pybind.cc 136.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/io.h"
79
#include "paddle/utils/none.h"
80 81 82
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
83
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
84
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
85
#include "paddle/fluid/pybind/box_helper_py.h"
86
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
90
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
91
#include "paddle/fluid/pybind/generator_py.h"
92
#include "paddle/fluid/pybind/global_value_getter_setter.h"
93
#include "paddle/fluid/pybind/gloo_context_py.h"
94
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
95
#include "paddle/fluid/pybind/heter_wrapper_py.h"
96
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
97
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
98
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
100
#include "paddle/fluid/pybind/pybind_boost_headers.h"
101

102
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
104
#endif
105
#include "paddle/fluid/framework/data_type.h"
106 107
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
108
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/tensor_py.h"
110
#include "paddle/fluid/string/to_string.h"
111 112
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
113
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
114
#endif
115
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/cuda_profiler.h"
117
#endif
Y
Yi Wang 已提交
118
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
119 120
#endif

121 122
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
123
#include "paddle/fluid/platform/npu_profiler.h"
124 125
#endif

126
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
127
#include "paddle/fluid/platform/xpu/xpu_info.h"
128 129
#endif

130 131
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
132 133 134 135
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
136
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
137 138 139
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
140 141
#include "pybind11/stl.h"

142
DECLARE_bool(use_mkldnn);
143

Q
Qiao Longfei 已提交
144 145
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
146 147 148
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
149

150
namespace paddle {
151
namespace pybind {
152
bool IsCompiledWithCUDA() {
153 154 155 156 157 158 159 160 161
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
162 163 164 165 166 167
  return false;
#else
  return true;
#endif
}

168 169 170 171 172 173 174 175
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

176 177 178 179 180 181 182 183
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

184 185 186 187 188 189 190 191
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215 216 217 218
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

219 220 221 222 223 224 225 226 227 228 229
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
265 266 267
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
268
      {"NPU", &platform::is_npu_place},
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

308
bool IsCompiledWithBrpc() {
309
#ifndef PADDLE_WITH_DISTRIBUTE
310 311
  return false;
#endif
312
  return true;
313 314
}

Y
update  
Yancey1989 已提交
315
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
316
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
317 318 319 320 321 322
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
323 324 325 326 327 328 329 330 331 332
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
355 356 357
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
371 372
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
373 374
    }
    vec_res.emplace_back(
375
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
388 389
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
402 403 404
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
405 406 407 408
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
409 410
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
411 412 413 414
  }
  return vec_res;
}

415 416 417 418 419 420 421 422
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
423 424
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
425 426 427 428 429 430 431 432 433 434 435 436 437
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
438 439 440
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
441 442 443 444 445
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
446 447 448 449 450
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
451 452
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
453 454 455
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
456 457 458 459 460 461 462 463 464
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
465 466
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
467 468 469 470 471
  }

  return;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
509 510 511 512 513 514 515 516 517 518 519
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

520 521 522 523 524 525
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

526 527
  BindCudaStream(&m);

Y
Yu Yang 已提交
528 529 530
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
531
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
532

533 534
  AssertStaticGraphAndDygraphGradMakerNoDiff();

535
  m.doc() = "C++ core of PaddlePaddle";
536

537 538 539 540
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

541
  BindException(&m);
Y
Yu Yang 已提交
542

543 544
  m.def("set_num_threads", &platform::SetNumThreads);

545 546
  m.def("disable_signal_handler", &DisableSignalHandler);

547
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
548
  m.def("cudnn_version", &platform::CudnnVersion);
549 550 551 552 553 554
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
555
#endif
Z
Zeng Jinle 已提交
556 557 558 559
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

560 561 562 563 564 565 566 567 568 569
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
570 571
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
572 573
#endif

Z
Zeng Jinle 已提交
574 575 576 577
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
578 579 580
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
581 582 583 584 585 586

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
587 588
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
589
    framework::Tensor tensor;
6
633WHU 已提交
590

S
Siming Dai 已提交
591
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
592 593
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
594
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
595
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
596 597 598 599 600
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
601

602 603 604 605 606 607
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

608 609 610 611 612 613
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
614 615
  });

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
641 642 643 644 645 646
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
647
  m.def(
S
sneaxiy 已提交
648
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
649 650 651 652
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
653 654 655
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
672 673 674
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
675
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
676

677
  m.def("_set_fuse_parameter_group_size",
678
        &paddle::framework::ir::SetFuseParameterGroupsSize);
679
  m.def("_set_fuse_parameter_memory_size",
680
        &paddle::framework::ir::SetFuseParameterMemorySize);
681

S
sneaxiy 已提交
682 683 684
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

685 686
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

687 688 689
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

690
  BindImperative(&m);
691

692 693 694
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
695
      .def("_is_initialized",
696
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
697
      .def("_get_dims",
698
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
699
      .def("_set_dims",
700
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
701
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
702
           })
Y
yuyang18 已提交
703
      .def("_set_layout",
704
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
705 706
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
707
      .def("_alloc_float",
708
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
709
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
710
           })
711
      .def("_alloc_float",
712
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
713 714
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
715
      .def("_alloc_float",
716
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
717
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
718
           })
719 720 721 722
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
723
      .def("_alloc_double",
724
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
725 726
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
727
      .def("_alloc_int",
728
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
729
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
730
           })
731
      .def("_alloc_int",
732
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
733 734
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
735
      .def("_alloc_int",
736
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
737
             self.mutable_data<int>(place);
Q
qijun 已提交
738
           })
Y
yuyang18 已提交
739
      .def("_alloc_int",
740 741
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
742 743
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
744
      .def("_alloc_float",
745 746
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
747 748
             self.mutable_data<float>(place);
           })
749
      .def("_mutable_data",
750
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
751 752 753
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
754
      .def("_mutable_data",
755
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
756 757 758
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
759
      .def("_mutable_data",
760
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
761 762 763 764
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
765
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
766 767 768
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
769
      .def("_clear", &framework::Tensor::clear)
770 771 772 773 774
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
775 776 777 778 779 780 781 782 783 784 785
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
786
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
787
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
788
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
789 790
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
791
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
792
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
793 794
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
795
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
796 797
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
798 799 800 801
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
802
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
803
          LoDTensor is to be set.
804 805
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
819

820 821 822
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
839
      .def("_to_dlpack",
840
           [](framework::Tensor &self) {
6
633WHU 已提交
841
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
842
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
860 861 862 863
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
864 865
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
866
      .def("_layout",
867 868 869 870
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
871
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
872
      .def("__str__", [](const framework::Tensor &self) {
873 874 875 876
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
877

L
Leo Chen 已提交
878
  // TODO(cql): add reference: en_user_guide_lod_tensor
879
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
954 955 956 957 958 959 960

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
961 962

        )DOC")
963 964
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
965 966 967 968 969 970 971 972 973
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
974 975
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
976 977 978 979
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
980 981
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
982
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
983
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
984 985
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
986 987 988
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
989
      .def("set_lod",
990
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
991
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
992
             LoD new_lod;
993 994
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
995 996
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
997 998
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
999
             self.set_lod(new_lod);
S
sneaxiy 已提交
1000 1001 1002 1003 1004
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
1005 1006 1007 1008
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1019
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1020
           )DOC")
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1032 1033
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1034 1035 1036 1037 1038
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1039
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1040 1041
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1042
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1043

L
Leo Chen 已提交
1044
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1045
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1046
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1047 1048

           Args:
L
Leo Chen 已提交
1049 1050 1051 1052
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1063 1064
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1065
           )DOC")
1066 1067 1068 1069 1070 1071 1072 1073
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1074 1075 1076 1077 1078
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1079 1080
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1091
           )DOC")
G
gongweibao 已提交
1092
      // Set above comments of set_lod.
1093 1094 1095 1096 1097 1098 1099 1100
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1101 1102
           },
           R"DOC(
L
Leo Chen 已提交
1103 1104
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1105 1106

           Returns:
L
Leo Chen 已提交
1107
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1119 1120 1121 1122 1123 1124 1125 1126
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1127
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1128 1129

           Returns:
L
Leo Chen 已提交
1130
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1142 1143 1144 1145 1146 1147 1148
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1149
           )DOC")
1150 1151 1152 1153 1154 1155
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1177
#ifdef _WIN32
1178
      });
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1229

Q
qijun 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1241 1242
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1243 1244
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1245 1246
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1247
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1248 1249 1250 1251 1252 1253
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1254
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1255
      .def("rows", [](SelectedRows &self) {
1256 1257 1258 1259 1260
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1261
      });
Q
qijun 已提交
1262

1263
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1264 1265 1266

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1267
      .def(py::init<>())
1268
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1269
      .def("set_int",
1270 1271
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1272 1273 1274 1275 1276 1277 1278
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1279
      .def("get_tensor",
1280 1281
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1282 1283
           },
           py::return_value_policy::reference)
1284 1285 1286 1287
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1300 1301 1302
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1303 1304 1305 1306 1307
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1308 1309 1310
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1311 1312 1313
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1314
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1315 1316 1317 1318 1319
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1320
#endif
Y
Refine  
Yu Yang 已提交
1321 1322
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1323 1324 1325 1326
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1327 1328
             return self.GetMutable<framework::ReaderHolder>();
           },
1329
           py::return_value_policy::reference)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1341 1342 1343 1344
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1345

S
sneaxiy 已提交
1346
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1347

S
sneaxiy 已提交
1348
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1362
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1363 1364 1365 1366 1367 1368
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1369 1370
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1371
      .def("var",
1372
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1373
             return self.Var(name);
Y
Yu Yang 已提交
1374
           },
S
sneaxiy 已提交
1375 1376
           py::arg("name"),
           R"DOC(
1377
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1378

1379
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1380
           current scope, the variable would be created. Otherwise,
1381
           return the existing variable.
S
sneaxiy 已提交
1382 1383

           Args:
1384 1385
               name (str): the variable name.

S
sneaxiy 已提交
1386
           Returns:
1387
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1388 1389 1390 1391
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1392
           Find variable named :code:`name` in the current scope or
1393
           its parent scope. Return None if not found. 
1394

S
sneaxiy 已提交
1395 1396
           Args:
               name (str): the variable name.
1397

S
sneaxiy 已提交
1398
           Returns:
1399
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1400
           )DOC",
1401
           py::return_value_policy::reference)
1402
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1403 1404 1405 1406 1407 1408
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1409
           py::return_value_policy::reference)
S
sneaxiy 已提交
1410 1411 1412
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1413 1414
           )DOC")
      .def("_kids", &Scope::kids);
1415

S
sneaxiy 已提交
1416 1417 1418 1419 1420 1421
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1422 1423
        R"DOC(
        Create a new scope.
1424

S
sneaxiy 已提交
1425 1426 1427
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1428 1429
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1430 1431
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1432 1433
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1434 1435 1436 1437
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1438 1439
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1440 1441
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1442 1443 1444
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1445 1446
    return ret_values;
  });
1447 1448 1449 1450 1451 1452 1453 1454
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1455
              res = op_checker->GetDefaultAttrsMap();
1456 1457 1458 1459
            }
          }
          return res;
        });
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1476 1477 1478
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1479 1480 1481 1482 1483
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1484 1485 1486
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1501
  m.def("prune", [](const ProgramDesc &origin,
1502
                    const std::set<std::string> &feeded_var_names,
1503
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1504
    ProgramDesc prog_with_targets(origin);
1505

1506
    for (const auto &t : targets) {
1507
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1508
    }
1509
    proto::ProgramDesc pruned_desc;
1510 1511 1512 1513
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1514
  });
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1532 1533 1534 1535
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1536 1537 1538
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1539 1540
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1541

Q
qijun 已提交
1542
  // clang-format off
Y
Yu Yang 已提交
1543
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1544 1545
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1546
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1547 1548
                    return new paddle::platform::CPUDeviceContext();
                  })
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1573
      .def_static("create",
D
dzhwinter 已提交
1574
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1575
                      -> paddle::platform::DeviceContext* {
1576
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1577 1578 1579 1580
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1581
#else
Q
qijun 已提交
1582
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1583
#endif
C
chengduoZH 已提交
1584 1585 1586 1587
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1588
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1589 1590 1591 1592
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1593 1594 1595 1596
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1597
// clang-format on
1598
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1599 1600
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1601
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1602 1603 1604 1605 1606

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1607
    The memory of CUDAPlace with different dev_id is not accessible.
1608 1609 1610 1611 1612 1613 1614 1615
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1616 1617 1618 1619

    Examples:
        .. code-block:: python

1620 1621 1622
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1623

1624
        )DOC")
S
sneaxiy 已提交
1625 1626
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1627
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1652 1653
             new (&self) platform::CUDAPlace(dev_id);
#else
1654 1655 1656 1657 1658 1659 1660 1661 1662
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1663 1664
#endif
           })
1665
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1666 1667
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1668 1669 1670 1671
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1672
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1673
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1674 1675
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1676 1677 1678
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1679
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1680
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1727
#ifdef PADDLE_WITH_XPU
1728 1729 1730 1731 1732 1733 1734
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1735 1736 1737
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1738
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1739
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1740
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1741 1742 1743 1744
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1745
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1746 1747
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1748 1749 1750 1751 1752 1753 1754 1755
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1756
#endif
1757

1758
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1759
    CPUPlace is a descriptor of a device.
1760
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1761 1762 1763 1764

    Examples:
        .. code-block:: python

1765 1766
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1767

1768
        )DOC")
1769
      .def(py::init<>())
S
sneaxiy 已提交
1770 1771
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1772
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1773
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1774 1775 1776 1777
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1778
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1779
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1780

1781
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1782 1783 1784 1785 1786 1787
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1788 1789 1790 1791

    Examples:
        .. code-block:: python

1792 1793
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1794

1795
        )DOC")
S
sneaxiy 已提交
1796
      .def("__init__",
S
sneaxiy 已提交
1797
           [](platform::CUDAPinnedPlace &self) {
1798
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1799 1800 1801
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1802
#endif
S
sneaxiy 已提交
1803
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1804
           })
S
sneaxiy 已提交
1805 1806 1807 1808
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1809 1810
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1811 1812
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1813 1814 1815 1816
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1817
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1818 1819
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1862
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1877 1878
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1879 1880
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1881 1882
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1883 1884 1885 1886
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1887
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1888
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1889
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1890 1891
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1892 1893
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1894 1895
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1896 1897
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1898 1899 1900 1901
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1902 1903
      .def("gpu_device_id",
           [](platform::Place &self) {
1904
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1905
           })
1906 1907 1908 1909
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1910 1911 1912 1913
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1914 1915
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1916 1917 1918 1919
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1920 1921 1922 1923
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1924
      .def("set_place",
D
dzhwinter 已提交
1925
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1926
             self = gpu_place;
C
chengduoZH 已提交
1927
           })
1928 1929 1930 1931 1932
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1933 1934 1935 1936
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1937 1938
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1939

Y
Yu Yang 已提交
1940
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1955
      .def("run",
1956
           [](OperatorBase &self, const Scope &scope,
1957 1958 1959 1960
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1961 1962
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1963 1964 1965 1966
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1967 1968
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1969 1970 1971 1972
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1973 1974
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1975 1976 1977 1978
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1979 1980 1981
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1982
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1983 1984
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1985 1986 1987 1988 1989 1990 1991
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1992 1993
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1994
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1995
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1996 1997 1998 1999
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2000

2001 2002 2003
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2004 2005 2006 2007 2008 2009 2010 2011 2012
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

2013 2014
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2015
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2016
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2017
      .def("close", &Executor::Close)
2018 2019
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2020 2021
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2022 2023 2024 2025
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2026
             pybind11::gil_scoped_release release;
2027 2028 2029 2030 2031 2032 2033
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2034 2035 2036
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2037
              std::map<std::string, FetchType *> *fetch_targets,
2038 2039 2040 2041 2042 2043 2044 2045
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2046
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2047 2048 2049 2050 2051 2052 2053
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2064
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2065 2066
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2067
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2068 2069
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2070
      });
S
sneaxiy 已提交
2071

2072
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2073
      .def(py::init<>())
2074 2075 2076 2077 2078
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2079

2080
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2081 2082 2083
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2084
           [](StandaloneExecutor &self,
H
hong 已提交
2085
              const std::unordered_map<std::string, py::array> &input_dict,
2086
              std::vector<std::string> fetch_names) {
2087
             std::vector<framework::LoDTensor> feed_tensors;
2088
             std::vector<std::string> feed_names;
H
hong 已提交
2089 2090 2091 2092 2093

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2094 2095
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2096 2097
             }

2098 2099 2100 2101 2102 2103 2104 2105 2106
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2107
              const std::unordered_map<std::string, framework::LoDTensor>
2108 2109
                  &input_dict,
              std::vector<std::string> fetch_names) {
2110
             std::vector<framework::LoDTensor> feed_tensors;
2111 2112 2113 2114 2115 2116 2117
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2118 2119 2120 2121
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2122
             }
W
wanghuancoder 已提交
2123
             return py::cast(std::move(ret));
2124 2125 2126 2127
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2128
             std::vector<framework::LoDTensor> feed_tensors;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2139
             framework::interpreter::CostInfo cost_info;
2140 2141 2142 2143 2144
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2145 2146
           });

D
dzhwinter 已提交
2147
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2148
  m.def("init_glog", framework::InitGLOG);
2149 2150
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2151
  m.def("init_devices", []() { framework::InitDevices(); });
2152

2153
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2154
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2155
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2156
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2157
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2158
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2159
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2160
  m.def("supports_bfloat16", SupportsBfloat16);
2161
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2162 2163
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2164
  m.def("op_supported_infos", OpSupportedInfos);
2165
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2166
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2167 2168 2169
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2189 2190 2191 2192 2193 2194 2195
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2205
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2206 2207 2208 2209 2210
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2211

S
Steffy-zxf 已提交
2212 2213 2214 2215 2216 2217
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2218 2219 2220 2221 2222
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2223
            return py::cast(BOOST_GET(LoDTensor, var));
2224
          } else {
2225
            return py::cast(BOOST_GET(LoDTensorArray, var));
2226 2227
          }
        });
2228
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2229

X
Xin Pan 已提交
2230 2231
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2232 2233 2234 2235
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2236
  BindCostModel(&m);
2237
  BindConstValue(&m);
2238
  BindGlobalValueGetterSetter(&m);
2239
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2240
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2241

Y
Yu Yang 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2251
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2252
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2253 2254 2255

    Examples:
        .. code-block:: python
2256

Z
Zeng Jinle 已提交
2257 2258 2259 2260
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2261 2262
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2263 2264 2265 2266 2267 2268
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2269 2270 2271 2272
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2273 2274 2275
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2276 2277 2278 2279 2280 2281
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2282 2283
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2284 2285 2286 2287 2288 2289
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2312

2313 2314 2315 2316 2317 2318 2319 2320
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2321
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2322 2323
                 res[i] = py::cast(std::move(data));
               } else {
2324
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2340
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2341 2342 2343 2344 2345 2346 2347 2348
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2349
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2350 2351 2352 2353 2354 2355 2356 2357 2358
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2359 2360
        )DOC")
      .def("_move_to_list",
2361
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2362 2363 2364 2365
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2366
                 if (data_is_lod_tensor(self[i][j])) {
2367
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2368 2369
                   tmp[j] = py::cast(std::move(var));
                 } else {
2370
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2371 2372 2373 2374 2375 2376
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2386
  m.def("op_support_gpu", OpSupportGPU);
2387
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2388
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2389 2390 2391 2392 2393 2394 2395 2396
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2397 2398 2399 2400 2401 2402 2403
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2429
      });
D
dangqingqing 已提交
2430

2431
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2432 2433 2434
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2435 2436 2437 2438
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2439
#endif
P
peizhilin 已提交
2440
#endif
Y
Yu Yang 已提交
2441

2442 2443
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2444 2445 2446 2447
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2448
      platform::NPUDeviceGuard guard(devices[i]);
2449 2450 2451 2452
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2473 2474 2475 2476 2477 2478
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2479 2480 2481 2482
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2483
      .value("kAll", platform::ProfilerState::kAll)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2495
  m.def("set_tracer_option", platform::SetTracerOption);
2496 2497
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2498
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2499
  m.def("reset_profiler", platform::ResetProfiler);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2515
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2516 2517 2518
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2519

2520 2521
  m.def("size_of_dtype", framework::SizeOfType);

2522
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2523 2524
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2525 2526
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2527
#endif  // PADDLE_WITH_CUDA
2528 2529
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2530

2531 2532 2533
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2534 2535
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2536
      .def("has", &ir::Pass::Has)
2537 2538 2539
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2540
           })
2541
      .def(
2542
          "set",
2543 2544 2545
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2546 2547
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2548 2549
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2564 2565
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2566
        self.Apply(graph.get());
F
flame 已提交
2567
      });
2568

X
fix  
Xin Pan 已提交
2569 2570
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2585
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2586
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2587 2588 2589 2590
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2591 2592 2593
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2594 2595 2596
    Examples:
        .. code-block:: python

2597 2598 2599 2600 2601 2602 2603 2604 2605
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2606

2607 2608
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2609

2610
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2611 2612
          sgd_optimizer.minimize(avg_loss)

2613
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2614 2615
          exec_strategy.num_threads = 4

2616 2617 2618
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2619 2620
        )DOC");

2621 2622 2623 2624
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2625

Y
yuyang18 已提交
2626
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2627 2628 2629 2630 2631
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2632
          },
2633 2634
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2635 2636 2637 2638 2639 2640 2641
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2655
      .def_property(
2656 2657
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2658
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2659 2660 2661
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2662 2663 2664 2665 2666
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2667 2668 2669
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2670 2671
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2672 2673 2674 2675 2676 2677 2678
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2679 2680 2681 2682
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2683
                because the temp variable's shape maybe the same between two iterations.
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2694

2695 2696 2697 2698 2699 2700 2701
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2702
              )DOC")
Q
Qiao Longfei 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2724
              )DOC")
2725 2726 2727 2728 2729 2730 2731 2732
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2733 2734 2735 2736 2737
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2738

Y
yuyang18 已提交
2739
  exec_strategy.def_property(
Y
yuyang18 已提交
2740 2741 2742 2743 2744 2745 2746
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2747 2748
      });

C
chengduo 已提交
2749 2750 2751 2752
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2753 2754 2755
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2756 2757 2758
    Examples:
        .. code-block:: python

2759
            import os
2760 2761 2762 2763
            import paddle
            import paddle.static as static

            paddle.enable_static()
2764

2765 2766
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2767

2768 2769 2770 2771
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2772

2773
            build_strategy = static.BuildStrategy()
2774 2775
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2776 2777
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2778
            program = program.with_data_parallel(loss_name=loss.name,
2779 2780
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2781
)DOC");
Y
yuyang18 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2794
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2795 2796 2797 2798
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2799 2800 2801 2802
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2803
            self.reduce_ = strategy;
C
chengduo 已提交
2804
          },
2805
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2806 2807
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2808
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2809 2810
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2811
                Default is 'AllReduce'.
F
flame 已提交
2812 2813 2814 2815

                Examples:
                    .. code-block:: python

2816 2817 2818 2819 2820 2821 2822
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2823
                  )DOC")
Y
yuyang18 已提交
2824 2825 2826 2827 2828
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2829 2830 2831 2832
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2833
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2834
          },
2835
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2836
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2837 2838
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2839
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2840 2841 2842 2843

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2844 2845
                        import numpy
                        import os
2846 2847 2848 2849
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2850 2851

                        use_cuda = True
2852 2853
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2854 2855

                        # NOTE: If you use CPU to run the program, you need
2856
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2857 2858 2859 2860 2861 2862
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2863
                            places = static.cpu_places()
C
chengduo 已提交
2864
                        else:
2865
                            places = static.cuda_places()
C
chengduo 已提交
2866

2867 2868 2869 2870
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2871

2872
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2873

2874
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2875
                        build_strategy.gradient_scale_strategy = \
2876 2877 2878
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2879
                                          loss_name=loss.name, build_strategy=build_strategy,
2880
                                          places=places)
C
chengduo 已提交
2881 2882 2883 2884 2885 2886

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2887 2888
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2889
                   )DOC")
Y
yuyang18 已提交
2890 2891 2892 2893
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2894 2895 2896 2897
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2898
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2899
          },
2900
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2901
                writing the SSA Graph to file in the form of graphviz.
2902
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2903 2904 2905 2906

                Examples:
                    .. code-block:: python

2907 2908 2909 2910
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2911

2912 2913
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2914
                    )DOC")
S
sneaxiy 已提交
2915 2916 2917 2918 2919 2920
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2921 2922 2923 2924
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2925 2926
            self.enable_sequential_execution_ = b;
          },
2927 2928
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2929 2930 2931 2932

                Examples:
                    .. code-block:: python

2933 2934 2935 2936 2937 2938
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2939 2940
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2941 2942 2943 2944 2945 2946
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2947 2948 2949 2950
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2951 2952
            self.remove_unnecessary_lock_ = b;
          },
2953 2954
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2955 2956 2957 2958

                Examples:
                    .. code-block:: python

2959 2960 2961 2962 2963 2964
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2965 2966
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2967 2968 2969 2970
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2971
#ifdef WIN32
2972
            PADDLE_THROW(platform::errors::Unavailable(
2973
                "Distribution mode is not supported on Windows platform."));
2974
#endif
2975 2976
            self.num_trainers_ = num_trainers;
          })
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2989 2990 2991 2992 2993 2994
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2995 2996 2997 2998 2999 3000
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3001
      .def_property("use_hierarchical_allreduce",
3002 3003 3004 3005 3006 3007
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3008
      .def_property("hierarchical_allreduce_inter_nranks",
3009 3010 3011 3012 3013 3014 3015
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3016 3017 3018 3019 3020 3021
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3022 3023 3024 3025
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3026 3027
            self.fuse_elewise_add_act_ops_ = b;
          },
3028
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3029
                to fuse elementwise_add_op and activation_op,
3030
                it may make the execution faster. Default is False.
F
flame 已提交
3031 3032 3033 3034

                Examples:
                    .. code-block:: python

3035 3036 3037 3038 3039 3040
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3041 3042
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3043 3044 3045 3046
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3047
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3048
                              platform::errors::PreconditionNotMet(
3049 3050
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3060 3061 3062 3063 3064 3065
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3066 3067
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3093 3094 3095 3096
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3097
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3098
                              platform::errors::PreconditionNotMet(
3099 3100
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3111 3112 3113 3114 3115 3116
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3117 3118
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3119 3120 3121 3122 3123 3124
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3125 3126 3127 3128
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3129 3130
            self.fuse_relu_depthwise_conv_ = b;
          },
3131
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3132 3133 3134
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3135
                Default is False.
F
flame 已提交
3136 3137 3138 3139

                Examples:
                    .. code-block:: python

3140 3141 3142 3143 3144 3145
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3146 3147
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3148 3149 3150
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3151
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3152 3153
                    },
                    [](BuildStrategy &self, bool b) {
3154 3155 3156 3157
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3158 3159
                      self.fuse_broadcast_ops_ = b;
                    },
3160
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3161 3162 3163 3164
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3165 3166 3167 3168 3169
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3170 3171 3172 3173 3174 3175
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3176 3177
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3178 3179
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3180
                      return self.fuse_all_optimizer_ops_ == true ||
3181
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3182 3183
                    },
                    [](BuildStrategy &self, bool b) {
3184 3185 3186 3187
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3188 3189
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3190 3191 3192 3193
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3194 3195 3196 3197
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3198 3199
            self.sync_batch_norm_ = b;
          },
3200
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3201 3202 3203
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3204 3205
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3206 3207 3208 3209

                Examples:
                    .. code-block:: python

3210 3211 3212 3213 3214 3215
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3216 3217
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3218 3219
      .def_property(
          "memory_optimize",
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3230
              self.memory_optimize_ = paddle::none;
3231 3232 3233
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3234
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3235 3236
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3237 3238
            }
          },
3239
          R"DOC((bool, optional): memory opitimize aims to save total memory
3240
                consumption, set to True to enable it.
3241

3242 3243 3244
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3259 3260 3261
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3262 3263 3264
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3265
              PADDLE_THROW(platform::errors::Unavailable(
3266
                  "Distribution mode is not supported on Windows platform."));
3267 3268 3269 3270 3271
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3272 3273 3274
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3275
      .def_property(
D
dzhwinter 已提交
3276 3277 3278
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3279 3280 3281 3282
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3283 3284
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3285 3286
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3287
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3288
          },
C
chengduo 已提交
3289
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3290 3291 3292 3293 3294 3295 3296
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3297 3298 3299 3300
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3301 3302 3303 3304 3305 3306 3307 3308 3309
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3310 3311 3312 3313 3314 3315
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3316 3317 3318 3319 3320 3321 3322
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3323 3324 3325 3326 3327 3328
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3329
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3330
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3331 3332 3333 3334 3335
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3336

3337 3338 3339 3340 3341 3342
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3343
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3344
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3345
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3346
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3347 3348 3349 3350
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3351 3352 3353 3354 3355
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3356 3357 3358
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3359 3360 3361 3362
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3363 3364
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3365 3366 3367 3368 3369 3370 3371 3372
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3373
               return py::cast(
3374
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3375 3376
             } else {
               return py::cast(std::move(
3377
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3378
             }
3379 3380
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3381

D
dongdaxiang 已提交
3382
  BindFleetWrapper(&m);
3383
  BindIO(&m);
T
Thunderbrook 已提交
3384

T
Thunderbrook 已提交
3385 3386
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3387
#endif
T
Thunderbrook 已提交
3388
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3389
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3390
#endif
3391
  BindGlooWrapper(&m);
H
hutuxian 已提交
3392
  BindBoxHelper(&m);
H
hutuxian 已提交
3393 3394 3395
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3396
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3397
  BindNCCLWrapper(&m);
3398 3399 3400
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3401
#endif
F
flame 已提交
3402 3403
  BindGraph(&m);
  BindNode(&m);
3404
  BindPass(&m);
F
flame 已提交
3405
  BindInferenceApi(&m);
3406
  BindCompatible(&m);
3407
  BindDataset(&m);
Y
yaoxuefeng 已提交
3408
  BindGenerator(&m);
3409 3410 3411
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3412
  BindAscendDevice(&m);
3413
#endif
Y
Yanghello 已提交
3414 3415 3416
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3417

T
tangwei12 已提交
3418
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3419 3420
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3421
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3422 3423
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3424 3425 3426 3427 3428
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3429 3430 3431 3432
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3433
  BindSparseShardingTools(&m);
3434
#endif
L
Luo Tao 已提交
3435
}
3436
}  // namespace pybind
3437
}  // namespace paddle