pybind.cc 63.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

M
minqiyang 已提交
79 80
#include "pybind11/stl.h"

81 82 83 84
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
85 86 87
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

88
namespace paddle {
89
namespace pybind {
90
bool IsCompiledWithCUDA() {
91
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
92 93 94 95 96 97
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

106 107 108 109 110 111 112 113
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

114
bool IsCompiledWithBrpc() {
115
#ifndef PADDLE_WITH_DISTRIBUTE
116 117
  return false;
#endif
118 119 120 121 122 123

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
124 125
}

Y
update  
Yancey1989 已提交
126
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
127
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
128 129 130 131 132 133
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

144
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
145 146 147
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
148
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
149

150
  m.doc() = "C++ core of PaddlePaddle";
151

152 153 154 155
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

156
  BindException(&m);
Y
Yu Yang 已提交
157

S
sneaxiy 已提交
158
  m.def(
S
sneaxiy 已提交
159
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
160 161 162 163
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
164 165 166
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
167 168 169
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
170
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
171

172
  m.def("_set_fuse_parameter_group_size",
173
        &paddle::framework::ir::SetFuseParameterGroupsSize);
174
  m.def("_set_fuse_parameter_memory_size",
175
        &paddle::framework::ir::SetFuseParameterMemorySize);
176

S
sneaxiy 已提交
177 178 179
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

180 181 182 183 184 185 186
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

187 188 189 190 191 192 193 194 195 196 197 198
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
      m, "BackwardStrategy", R"DOC()DOC");
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

M
minqiyang 已提交
199
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
200 201
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
202
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
203

M
minqiyang 已提交
204
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
205 206 207 208 209 210 211 212
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
213
      .def("_run_backward",
214 215 216 217
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst) {
             self.RunBackward(bckst);
           })
M
minqiyang 已提交
218
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
219
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
220
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
221
      .def("_grad_ivar",
M
minqiyang 已提交
222
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
223
           py::return_value_policy::reference)
M
minqiyang 已提交
224
      .def("_copy_to",
P
Paddle CI 已提交
225
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
226 227 228 229 230
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
231
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
232
      .def("_copy_to",
P
Paddle CI 已提交
233
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
234 235 236 237 238
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
239
           py::return_value_policy::take_ownership)
240 241
      .def("value",
           [](const imperative::VarBase &self) { return self.var_.get(); },
M
minqiyang 已提交
242
           py::return_value_policy::reference)
243 244 245
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
246
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
247 248 249 250
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
251

252
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
253
      .def(py::init<const std::string &>())
254
      .def("register_backward_hooks",
Y
Yan Xu 已提交
255 256 257
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
258 259 260 261 262 263 264 265 266 267
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
268 269 270 271 272 273
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
274
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
275
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
276 277 278 279 280 281
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
282 283
          py::return_value_policy::reference);

X
Xin Pan 已提交
284
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
285
  layer.def(py::init<>())
X
Xin Pan 已提交
286
      .def("forward", [](imperative::Layer &self,
287
                         const std::vector<imperative::VarBase *> &inputs) {
X
Xin Pan 已提交
288
        return self.Forward(inputs);
X
Xin Pan 已提交
289
      });
X
Xin Pan 已提交
290

X
polish  
Xin Pan 已提交
291
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
292
      .def(py::init<>())
X
Xin Pan 已提交
293 294
      .def_static(
          "apply",
X
Xin Pan 已提交
295
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
296
              -> std::vector<imperative::VarBase *> {
297 298 299 300 301
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  // TODO(minqiyang): use unique_name generator to set a name
302 303
                  outputs.emplace_back(new imperative::VarBase(
                      "", std::move(ret_vars[i]), nullptr, true));
304 305 306
                }

                return outputs;
X
Xin Pan 已提交
307 308
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
309 310 311 312 313
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
314

315
  BindImperative(&m);
316

317
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
318
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
319 320
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
321
      .def("_get_dims",
322
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
323
      .def("_set_dims",
Q
qijun 已提交
324
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
325
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
326
           })
Y
yuyang18 已提交
327
      .def("_set_layout",
D
dzhwinter 已提交
328 329 330
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
331
      .def("_alloc_float",
D
dzhwinter 已提交
332
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
333
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
334
           })
Y
yuyang18 已提交
335
      .def("_alloc_float",
Y
Yu Yang 已提交
336
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
337
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
338
           })
Y
yuyang18 已提交
339
      .def("_alloc_int",
Y
Yu Yang 已提交
340
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
341
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
342
           })
Y
yuyang18 已提交
343
      .def("_alloc_int",
D
dzhwinter 已提交
344
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
345
             self.mutable_data<int>(place);
Q
qijun 已提交
346
           })
Y
yuyang18 已提交
347
      .def("_alloc_int",
C
chengduoZH 已提交
348 349 350
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
351
      .def("_alloc_float",
C
chengduoZH 已提交
352 353 354
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
355 356
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
357
      .def("set", PyCPUTensorSetFromArray<double>)
358
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
359
      .def("set", PyCPUTensorSetFromArray<bool>)
360
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
361
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
362
      .def("set", PyCPUTensorSetFromArray<int8_t>)
363
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
364 365
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
366
      .def("set", PyCUDATensorSetFromArray<double>)
367
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
368
      .def("set", PyCUDATensorSetFromArray<bool>)
369
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
370
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
371
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
372 373 374 375 376 377
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
378
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
379
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
380
#endif
381
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
382 383 384 385
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
386
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
387 388
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
389

X
Xin Pan 已提交
390 391 392 393 394 395 396 397 398
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
399 400 401
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
402

Z
Zeng Jinle 已提交
403 404 405
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
406

Z
Zeng Jinle 已提交
407 408 409
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
410

Z
Zeng Jinle 已提交
411
    x.shape = [5, 2]
X
Xin Pan 已提交
412

Z
Zeng Jinle 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
430 431 432 433 434 435 436 437 438 439 440 441

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
442
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
443 444 445 446 447 448 449 450 451 452 453 454 455 456
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
457
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
458 459 460 461 462
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
463
      .def("set_lod",
464
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
465
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
466
             LoD new_lod;
467 468
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
469 470
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
471
             self.set_lod(new_lod);
S
sneaxiy 已提交
472 473 474 475 476 477
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
478 479 480 481 482 483 484 485 486 487

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
488
           )DOC")
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
504 505 506 507
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
508
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
509 510
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
511 512

           Args:
513
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
514 515 516 517 518 519 520 521 522 523

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
524
           )DOC")
525 526 527 528 529 530 531 532
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
533 534 535 536 537 538
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
539 540 541 542 543 544 545 546 547 548 549

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
550
           )DOC")
G
gongweibao 已提交
551
      // Set above comments of set_lod.
552 553 554 555 556 557 558 559
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
560 561 562 563 564
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
565
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
566 567 568 569 570 571 572 573 574 575 576

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
577 578 579 580 581 582 583 584 585 586 587 588
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
589 590 591 592 593 594 595 596 597 598 599

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
600 601 602 603 604 605 606
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
607
           )DOC");
D
dangqingqing 已提交
608

Q
qijun 已提交
609 610 611 612 613 614 615 616 617 618 619
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
620 621
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
622 623
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
624 625 626 627 628 629 630 631 632
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
633
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
634
      .def("rows", [](SelectedRows &self) {
635 636 637 638 639
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
640
      });
Q
qijun 已提交
641

642
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
643 644 645

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
646
      .def(py::init<>())
647
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
648
      .def("set_int",
649 650
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
651 652 653 654 655 656 657
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
658
      .def("get_tensor",
659 660
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
661 662
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
663 664 665
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
666 667 668 669 670
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
671 672 673
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
674
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
675 676 677 678 679
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
680
#endif
Y
Refine  
Yu Yang 已提交
681 682 683 684 685
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
686
           py::return_value_policy::reference);
687

S
sneaxiy 已提交
688
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
689

S
sneaxiy 已提交
690 691 692 693
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
694

S
sneaxiy 已提交
695 696
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
697
      .def("push",
S
sneaxiy 已提交
698
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
699
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
700
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
701
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
702
           })
S
sneaxiy 已提交
703 704 705 706
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
707

S
sneaxiy 已提交
708
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
709 710
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
711
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
712 713 714 715
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
716
        py::return_value_policy::copy);
S
sneaxiy 已提交
717

S
sneaxiy 已提交
718
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
738 739
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
740
      .def("var",
741
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
742
             return self.Var(name);
Y
Yu Yang 已提交
743
           },
S
sneaxiy 已提交
744 745
           py::arg("name"),
           R"DOC(
746
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
747

748
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
749
           current scope, the variable would be created. Otherwise,
750
           return the existing variable.
S
sneaxiy 已提交
751 752

           Args:
753 754
               name (str): the variable name.

S
sneaxiy 已提交
755
           Returns:
756
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
757 758 759 760
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
761
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
762
           its parent scope. Return None if not found.
763

S
sneaxiy 已提交
764 765
           Args:
               name (str): the variable name.
766

S
sneaxiy 已提交
767
           Returns:
768
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
769
           )DOC",
770
           py::return_value_policy::reference)
771
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
772 773 774 775 776 777
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
778
           py::return_value_policy::reference)
S
sneaxiy 已提交
779 780 781
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
782 783
           )DOC")
      .def("_kids", &Scope::kids);
784

S
sneaxiy 已提交
785 786 787 788 789 790
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
791 792
        R"DOC(
        Create a new scope.
793

S
sneaxiy 已提交
794 795 796
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
797 798
        py::return_value_policy::reference);

Y
Yu Yang 已提交
799 800
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
801 802
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
803 804 805 806 807 808 809 810 811 812
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
813 814
    return ret_values;
  });
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
831
  m.def("prune", [](const ProgramDesc &origin,
832
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
833
    ProgramDesc prog_with_targets(origin);
834
    for (const auto &t : targets) {
835
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
836
    }
837
    proto::ProgramDesc pruned_desc;
838
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
839
    return new ProgramDesc(pruned_desc);
840
  });
841 842 843 844
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
845 846 847
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
848 849
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
850
  // clang-format off
Y
Yu Yang 已提交
851
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
852 853
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
854
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
855 856 857
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
858
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
859
                      -> paddle::platform::DeviceContext* {
860
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
861
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
862
#else
Q
qijun 已提交
863
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
864
#endif
C
chengduoZH 已提交
865 866 867 868 869 870 871 872 873 874 875
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
876
// clang-format on
P
peizhilin 已提交
877
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
878 879
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
880 881 882 883
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
884 885 886 887 888 889

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

890
        )DOC")
S
sneaxiy 已提交
891 892 893 894 895 896 897 898 899 900 901 902
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
903 904 905 906 907 908
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
909
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
910

911 912 913
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
914 915 916 917 918 919

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

920
        )DOC")
921
      .def(py::init<>())
S
sneaxiy 已提交
922 923 924 925 926 927
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
928
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
929

930 931 932
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
933 934 935 936 937 938

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

939
        )DOC")
S
sneaxiy 已提交
940
      .def("__init__",
S
sneaxiy 已提交
941
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
942 943 944
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
945
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
946
           })
S
sneaxiy 已提交
947 948 949 950 951 952 953 954
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
955 956
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
957 958
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
959 960 961 962 963
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
964 965
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
966 967 968 969 970 971
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
972 973 974 975
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
976 977
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
978 979 980 981 982
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
983
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
984
             self = gpu_place;
C
chengduoZH 已提交
985 986
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
987 988
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
989
      });
Y
Yu Yang 已提交
990

Y
Yu Yang 已提交
991 992 993
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
994
                    proto::OpDesc desc;
Y
Yu Yang 已提交
995 996 997 998 999
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
1000
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
1001
                  })
1002
      .def("run",
1003
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1004 1005 1006
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1007
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1008 1009 1010 1011 1012
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1013 1014 1015 1016 1017 1018 1019
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1020 1021
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1022
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1023
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1024 1025 1026 1027
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1028

F
fengjiayi 已提交
1029
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1030
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1031
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
1032
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
1033
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1034 1035
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1036
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1037 1038
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1039
      });
S
sneaxiy 已提交
1040

D
dzhwinter 已提交
1041
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1042
  m.def("init_glog", framework::InitGLOG);
1043
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1044 1045
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1046

1047
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1048
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1049
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1050
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1051
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1052 1053 1054 1055 1056 1057
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1058

1059
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1060
  m.def("get_fetch_variable", framework::GetFetchVariable);
1061
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1062

X
Xin Pan 已提交
1063 1064
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1065 1066 1067 1068 1069
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1070

Y
Yu Yang 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1090 1091
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1102 1103 1104 1105 1106 1107
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1122

D
dzhwinter 已提交
1123 1124 1125
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1126
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1127
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1128
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1129

P
peizhilin 已提交
1130
#ifndef _WIN32
D
dangqingqing 已提交
1131 1132 1133
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1134
#endif
P
peizhilin 已提交
1135
#endif
Y
Yu Yang 已提交
1136

1137 1138 1139 1140
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1141
      .value("kAll", platform::ProfilerState::kAll)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1155
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1156
  m.def("reset_profiler", platform::ResetProfiler);
1157
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1158 1159 1160
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1161

1162 1163
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1164
      .def("has", &ir::Pass::Has)
1165 1166 1167
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1168
           })
1169
      .def(
1170
          "set",
1171 1172 1173
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1174 1175
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1176 1177
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1178
        self.Apply(graph.get());
F
flame 已提交
1179
      });
1180

X
fix  
Xin Pan 已提交
1181 1182
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1197
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1198

Y
yuyang18 已提交
1199
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1200 1201 1202 1203
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1215 1216 1217

        )DOC");

Y
yuyang18 已提交
1218
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1219 1220 1221 1222 1223
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1234
      .def_property(
1235 1236 1237 1238
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1239 1240 1241 1242
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1243 1244 1245 1246 1247
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1248 1249 1250 1251
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1252 1253 1254 1255 1256 1257 1258
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1270
              )DOC")
Q
Qiao Longfei 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1282 1283 1284 1285 1286
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1287

Y
yuyang18 已提交
1288
  exec_strategy.def_property(
Y
yuyang18 已提交
1289 1290 1291 1292 1293 1294 1295
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1296 1297
      });

C
chengduo 已提交
1298 1299 1300 1301
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1313
)DOC");
Y
yuyang18 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1330
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1331
            self.reduce_ = strategy;
C
chengduo 已提交
1332 1333 1334 1335 1336 1337 1338
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1339 1340 1341 1342 1343
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1344
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1345
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1346 1347 1348 1349 1350 1351
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1352 1353 1354 1355
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1356
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1357
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1358 1359 1360 1361
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1362 1363 1364 1365 1366 1367
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1368
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1378
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1379 1380
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1381
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1382 1383 1384 1385 1386 1387
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1400 1401 1402 1403 1404 1405
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1406
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1407 1408 1409 1410 1411
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1463 1464 1465
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1476 1477 1478 1479
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1480 1481 1482
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1483
      .def_property(
D
dzhwinter 已提交
1484 1485 1486
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1487 1488 1489 1490
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1491 1492 1493 1494
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1495 1496 1497 1498
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1499 1500 1501 1502 1503 1504 1505 1506 1507
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1508
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1509
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1510 1511 1512 1513 1514
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1515 1516

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1517
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1518
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1519
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1520 1521 1522 1523
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1524 1525 1526 1527 1528
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1529 1530 1531
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1532 1533 1534 1535
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1536 1537 1538 1539 1540 1541
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1542

1543
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1544
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1545
  BindFleetWrapper(&m);
W
wopeizl 已提交
1546
#ifndef _WIN32
D
dongdaxiang 已提交
1547
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1548
#endif
F
flame 已提交
1549 1550
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1551
  BindInferenceApi(&m);
1552
  BindDataset(&m);
L
Luo Tao 已提交
1553
}
1554
}  // namespace pybind
1555
}  // namespace paddle