pybind.cc 43.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/platform/enforce.h"
44
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
47
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
50
#include "paddle/fluid/pybind/imperative.h"
51 52
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
53
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
55

56
#include "paddle/fluid/string/to_string.h"
57

D
Dong Zhihong 已提交
58
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
59
#ifndef _WIN32
Y
Yi Wang 已提交
60
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
61
#endif
Y
Yi Wang 已提交
62 63
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
64 65
#endif

M
minqiyang 已提交
66 67
#include "pybind11/stl.h"

68 69 70 71
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
72 73 74
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

75
namespace paddle {
76
namespace pybind {
77
bool IsCompiledWithCUDA() {
78
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
79 80 81 82 83 84
  return false;
#else
  return true;
#endif
}

85 86 87 88 89 90 91 92
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
  return true;
#else
  return false;
#endif
}

Y
update  
Yancey1989 已提交
93
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
94
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
95 96 97 98 99 100
  return true;
#else
  return false;
#endif
}

101
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
102 103 104
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
105
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
106
  m.doc() = "C++ core of PaddlePaddle";
107

108 109 110 111
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

112
  BindException(&m);
Y
Yu Yang 已提交
113

S
sneaxiy 已提交
114
  m.def(
S
sneaxiy 已提交
115
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
116 117 118 119
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
      .def(py::init<>())
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
      .def("_grad", &imperative::VarBase::Grad)
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

156 157 158
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
159
      .def("_get_dims",
160
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
161
      .def("_set_dims",
Q
qijun 已提交
162
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
163
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
164
           })
Y
yuyang18 已提交
165
      .def("_set_layout",
D
dzhwinter 已提交
166 167 168
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
169
      .def("_alloc_float",
D
dzhwinter 已提交
170
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
171
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
172
           })
Y
yuyang18 已提交
173
      .def("_alloc_float",
Y
Yu Yang 已提交
174
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
175
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
176
           })
Y
yuyang18 已提交
177
      .def("_alloc_int",
Y
Yu Yang 已提交
178
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
179
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
180
           })
Y
yuyang18 已提交
181
      .def("_alloc_int",
D
dzhwinter 已提交
182
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
183
             self.mutable_data<int>(place);
Q
qijun 已提交
184
           })
Y
yuyang18 已提交
185
      .def("_alloc_int",
C
chengduoZH 已提交
186 187 188
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
189
      .def("_alloc_float",
C
chengduoZH 已提交
190 191 192
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
193 194
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
195
      .def("set", PyCPUTensorSetFromArray<double>)
196
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
197
      .def("set", PyCPUTensorSetFromArray<bool>)
198
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
199
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
200
      .def("set", PyCPUTensorSetFromArray<int8_t>)
201
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
202 203
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
204
      .def("set", PyCUDATensorSetFromArray<double>)
205
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
206
      .def("set", PyCUDATensorSetFromArray<bool>)
207
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
208
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
209
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
210 211 212 213 214 215
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
216
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
217
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
218
#endif
219
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
220 221 222 223
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
224
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
225

X
Xin Pan 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
239
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
240
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
241
     columns, hence [5, 2].
X
Xin Pan 已提交
242 243 244

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
245 246
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
270 271
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
272 273 274 275 276 277 278 279 280 281 282 283 284 285
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
286
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
287 288 289 290 291
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
292
      .def("set_lod",
293
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
294
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
295
             LoD new_lod;
296 297
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
298 299
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
300
             self.set_lod(new_lod);
D
dangqingqing 已提交
301
           })
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
327
      // Set above comments of set_lod.
328 329 330 331 332 333 334 335 336 337 338 339 340
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
341 342
      });

Q
qijun 已提交
343 344 345 346 347 348 349 350 351 352 353
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
354 355
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
356 357
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
358 359 360 361 362 363 364 365 366
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
367
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
368
      .def("rows", [](SelectedRows &self) {
369 370 371 372 373
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
374
      });
Q
qijun 已提交
375

376
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
377 378 379

All parameter, weight, gradient are variables in Paddle.
)DOC")
380
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
381
      .def("set_int",
382 383
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
384 385 386 387 388 389 390
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
391
      .def("get_tensor",
392 393
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
394 395
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
396 397 398
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
399 400 401 402 403
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
404 405 406
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
407
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
408 409 410 411 412
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
413
#endif
Y
Refine  
Yu Yang 已提交
414 415 416 417 418
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
419
           py::return_value_policy::reference);
420

Y
Refine  
Yu Yang 已提交
421
  py::class_<framework::ReaderHolder>(m, "Reader", "")
422
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
423

S
sneaxiy 已提交
424 425 426 427
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
428 429
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
430
      .def("push",
S
sneaxiy 已提交
431
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
432
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
433
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
434
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
435
           })
S
sneaxiy 已提交
436 437 438 439
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
440

S
sneaxiy 已提交
441
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
442
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
443
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
444
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
445 446 447 448 449 450
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
451 452
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
453
              return holder->GetQueue();
S
sneaxiy 已提交
454
            },
S
sneaxiy 已提交
455
        py::return_value_policy::copy);
S
sneaxiy 已提交
456

Q
Qiao Longfei 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
477
      .def("var",
478
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
479
             return self.Var(name);
Y
Yu Yang 已提交
480
           },
481
           py::return_value_policy::reference)
482
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
483
      .def(py::init<>())
484
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
485
           py::return_value_policy::reference)
Y
Yu Yang 已提交
486
      .def("drop_kids", &Scope::DropKids);
487

Y
Yu Yang 已提交
488 489
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
490 491
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
492 493 494 495 496 497 498 499 500 501
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
502 503
    return ret_values;
  });
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
520
  m.def("prune", [](const ProgramDesc &origin,
521
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
522
    ProgramDesc prog_with_targets(origin);
523
    for (const auto &t : targets) {
524
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
525
    }
526
    proto::ProgramDesc pruned_desc;
527
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
528
    return new ProgramDesc(pruned_desc);
529
  });
530 531 532 533
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
534 535 536
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
537 538
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
539
  // clang-format off
Y
Yu Yang 已提交
540
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
541 542
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
543
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
544 545 546
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
547
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
548
                      -> paddle::platform::DeviceContext* {
549
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
550
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
551
#else
Q
qijun 已提交
552
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
553
#endif
C
chengduoZH 已提交
554 555 556 557 558 559 560 561 562 563 564
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
565
// clang-format on
P
peizhilin 已提交
566
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
567 568
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
569
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
570
      .def(py::init<int>())
D
dzhwinter 已提交
571
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
572

573 574 575
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
576

C
chengduoZH 已提交
577 578 579 580
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
581 582 583 584 585 586 587
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
588
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
589
             self = gpu_place;
C
chengduoZH 已提交
590 591
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
592 593
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
594
      });
Y
Yu Yang 已提交
595

Y
Yu Yang 已提交
596 597 598
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
599
                    proto::OpDesc desc;
Y
Yu Yang 已提交
600 601 602 603 604
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
605
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
606
                  })
607
      .def("run",
608
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
609 610 611
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
612
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
613 614 615 616 617
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
618 619 620 621 622 623 624
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
625 626
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
627
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
628
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
629 630 631 632
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
633

F
fengjiayi 已提交
634
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
635
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
636
      .def("close", &Executor::Close)
S
sneaxiy 已提交
637 638 639 640 641
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
642

D
dzhwinter 已提交
643
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
644
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
645 646
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
647

648
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
649
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
650
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
651 652 653 654 655 656
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
657

658
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
659
  m.def("get_fetch_variable", framework::GetFetchVariable);
660
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
661

X
Xin Pan 已提交
662 663
  m.def("_is_program_version_supported", IsProgramVersionSupported);

664 665 666 667 668
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
669

Y
Yu Yang 已提交
670 671 672 673 674 675 676 677 678
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
679
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
680 681
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
698 699 700
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
701
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
702
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
703
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
704

P
peizhilin 已提交
705
#ifndef _WIN32
D
dangqingqing 已提交
706 707 708
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
709
#endif
P
peizhilin 已提交
710
#endif
Y
Yu Yang 已提交
711

712 713 714 715
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
716
      .value("kAll", platform::ProfilerState::kAll)
717 718 719 720 721 722 723 724 725 726 727 728 729
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
730
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
731
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
732

733 734
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
735 736 737 738 739
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
740 741 742
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
743

X
fix  
Xin Pan 已提交
744 745
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
746 747 748 749 750 751 752 753 754 755 756 757 758 759
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
760
  // -- python binds for parallel executor.
Y
yuyang18 已提交
761
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
762 763 764 765
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
766 767 768 769 770 771 772 773 774 775 776
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
777 778 779

        )DOC");

Y
yuyang18 已提交
780
  exec_strategy.def(py::init())
Y
yuyang18 已提交
781 782 783 784 785
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
786 787 788 789 790 791 792 793 794 795
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
796
      .def_property(
797 798 799 800
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
801 802 803 804
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
805 806 807 808 809
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
810 811 812 813
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
814 815 816 817 818 819 820
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
821 822 823 824 825 826 827 828 829 830 831
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
832 833 834 835 836 837
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
838

Y
yuyang18 已提交
839
  exec_strategy.def_property(
Y
yuyang18 已提交
840 841 842 843 844 845 846
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
847 848
      });

C
chengduo 已提交
849 850 851 852
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
853 854 855 856 857 858 859 860 861 862 863
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
864
)DOC");
Y
yuyang18 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
881
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
882
            self.reduce_ = strategy;
C
chengduo 已提交
883 884 885 886 887 888 889
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
890 891 892 893 894
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
895
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
896
            self.gradient_scale_ = strategy;
C
chengduo 已提交
897 898 899 900 901 902
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
903 904 905 906
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
907
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
908
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
909 910 911 912
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
913 914 915
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
916
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
917
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
918 919
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
920 921 922 923 924 925
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
926
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
927 928 929 930 931 932 933 934 935
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
936
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
937 938 939
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
940 941 942 943 944 945
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
946 947 948 949 950 951 952 953 954 955 956 957
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
958 959 960 961 962 963
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
964
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
965 966 967 968 969
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
970 971 972 973 974 975 976 977
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
978
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
979
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
980 981 982 983 984
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
985 986 987

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
988
                  const std::string &, Scope *, std::vector<Scope *> &,
989 990
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
991 992 993 994
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
995 996 997 998 999
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1000 1001 1002 1003
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1004 1005 1006 1007 1008 1009
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1010

1011
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1012
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1013
}
1014
}  // namespace pybind
1015
}  // namespace paddle