
#include "paddle/fluid/pybind/ir.h"
120
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
122
#include "paddle/fluid/pybind/pybind_variant_caster.h"
123
#include "paddle/phi/backends/device_manager.h"
124

125
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
126
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
127
#endif
128
#include "paddle/fluid/framework/data_type.h"
129 130
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
131 132
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
133
#include "paddle/fluid/pybind/reader_py.h"
134
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
135
#include "paddle/fluid/pybind/tensor_py.h"
136
#include "paddle/fluid/string/to_string.h"
137 138
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
139
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
140
#endif
141
#ifndef PADDLE_WITH_HIP
142
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
143
#endif
144
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
145 146
#endif

147
#ifdef PADDLE_WITH_ASCEND_CL
148
#include "paddle/fluid/platform/collective_helper.h"
149 150
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
151 152
#endif

153
#ifdef PADDLE_WITH_XPU
154
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
155
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
156 157
#endif

158
#ifdef PADDLE_WITH_CUSTOM_DEVICE
159
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
160 161 162
#include "paddle/phi/capi/capi.h"
#endif

163
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
164

J
jianghaicheng 已提交
165
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
166 167
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
168
#endif
169

170 171 172 173
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
174 175 176 177
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
178
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
179 180 181
#include "paddle/fluid/pybind/fleet_py.h"
#endif

182 183 184 185
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
186
#if defined(PADDLE_WITH_RPC)
187 188 189
#include "paddle/fluid/pybind/rpc.h"
#endif

190
#include "paddle/fluid/eager/api/utils/global_utils.h"
191
#include "paddle/fluid/imperative/layout_autotune.h"
192 193
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
194 195
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
196 197
#include "pybind11/stl.h"

198
DECLARE_bool(use_mkldnn);
199

Q
Qiao Longfei 已提交
200 201
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
202 203 204
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
205

206
namespace paddle {
207
namespace pybind {
208

0
0x45f 已提交
209
PyTypeObject *g_framework_scope_pytype = nullptr;
210
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
211
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
212

213 214 215 216 217 218 219 220
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

221
bool IsCompiledWithCUDA() {
222 223 224 225 226 227 228
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

229 230 231 232 233 234 235 236
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

254 255
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
256 257 258 259 260 261
  return false;
#else
  return true;
#endif
}

262 263 264 265 266 267 268 269
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

270 271 272 273 274 275 276 277
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
286 287 288 289 290 291 292 293
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

294 295 296 297 298 299 300 301
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

302 303 304 305 306 307 308 309
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

310 311 312 313 314 315 316 317
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

318 319 320 321 322 323 324 325
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

326 327 328 329
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
330
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
331 332 333 334 335 336
    return true;
  else
    return false;
#endif
}

337 338 339 340
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
341
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
342 343 344 345 346 347
    return true;
  else
    return false;
#endif
}

348 349 350 351
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
352 353
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
354 355 356 357 358 359 360
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
361 362
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
363 364 365
#endif
}

366
bool IsCompiledWithBrpc() {
367
#ifndef PADDLE_WITH_DISTRIBUTE
368
  return false;
369
#else
370
  return true;
371
#endif
372 373
}

Y
update  
Yancey1989 已提交
374
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
375
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
376 377 378 379 380 381
  return true;
#else
  return false;
#endif
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
450 451
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
452 453
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
467 468
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
469 470
    }
    vec_res.emplace_back(
471
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
472 473 474 475 476 477 478 479 480 481 482 483
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
484 485
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
486 487 488 489 490 491 492 493 494 495 496 497
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
498 499 500
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
501 502 503 504
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
505 506
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
507 508 509 510
  }
  return vec_res;
}

O
OccupyMars2025 已提交
511
static void inline CreateVariableIfNotExist(
512 513
    const py::handle &py_handle,
    const framework::Scope &scope,
514 515 516 517 518 519
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
520 521
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
522 523 524 525 526 527 528 529 530 531 532 533 534
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
535 536 537
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
538 539 540 541 542
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
543 544 545 546 547
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
548 549
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
550
        PADDLE_ENFORCE_NOT_NULL(
551 552 553
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
554 555 556
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
557
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
558
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
559 560
        tensor_temp->mutable_data(
            exe->GetPlace(),
561
            framework::TransToPhiDataType(var_desc.GetDataType()));
562 563 564
      }
    }
  } else {
565 566
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
567 568 569 570 571
  }

  return;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
588 589
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
590 591 592 593 594 595 596
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
597 598 599 600
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
601
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
602 603 604 605 606 607 608 609
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

610
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
611
  BindImperative(&m);
612
  BindEager(&m);
J
Jack Zhou 已提交
613
  BindEagerStringTensor(&m);
614
  BindCudaStream(&m);
J
james 已提交
615
  BindXpuStream(&m);
616
  BindJit(&m);
617

Y
Yu Yang 已提交
618
  // Not used, just make sure cpu_info.cc is linked.
619
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
620

Y
Refine  
Yu Yang 已提交
621
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
622

623 624
  AssertStaticGraphAndDygraphGradMakerNoDiff();

625
  m.doc() = "C++ core of PaddlePaddle";
626

627 628 629 630
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

631
  BindException(&m);
Y
Yu Yang 已提交
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

648 649
  m.def("set_num_threads", &platform::SetNumThreads);

650 651
  m.def("disable_signal_handler", &DisableSignalHandler);

652 653 654 655 656 657 658 659
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

660
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
661
  m.def("cudnn_version", &platform::DnnVersion);
662 663 664 665 666 667
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
668
#endif
669

Z
Zeng Jinle 已提交
670 671 672 673
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

674 675
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
676
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
677 678 679 680 681 682
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
683
      .def_static("gen_new_memory_pool_id",
684 685 686 687 688
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
689 690
#endif

Z
Zeng Jinle 已提交
691 692 693 694
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
695 696 697
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
698 699

    PADDLE_ENFORCE_NOT_NULL(
700 701 702 703
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
704

6
633WHU 已提交
705 706
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
707
    phi::DenseTensor tensor;
6
633WHU 已提交
708

S
Siming Dai 已提交
709
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
710
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
711
    }
712
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
713
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
714
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
715 716 717 718
    }
#endif
    return tensor;
  });
H
hong 已提交
719

720
  m.def("_create_loaded_parameter",
721 722
        [](const py::handle &vec_var_list,
           const Scope &scope,
723
           const Executor *executor) {
O
OccupyMars2025 已提交
724
          CreateVariableIfNotExist(vec_var_list, scope, executor);
725 726
        });

727 728 729 730 731 732
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
733 734
  });

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

760 761 762 763 764 765
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
766

S
sneaxiy 已提交
767
  m.def(
S
sneaxiy 已提交
768
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
769 770 771 772
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
773 774 775
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
792
            }
793
            all_kernels_info.emplace(op_type, kernel_types);
794
          }
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
811
                }
812 813
              } else {
                kernel_types.emplace_back(kernel_type_str);
814
              }
815
            }
816 817 818
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
819
          }
820
        }
821

822 823 824 825
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
826 827 828
           Return the registered kernels in paddle.

           Args:
829
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
830
           )DOC");
831

832 833 834 835 836 837
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
838 839 840 841 842
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
843

S
sneaxiy 已提交
844 845 846
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
847
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
848

849
  m.def("_set_fuse_parameter_group_size",
850
        &paddle::framework::ir::SetFuseParameterGroupsSize);
851
  m.def("_set_fuse_parameter_memory_size",
852
        &paddle::framework::ir::SetFuseParameterMemorySize);
853

S
sneaxiy 已提交
854 855 856
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

857 858
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
859 860
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

861 862 863
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
905 906 907 908 909 910 911 912 913 914 915 916 917
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
918 919 920 921 922
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
923

924
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
925 926 927

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
928
      .def(py::init<>())
929
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
930
      .def("set_int",
931 932
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
933 934 935 936 937 938 939
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
940 941
      .def(
          "get_tensor",
942 943
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
944 945
          },
          py::return_value_policy::reference)
946 947
      .def("get_bytes",
           [](Variable &self) {
948 949 950 951 952 953
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
954
           })
S
Steffy-zxf 已提交
955 956 957 958
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
959
      .def("set_vocab",
960 961
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
962 963
             *self.GetMutable<Vocab>() = vocab;
           })
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
990
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
991 992 993 994 995 996
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
997
#endif
998 999 1000
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1001 1002
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1013 1014
                scope_vec->size(),
                0,
1015 1016 1017 1018 1019
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1020 1021 1022 1023
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1024

S
sneaxiy 已提交
1025
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1026

0
0x45f 已提交
1027
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1041
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1042 1043 1044 1045 1046
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1047 1048 1049
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1050 1051
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1052 1053 1054 1055 1056 1057 1058
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1059
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1060

1061
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1062
           current scope, the variable would be created. Otherwise,
1063
           return the existing variable.
S
sneaxiy 已提交
1064 1065

           Args:
1066 1067
               name (str): the variable name.

S
sneaxiy 已提交
1068
           Returns:
1069
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1070
           )DOC",
1071
          py::return_value_policy::reference)
1072 1073 1074
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1075
           R"DOC(
1076
           Find variable named :code:`name` in the current scope or
1077
           its parent scope. Return None if not found.
1078

S
sneaxiy 已提交
1079 1080
           Args:
               name (str): the variable name.
1081

S
sneaxiy 已提交
1082
           Returns:
1083
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1084
           )DOC",
1085
           py::return_value_policy::reference)
1086
      .def("size", &Scope::Size)
1087 1088 1089
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1090 1091
           R"DOC(
           Find variable named :code:`name` in the current scope or
1092
           its parent scope. Return None if not found.
1093 1094 1095 1096 1097 1098 1099 1100

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1101
      .def(
1102 1103
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1104
          R"DOC(
S
sneaxiy 已提交
1105 1106 1107 1108 1109
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1110
          py::return_value_policy::reference)
1111 1112
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1113 1114
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1115
           )DOC")
1116 1117
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1118

1119 1120 1121 1122 1123 1124 1125 1126
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1127
        Create a new scope.
1128

S
sneaxiy 已提交
1129 1130 1131
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1132
      py::return_value_policy::reference);
S
sneaxiy 已提交
1133

Y
Yu Yang 已提交
1134 1135
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1136 1137
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1138 1139 1140 1141
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1142
        PADDLE_ENFORCE_EQ(
1143 1144
            info.Proto().SerializeToString(&str),
            true,
1145 1146
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1147 1148 1149
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1150 1151
    return ret_values;
  });
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1190 1191 1192 1193 1194 1195 1196 1197
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1198
              res = op_checker->GetDefaultAttrsMap();
1199 1200 1201 1202
            }
          }
          return res;
        });
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1237 1238 1239
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1240 1241 1242 1243 1244
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1245 1246 1247
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1248
  m.def("infer_no_need_buffer_slots",
1249 1250
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1278 1279 1280 1281 1282 1283
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1284 1285
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1286

1287
            Args:
1288 1289 1290
                   program (ProgramDesc): The original program.

             Returns:
1291
                   tuple(ProgramDesc, map<int, int>): The first part is
1292 1293 1294 1295
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1296 1297 1298 1299
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1300 1301
    VLOG(4) << s;
    return s;
1302 1303 1304 1305 1306 1307
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1308
  });
1309 1310 1311 1312
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1313 1314 1315
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1316 1317
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1318

Y
Yu Yang 已提交
1319
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1320
      .def_static("create",
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1336 1337 1338 1339
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1340
                    return context;
Q
qijun 已提交
1341
                  })
1342 1343 1344 1345
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1346
#ifndef PADDLE_WITH_XPU
1347 1348 1349
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1350
#else
W
Wilber 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1364 1365 1366 1367
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1368
      return context;
1369
#endif
1370 1371 1372 1373 1374
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1375
#ifndef PADDLE_WITH_MLU
1376 1377 1378
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1379 1380
#else
                    return new paddle::platform::MLUDeviceContext(place);
1381
#endif
1382 1383 1384 1385 1386
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1387
#ifndef PADDLE_WITH_ASCEND_CL
1388 1389 1390
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1391 1392
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1393
#endif
1394 1395 1396 1397
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1398
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1399 1400 1401 1402
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1403 1404
#else
                return new paddle::platform::CustomDeviceContext(place);
1405
#endif
1406 1407 1408 1409 1410
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1411
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1412 1413 1414
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1415
#else
L
Leo Chen 已提交
1416
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1429 1430 1431 1432
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1433 1434 1435 1436
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1437 1438
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1439
#endif
1440 1441 1442 1443 1444
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1445
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1446 1447 1448
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1449 1450 1451
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1452
          });
1453
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1454 1455
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1456 1457 1458
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1459
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1460
#else
R
ronnywang 已提交
1461
          VLOG(1) << string::Sprintf(
1462 1463 1464 1465
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1466
              "PaddlePaddle by: pip install paddlepaddle\n");
1467 1468 1469 1470 1471 1472
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1473
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1474
#else
R
ronnywang 已提交
1475
          VLOG(1) << string::Sprintf(
1476 1477 1478 1479
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1480
              "PaddlePaddle by: pip install paddlepaddle\n");
1481 1482 1483 1484 1485 1486
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1487
    devices = phi::DeviceManager::GetAllDeviceList();
1488
#else
R
ronnywang 已提交
1489
          VLOG(1) << string::Sprintf(
1490 1491 1492 1493
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1494
              "PaddlePaddle by: pip install paddlepaddle\n");
1495 1496 1497 1498 1499 1500
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1501
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1502
#else
R
ronnywang 已提交
1503
          VLOG(1) << string::Sprintf(
1504 1505 1506 1507 1508 1509
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1510
              "PaddlePaddle by: pip install paddlepaddle\n");
1511 1512 1513
#endif
    return devices;
  });
Y
Yu Yang 已提交
1514

Y
Yu Yang 已提交
1515
  py::class_<OperatorBase>(m, "Operator")
1516 1517 1518 1519 1520 1521 1522
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1523 1524
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1525 1526 1527 1528 1529 1530
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1531
      .def("run",
1532 1533
           [](OperatorBase &self,
              const Scope &scope,
1534 1535 1536 1537
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1538
      .def("run",
1539 1540
           [](OperatorBase &self,
              const Scope &scope,
1541 1542 1543 1544
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1545
      .def("run",
1546 1547
           [](OperatorBase &self,
              const Scope &scope,
1548 1549 1550 1551
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1552
      .def("run",
1553 1554
           [](OperatorBase &self,
              const Scope &scope,
1555 1556 1557 1558
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1559
      .def("run",
1560 1561
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1562
              const platform::CUDAPinnedPlace &place) {
1563
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1564 1565
             self.Run(scope, place);
           })
1566
      .def("run",
1567 1568
           [](OperatorBase &self,
              const Scope &scope,
1569 1570 1571 1572
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1573
      .def("run",
1574 1575
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1576 1577 1578 1579
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1580 1581 1582 1583 1584
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1585 1586
             return op.Outputs();
           })
Q
qijun 已提交
1587 1588
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1589
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1590
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1591 1592 1593 1594
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1595

1596 1597 1598
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1599 1600
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1601 1602 1603 1604 1605 1606
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1607 1608
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1609

1610 1611
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1612
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1613
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1614
      .def("close", &Executor::Close)
1615 1616
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1617
           py::call_guard<py::gil_scoped_release>())
1618 1619
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1620
           py::call_guard<py::gil_scoped_release>())
1621
      .def("init_for_dataset",
1622 1623 1624 1625
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1626
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1627
             pybind11::gil_scoped_release release;
1628 1629 1630 1631 1632 1633 1634
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1635
      .def("run_prepared_ctx",
1636 1637 1638
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1639
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1640
              std::map<std::string, FetchType *> *fetch_targets,
1641 1642
              bool create_local_scope = true,
              bool create_vars = true,
1643 1644 1645
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1646 1647 1648 1649 1650 1651 1652 1653
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1654
           })
1655
      .def("run_prepared_ctx",
1656 1657 1658 1659 1660
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1661 1662
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1663 1664
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1665
           })
1666
      .def("prepare",
1667 1668 1669
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1670 1671 1672 1673
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1674 1675
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1676 1677
           })
      .def("create_variables", &Executor::CreateVariables)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1694

1695
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1696
      .def(py::init<>())
1697 1698 1699 1700 1701
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1702

1703
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1704
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1705
      .def("run",
1706
           [](StandaloneExecutor &self,
1707
              Scope *scope,
1708
              std::vector<std::string> feed_names,
1709 1710 1711 1712
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1713
               ret = self.Run(scope, feed_names, fetch_names);
1714 1715 1716
             }
             return py::cast(std::move(ret));
           })
1717 1718
      .def("dry_run",
           [](StandaloneExecutor &self,
1719
              Scope *scope,
1720
              const std::unordered_map<std::string, py::array> &input_dict) {
1721
             std::vector<phi::DenseTensor> feed_tensors;
1722 1723 1724
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1725
               phi::DenseTensor t;
1726 1727 1728 1729 1730 1731
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1732
             framework::interpreter::CostInfo cost_info;
1733 1734
             {
               pybind11::gil_scoped_release release;
1735
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1736 1737
             }
             return cost_info;
H
hong 已提交
1738 1739
           });

D
dzhwinter 已提交
1740
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1741
  m.def("init_glog", framework::InitGLOG);
1742 1743 1744 1745
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1746 1747 1748 1749 1750 1751 1752 1753
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1754 1755
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1756
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1757
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1758
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1759
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1760
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1761
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1762
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1763
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1764
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1765 1766
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1767
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1768
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1769
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1770
  m.def("supports_bfloat16", SupportsBfloat16);
1771
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1772 1773
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1774
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1775
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1776
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1777 1778 1779
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1799 1800 1801
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1802 1803
  m.def(
      "run_cmd",
1804 1805
      [](const std::string &cmd,
         int time_out = -1,
1806
         int sleep_inter = -1) -> const std::string {
1807 1808
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1809
      },
1810 1811 1812
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1813 1814
  m.def(
      "shell_execute_cmd",
1815 1816 1817
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1818
         bool redirect_stderr = false) -> std::vector<std::string> {
1819 1820
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1821
      },
1822 1823 1824
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1825
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1826

1827
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1828 1829
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1830
    return platform::GetGPUComputeCapability(place.device) >= 53;
1831
  });
1832 1833 1834 1835
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1836
#endif
1837

S
Steffy-zxf 已提交
1838
  m.def("set_feed_variable",
1839 1840
        static_cast<void (*)(  // NOLINT
            Scope *,
1841
            const phi::DenseTensor &,
1842 1843
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1844
  m.def("set_feed_variable",
1845 1846 1847 1848 1849
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1850
  m.def("get_fetch_variable",
1851 1852
        [](const Scope &scope,
           const std::string &var_name,
1853 1854 1855
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1856
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1857
          } else {
R
Ruibiao Chen 已提交
1858
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1859 1860
          }
        });
1861
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1862

X
Xin Pan 已提交
1863 1864
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1865 1866 1867 1868
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1869
  BindCostModel(&m);
1870
  BindConstValue(&m);
1871
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1872
  BindFleetExecutor(&m);
1873
  BindTCPStore(&m);
1874
  BindCommContextManager(&m);
1875
  BindAutoParallel(&m);
1876
  BindJitProperty(&m);
Y
Yu Yang 已提交
1877

Y
Yu Yang 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1887
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1888
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1889 1890 1891

    Examples:
        .. code-block:: python
1892

Z
Zeng Jinle 已提交
1893 1894 1895
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1896 1897 1898 1899
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1900 1901
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1902 1903 1904 1905
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1906 1907
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1908
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1909 1910
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1911 1912 1913
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1914 1915 1916
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1917 1918
      .def(
          "append",
1919
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1920 1921 1922 1923
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1924 1925
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1926
             Append a LoDensor to LoDTensorArray.
1927

1928 1929 1930 1931 1932
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1944
           )DOC")
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1956

1957
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1958
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1959
        )DOC")
1960 1961 1962 1963 1964 1965
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
1966
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
1967
                res[i] = py::cast(std::move(data));
1968 1969 1970
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1971
              } else {
R
Ruibiao Chen 已提交
1972
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1984

1985 1986
      .def(
          "append",
1987
          [](FetchList &self, const phi::DenseTensor &t) {
1988
            self.emplace_back();
1989
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
1990 1991 1992 1993 1994 1995 1996 1997 1998
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1999
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2000 2001 2002 2003 2004 2005
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2006 2007

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2008
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2009
        )DOC")
2010 2011 2012 2013 2014 2015 2016 2017
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2018
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2019 2020
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2021
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2036

Y
Yu Yang 已提交
2037
  m.def("op_support_gpu", OpSupportGPU);
2038
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2039
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2040
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2041 2042 2043 2044 2045 2046 2047 2048
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2049 2050 2051 2052 2053 2054
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2055 2056

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2082
      });
D
dangqingqing 已提交
2083

2084
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2085 2086 2087
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2088 2089 2090
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2091 2092 2093
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2094
#endif
P
peizhilin 已提交
2095
#endif
Y
Yu Yang 已提交
2096

2097 2098
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2099
  m.def("npu_finalize", []() {
2100 2101
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2102 2103 2104
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2105
      platform::NPUDeviceGuard guard(devices[i]);
2106 2107 2108 2109
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2130 2131 2132 2133
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2134 2135 2136 2137
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2138 2139 2140 2141 2142 2143
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2144 2145 2146 2147
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2148
      .value("kAll", platform::ProfilerState::kAll)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2160
  m.def("set_tracer_option", platform::SetTracerOption);
2161 2162
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2163
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2164
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2165
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2166
    PADDLE_ENFORCE_EQ(
2167 2168
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2169 2170 2171
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2172
    callable.inc_ref();
2173 2174 2175 2176 2177 2178 2179 2180
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2181
  });
2182
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2183 2184 2185
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2186

2187
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2188 2189
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2190 2191
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2192 2193
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2194 2195 2196 2197 2198 2199 2200 2201 2202
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2267 2268
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2269 2270 2271 2272
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2273 2274 2275
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2276 2277 2278 2279 2280
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2281 2282 2283
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2284 2285

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2286 2287
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2288
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2289
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2290 2291
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2292 2293 2294 2295 2296 2297
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2321 2322 2323 2324 2325 2326 2327 2328
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2347 2348
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2349 2350
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2351

2352
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2353 2354
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2355 2356
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2357
#endif  // PADDLE_WITH_CUDA
2358 2359 2360 2361 2362 2363 2364 2365
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2366

J
jianghaicheng 已提交
2367 2368
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2369 2370 2371
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2372 2373 2374 2375 2376 2377 2378
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2379
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2380 2381
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2382
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2393 2394 2395 2396
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2419 2420
                         option.get_type(),
                         option_name));
2421 2422 2423 2424 2425 2426 2427
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2428 2429
                         option_name,
                         option.first.cast<std::string>(),
2430 2431
                         option.second.cast<std::uint64_t>());
                   }
2432 2433 2434 2435 2436 2437
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2483 2484
                           option.second.get_type(),
                           option_key));
2485
                     }
2486 2487
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2488 2489 2490 2491 2492 2493
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2494 2495
                     element.second.get_type(),
                     option_name));
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2526 2527
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2528 2529 2530
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2531 2532
#endif

2533 2534 2535 2536 2537 2538 2539 2540
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2541
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2542 2543 2544 2545 2546 2547 2548
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2549
  m.def("get_low_precision_op_list", [] {
2550
    return phi::KernelFactory::Instance().GetLowPrecisionKernelList();
2551 2552
  });

2553 2554
  m.def("autotune_status", [] {
    py::dict res;
2555
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2556 2557 2558 2559 2560 2561 2562
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2563 2564
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2565

2566 2567
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2568

2569 2570
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2571

D
dongdaxiang 已提交
2572
  BindFleetWrapper(&m);
2573
  BindIO(&m);
2574 2575 2576
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2577

T
Thunderbrook 已提交
2578
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2579
  BindHeterWrapper(&m);
2580
  BindMetrics(&m);
T
Thunderbrook 已提交
2581
#endif
T
Thunderbrook 已提交
2582
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2583
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2584 2585 2586
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2587
#endif
2588
  BindGlooWrapper(&m);
H
hutuxian 已提交
2589
  BindBoxHelper(&m);
H
hutuxian 已提交
2590 2591 2592
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2593
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2594
  BindNCCLWrapper(&m);
2595 2596 2597
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2598
#endif
F
flame 已提交
2599 2600
  BindGraph(&m);
  BindNode(&m);
2601
  BindPass(&m);
F
flame 已提交
2602
  BindInferenceApi(&m);
2603
  BindCompatible(&m);
2604
  BindDataset(&m);
Y
yaoxuefeng 已提交
2605
  BindGenerator(&m);
2606
#ifndef PADDLE_NO_PYTHON
2607 2608
  BindDistributed(&m);
#endif
2609 2610 2611
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2612
  BindAscendDevice(&m);
2613
#endif
Y
Yanghello 已提交
2614 2615 2616
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2617

T
tangwei12 已提交
2618
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2619 2620
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2621
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2622 2623
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2624 2625 2626 2627 2628
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2629 2630 2631 2632
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2633
#ifdef PADDLE_WITH_HETERPS
2634 2635
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2636 2637 2638
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2639
#endif
X
Xinger 已提交
2640
#if defined(PADDLE_WITH_RPC)
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2653
}
2654
}  // namespace pybind
2655
}  // namespace paddle