i915_gem.c 107.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44 45 46
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
47
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 49 50
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
51 52
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
53 54
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
55
				struct drm_i915_gem_pwrite *args,
56 57
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79
static int
i915_gem_wait_for_error(struct drm_device *dev)
80 81 82 83 84 85 86 87 88 89 90 91 92
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

93 94 95 96 97 98 99 100 101 102 103
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
104 105
}

106
int i915_mutex_lock_interruptible(struct drm_device *dev)
107 108 109
{
	int ret;

110
	ret = i915_gem_wait_for_error(dev);
111 112 113 114 115 116 117
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

118
	WARN_ON(i915_verify_lists(dev));
119 120
	return 0;
}
121

122
static inline bool
123
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124
{
125
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 127
}

128 129 130 131
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
132 133 134
{
	drm_i915_private_t *dev_priv = dev->dev_private;

135
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136

137 138 139
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
140
	dev_priv->mm.gtt_total = end - start;
141
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 143 144

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
145
}
146

J
Jesse Barnes 已提交
147 148
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
149
		    struct drm_file *file)
J
Jesse Barnes 已提交
150 151
{
	struct drm_i915_gem_init *args = data;
152 153 154 155

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
156 157

	mutex_lock(&dev->struct_mutex);
158
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 160
	mutex_unlock(&dev->struct_mutex);

161
	return 0;
162 163
}

164 165
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166
			    struct drm_file *file)
167
{
168
	struct drm_i915_private *dev_priv = dev->dev_private;
169
	struct drm_i915_gem_get_aperture *args = data;
170 171
	struct drm_i915_gem_object *obj;
	size_t pinned;
172 173 174 175

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

176
	pinned = 0;
177
	mutex_lock(&dev->struct_mutex);
178 179
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
180
	mutex_unlock(&dev->struct_mutex);
181

182
	args->aper_size = dev_priv->mm.gtt_total;
183
	args->aper_available_size = args->aper_size - pinned;
184

185 186 187
	return 0;
}

188 189 190 191 192
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
193
{
194
	struct drm_i915_gem_object *obj;
195 196
	int ret;
	u32 handle;
197

198
	size = roundup(size, PAGE_SIZE);
199 200
	if (size == 0)
		return -EINVAL;
201 202

	/* Allocate the new object */
203
	obj = i915_gem_alloc_object(dev, size);
204 205 206
	if (obj == NULL)
		return -ENOMEM;

207
	ret = drm_gem_handle_create(file, &obj->base, &handle);
208
	if (ret) {
209 210
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
211
		kfree(obj);
212
		return ret;
213
	}
214

215
	/* drop reference from allocate - handle holds it now */
216
	drm_gem_object_unreference(&obj->base);
217 218
	trace_i915_gem_object_create(obj);

219
	*handle_p = handle;
220 221 222
	return 0;
}

223 224 225 226 227 228
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
229
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

254
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
255
{
256
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
257 258

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
259
		obj->tiling_mode != I915_TILING_NONE;
260 261
}

262 263 264 265 266 267
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
268 269
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
270
			  struct drm_i915_gem_pread *args,
271
			  struct drm_file *file)
272
{
273
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
274
	ssize_t remain;
275
	loff_t offset;
276 277 278 279 280 281 282 283 284
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
285 286 287 288
		struct page *page;
		char *vaddr;
		int ret;

289 290 291 292 293
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
294
		page_offset = offset_in_page(offset);
295 296 297 298
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

299
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
300 301 302 303 304 305 306 307 308 309 310 311
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
312
			return -EFAULT;
313 314 315 316 317 318

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

319
	return 0;
320 321
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline int
__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
			  const char *cpu_vaddr,
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

374 375 376 377 378 379 380
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
381 382
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
383
			  struct drm_i915_gem_pread *args,
384
			  struct drm_file *file)
385
{
386
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
387
	char __user *user_data;
388
	ssize_t remain;
389 390 391
	loff_t offset;
	int shmem_page_offset, page_length, ret;
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
392

393
	user_data = (char __user *) (uintptr_t) args->data_ptr;
394 395
	remain = args->size;

396
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
397

398
	offset = args->offset;
399

400
	mutex_unlock(&dev->struct_mutex);
401 402

	while (remain > 0) {
403
		struct page *page;
404
		char *vaddr;
405

406 407 408 409 410
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
411
		shmem_page_offset = offset_in_page(offset);
412 413 414 415
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

416
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
417 418 419 420
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
421

422 423 424 425 426 427 428 429 430 431 432 433 434
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

		vaddr = kmap(page);
		if (page_do_bit17_swizzling)
			ret = __copy_to_user_swizzled(user_data,
						      vaddr, shmem_page_offset,
						      page_length);
		else
			ret = __copy_to_user(user_data,
					     vaddr + shmem_page_offset,
					     page_length);
		kunmap(page);
435

436 437 438
		mark_page_accessed(page);
		page_cache_release(page);

439 440 441 442 443
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

444
		remain -= page_length;
445
		user_data += page_length;
446 447 448
		offset += page_length;
	}

449
out:
450 451 452 453
	mutex_lock(&dev->struct_mutex);
	/* Fixup: Kill any reinstated backing storage pages */
	if (obj->madv == __I915_MADV_PURGED)
		i915_gem_object_truncate(obj);
454 455 456 457

	return ret;
}

458 459 460 461 462 463 464
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465
		     struct drm_file *file)
466 467
{
	struct drm_i915_gem_pread *args = data;
468
	struct drm_i915_gem_object *obj;
469
	int ret = 0;
470

471 472 473 474 475 476 477 478 479 480 481 482 483
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

484
	ret = i915_mutex_lock_interruptible(dev);
485
	if (ret)
486
		return ret;
487

488
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
489
	if (&obj->base == NULL) {
490 491
		ret = -ENOENT;
		goto unlock;
492
	}
493

494
	/* Bounds check source.  */
495 496
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
497
		ret = -EINVAL;
498
		goto out;
C
Chris Wilson 已提交
499 500
	}

C
Chris Wilson 已提交
501 502
	trace_i915_gem_object_pread(obj, args->offset, args->size);

503 504 505 506
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
507
		goto out;
508 509 510

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
511
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
512
	if (ret == -EFAULT)
513
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
514

515
out:
516
	drm_gem_object_unreference(&obj->base);
517
unlock:
518
	mutex_unlock(&dev->struct_mutex);
519
	return ret;
520 521
}

522 523
/* This is the fast write path which cannot handle
 * page faults in the source data
524
 */
525 526 527 528 529 530

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
531 532
{
	char *vaddr_atomic;
533
	unsigned long unwritten;
534

P
Peter Zijlstra 已提交
535
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
536 537
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
538
	io_mapping_unmap_atomic(vaddr_atomic);
539
	return unwritten;
540 541 542 543 544 545
}

/* Here's the write path which can sleep for
 * page faults
 */

546
static inline void
547 548 549 550
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
551
{
552 553
	char __iomem *dst_vaddr;
	char *src_vaddr;
554

555 556 557 558 559 560 561 562 563
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
564 565
}

566 567 568 569
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
570
static int
571 572
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
573
			 struct drm_i915_gem_pwrite *args,
574
			 struct drm_file *file)
575
{
576
	drm_i915_private_t *dev_priv = dev->dev_private;
577
	ssize_t remain;
578
	loff_t offset, page_base;
579
	char __user *user_data;
580
	int page_offset, page_length;
581 582 583 584

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

585
	offset = obj->gtt_offset + args->offset;
586 587 588 589

	while (remain > 0) {
		/* Operation in this page
		 *
590 591 592
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
593
		 */
594 595
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
596 597 598 599 600
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
601 602
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
603
		 */
604 605 606
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
607

608 609 610
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
611 612
	}

613
	return 0;
614 615
}

616 617 618 619 620 621 622
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
623
static int
624 625
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
626
			 struct drm_i915_gem_pwrite *args,
627
			 struct drm_file *file)
628
{
629 630 631 632 633 634 635 636
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
637
	int ret;
638 639 640 641 642 643 644 645 646 647 648 649
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

650
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
651 652 653
	if (user_pages == NULL)
		return -ENOMEM;

654
	mutex_unlock(&dev->struct_mutex);
655 656 657 658
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
659
	mutex_lock(&dev->struct_mutex);
660 661 662 663
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
664

665 666 667 668 669
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
670
	if (ret)
671
		goto out_unpin_pages;
672

673
	offset = obj->gtt_offset + args->offset;
674 675 676 677 678 679 680 681 682 683 684

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
685
		gtt_page_offset = offset_in_page(offset);
686
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
687
		data_page_offset = offset_in_page(data_ptr);
688 689 690 691 692 693 694

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

695 696 697 698 699
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
700 701 702 703 704 705 706 707 708

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
709
	drm_free_large(user_pages);
710 711 712 713

	return ret;
}

714 715 716 717
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
718
static int
719 720
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
721
			   struct drm_i915_gem_pwrite *args,
722
			   struct drm_file *file)
723
{
724
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
725
	ssize_t remain;
726
	loff_t offset;
727 728 729 730 731
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
732

733
	offset = args->offset;
734
	obj->dirty = 1;
735 736

	while (remain > 0) {
737 738 739 740
		struct page *page;
		char *vaddr;
		int ret;

741 742 743 744 745
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
746
		page_offset = offset_in_page(offset);
747 748 749 750
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

751
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
752 753 754
		if (IS_ERR(page))
			return PTR_ERR(page);

755
		vaddr = kmap_atomic(page);
756 757 758
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
759
		kunmap_atomic(vaddr);
760 761 762 763 764 765 766 767 768 769

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
770
			return -EFAULT;
771 772 773 774 775 776

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

777
	return 0;
778 779 780 781 782 783 784 785 786 787
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
788 789
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
790
			   struct drm_i915_gem_pwrite *args,
791
			   struct drm_file *file)
792
{
793
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
794
	ssize_t remain;
795 796 797 798
	loff_t offset;
	char __user *user_data;
	int shmem_page_offset, page_length, ret;
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
799

800
	user_data = (char __user *) (uintptr_t) args->data_ptr;
801 802
	remain = args->size;

803
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
804

805
	offset = args->offset;
806
	obj->dirty = 1;
807

808 809
	mutex_unlock(&dev->struct_mutex);

810
	while (remain > 0) {
811
		struct page *page;
812
		char *vaddr;
813

814 815 816 817 818
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
819
		shmem_page_offset = offset_in_page(offset);
820 821 822 823 824

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

825
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
826 827 828 829 830
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

831 832 833 834 835 836 837 838 839 840 841 842 843
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

		vaddr = kmap(page);
		if (page_do_bit17_swizzling)
			ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
							user_data,
							page_length);
		else
			ret = __copy_from_user(vaddr + shmem_page_offset,
					       user_data,
					       page_length);
		kunmap(page);
844

845 846 847 848
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

849 850 851 852 853
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

854
		remain -= page_length;
855
		user_data += page_length;
856
		offset += page_length;
857 858
	}

859
out:
860 861 862 863 864 865 866 867 868 869
	mutex_lock(&dev->struct_mutex);
	/* Fixup: Kill any reinstated backing storage pages */
	if (obj->madv == __I915_MADV_PURGED)
		i915_gem_object_truncate(obj);
	/* and flush dirty cachelines in case the object isn't in the cpu write
	 * domain anymore. */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		i915_gem_clflush_object(obj);
		intel_gtt_chipset_flush();
	}
870

871
	return ret;
872 873 874 875 876 877 878 879 880
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
881
		      struct drm_file *file)
882 883
{
	struct drm_i915_gem_pwrite *args = data;
884
	struct drm_i915_gem_object *obj;
885 886 887 888 889 890 891 892 893 894 895 896 897 898
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
899

900
	ret = i915_mutex_lock_interruptible(dev);
901
	if (ret)
902
		return ret;
903

904
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
905
	if (&obj->base == NULL) {
906 907
		ret = -ENOENT;
		goto unlock;
908
	}
909

910
	/* Bounds check destination. */
911 912
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
913
		ret = -EINVAL;
914
		goto out;
C
Chris Wilson 已提交
915 916
	}

C
Chris Wilson 已提交
917 918
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

919 920 921 922 923 924
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
925
	if (obj->phys_obj) {
926
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
927 928 929 930 931
		goto out;
	}

	if (obj->gtt_space &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932
		ret = i915_gem_object_pin(obj, 0, true);
933 934 935
		if (ret)
			goto out;

936 937 938 939 940
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
941 942 943 944 945 946 947 948 949
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
950

951 952 953 954 955
		if (ret != -EFAULT)
			goto out;
		/* Fall through to the shmfs paths because the gtt paths might
		 * fail with non-page-backed user pointers (e.g. gtt mappings
		 * when moving data between textures). */
956
	}
957

958 959 960 961 962 963 964 965 966 967
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret)
		goto out;

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);

968
out:
969
	drm_gem_object_unreference(&obj->base);
970
unlock:
971
	mutex_unlock(&dev->struct_mutex);
972 973 974 975
	return ret;
}

/**
976 977
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
978 979 980
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981
			  struct drm_file *file)
982 983
{
	struct drm_i915_gem_set_domain *args = data;
984
	struct drm_i915_gem_object *obj;
985 986
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
987 988 989 990 991
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

992
	/* Only handle setting domains to types used by the CPU. */
993
	if (write_domain & I915_GEM_GPU_DOMAINS)
994 995
		return -EINVAL;

996
	if (read_domains & I915_GEM_GPU_DOMAINS)
997 998 999 1000 1001 1002 1003 1004
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1005
	ret = i915_mutex_lock_interruptible(dev);
1006
	if (ret)
1007
		return ret;
1008

1009
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1010
	if (&obj->base == NULL) {
1011 1012
		ret = -ENOENT;
		goto unlock;
1013
	}
1014

1015 1016
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1017 1018 1019 1020 1021 1022 1023

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1024
	} else {
1025
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1026 1027
	}

1028
	drm_gem_object_unreference(&obj->base);
1029
unlock:
1030 1031 1032 1033 1034 1035 1036 1037 1038
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1039
			 struct drm_file *file)
1040 1041
{
	struct drm_i915_gem_sw_finish *args = data;
1042
	struct drm_i915_gem_object *obj;
1043 1044 1045 1046 1047
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		return ret;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056 1057 1058
	}

	/* Pinned buffers may be scanout, so flush the cache */
1059
	if (obj->pin_count)
1060 1061
		i915_gem_object_flush_cpu_write_domain(obj);

1062
	drm_gem_object_unreference(&obj->base);
1063
unlock:
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077
		    struct drm_file *file)
1078 1079 1080 1081 1082 1083 1084 1085
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1086
	obj = drm_gem_object_lookup(dev, file, args->handle);
1087
	if (obj == NULL)
1088
		return -ENOENT;
1089 1090 1091 1092 1093 1094

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1095
	drm_gem_object_unreference_unlocked(obj);
1096 1097 1098 1099 1100 1101 1102 1103
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1122 1123
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1124
	drm_i915_private_t *dev_priv = dev->dev_private;
1125 1126 1127
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1128
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1129 1130 1131 1132 1133

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1134 1135 1136
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1137

C
Chris Wilson 已提交
1138 1139
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1140
	/* Now bind it into the GTT if needed */
1141 1142 1143 1144
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1145
	}
1146
	if (!obj->gtt_space) {
1147
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1148 1149
		if (ret)
			goto unlock;
1150

1151 1152 1153 1154
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1155

1156 1157 1158
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1159
		ret = i915_gem_object_get_fence(obj, NULL);
1160 1161
	if (ret)
		goto unlock;
1162

1163 1164
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1165

1166 1167
	obj->fault_mappable = true;

1168
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1169 1170 1171 1172
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
unlock:
1174
	mutex_unlock(&dev->struct_mutex);
1175
out:
1176
	switch (ret) {
1177
	case -EIO:
1178
	case -EAGAIN:
1179 1180 1181 1182 1183 1184 1185
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1186
		set_need_resched();
1187 1188
	case 0:
	case -ERESTARTSYS:
1189
	case -EINTR:
1190
		return VM_FAULT_NOPAGE;
1191 1192 1193
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1194
		return VM_FAULT_SIGBUS;
1195 1196 1197
	}
}

1198 1199 1200 1201
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1202
 * Preserve the reservation of the mmapping with the DRM core code, but
1203 1204 1205 1206 1207 1208 1209 1210 1211
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1212
void
1213
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1214
{
1215 1216
	if (!obj->fault_mappable)
		return;
1217

1218 1219 1220 1221
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1222

1223
	obj->fault_mappable = false;
1224 1225
}

1226
static uint32_t
1227
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1228
{
1229
	uint32_t gtt_size;
1230 1231

	if (INTEL_INFO(dev)->gen >= 4 ||
1232 1233
	    tiling_mode == I915_TILING_NONE)
		return size;
1234 1235 1236

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1237
		gtt_size = 1024*1024;
1238
	else
1239
		gtt_size = 512*1024;
1240

1241 1242
	while (gtt_size < size)
		gtt_size <<= 1;
1243

1244
	return gtt_size;
1245 1246
}

1247 1248 1249 1250 1251
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1252
 * potential fence register mapping.
1253 1254
 */
static uint32_t
1255 1256 1257
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1258 1259 1260 1261 1262
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1263
	if (INTEL_INFO(dev)->gen >= 4 ||
1264
	    tiling_mode == I915_TILING_NONE)
1265 1266
		return 4096;

1267 1268 1269 1270
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1271
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 1273
}

1274 1275 1276
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1277 1278 1279
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1280 1281 1282 1283
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1284
uint32_t
1285 1286 1287
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1288 1289 1290 1291 1292
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1293
	    tiling_mode == I915_TILING_NONE)
1294 1295
		return 4096;

1296 1297 1298
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1299
	 */
1300
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1301 1302
}

1303
int
1304 1305 1306 1307
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1308
{
1309
	struct drm_i915_private *dev_priv = dev->dev_private;
1310
	struct drm_i915_gem_object *obj;
1311 1312 1313 1314 1315
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1316
	ret = i915_mutex_lock_interruptible(dev);
1317
	if (ret)
1318
		return ret;
1319

1320
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1321
	if (&obj->base == NULL) {
1322 1323 1324
		ret = -ENOENT;
		goto unlock;
	}
1325

1326
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1327
		ret = -E2BIG;
1328
		goto out;
1329 1330
	}

1331
	if (obj->madv != I915_MADV_WILLNEED) {
1332
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1333 1334
		ret = -EINVAL;
		goto out;
1335 1336
	}

1337
	if (!obj->base.map_list.map) {
1338
		ret = drm_gem_create_mmap_offset(&obj->base);
1339 1340
		if (ret)
			goto out;
1341 1342
	}

1343
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1344

1345
out:
1346
	drm_gem_object_unreference(&obj->base);
1347
unlock:
1348
	mutex_unlock(&dev->struct_mutex);
1349
	return ret;
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1380
static int
1381
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1392 1393 1394 1395
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1396 1397
		return -ENOMEM;

1398
	inode = obj->base.filp->f_path.dentry->d_inode;
1399
	mapping = inode->i_mapping;
1400 1401
	gfpmask |= mapping_gfp_mask(mapping);

1402
	for (i = 0; i < page_count; i++) {
1403
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1404 1405 1406
		if (IS_ERR(page))
			goto err_pages;

1407
		obj->pages[i] = page;
1408 1409
	}

1410
	if (i915_gem_object_needs_bit17_swizzle(obj))
1411 1412 1413 1414 1415 1416
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1417
		page_cache_release(obj->pages[i]);
1418

1419 1420
	drm_free_large(obj->pages);
	obj->pages = NULL;
1421 1422 1423
	return PTR_ERR(page);
}

1424
static void
1425
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1426
{
1427
	int page_count = obj->base.size / PAGE_SIZE;
1428 1429
	int i;

1430
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1431

1432
	if (i915_gem_object_needs_bit17_swizzle(obj))
1433 1434
		i915_gem_object_save_bit_17_swizzle(obj);

1435 1436
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1437 1438

	for (i = 0; i < page_count; i++) {
1439 1440
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1441

1442 1443
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1444

1445
		page_cache_release(obj->pages[i]);
1446
	}
1447
	obj->dirty = 0;
1448

1449 1450
	drm_free_large(obj->pages);
	obj->pages = NULL;
1451 1452
}

1453
void
1454
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1455 1456
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1457
{
1458
	struct drm_device *dev = obj->base.dev;
1459
	struct drm_i915_private *dev_priv = dev->dev_private;
1460

1461
	BUG_ON(ring == NULL);
1462
	obj->ring = ring;
1463 1464

	/* Add a reference if we're newly entering the active list. */
1465 1466 1467
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1468
	}
1469

1470
	/* Move from whatever list we were on to the tail of execution. */
1471 1472
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1473

1474
	obj->last_rendering_seqno = seqno;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1493 1494
}

1495
static void
1496
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1497
{
1498
	struct drm_device *dev = obj->base.dev;
1499 1500
	drm_i915_private_t *dev_priv = dev->dev_private;

1501 1502
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1526
	obj->pending_gpu_write = false;
1527 1528 1529
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1530
}
1531

1532 1533
/* Immediately discard the backing storage */
static void
1534
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1535
{
C
Chris Wilson 已提交
1536
	struct inode *inode;
1537

1538 1539 1540
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1541
	 * backing pages, *now*.
1542
	 */
1543
	inode = obj->base.filp->f_path.dentry->d_inode;
1544
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1545

1546
	obj->madv = __I915_MADV_PURGED;
1547 1548 1549
}

static inline int
1550
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1551
{
1552
	return obj->madv == I915_MADV_DONTNEED;
1553 1554
}

1555
static void
C
Chris Wilson 已提交
1556 1557
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1558
{
1559
	struct drm_i915_gem_object *obj, *next;
1560

1561
	list_for_each_entry_safe(obj, next,
1562
				 &ring->gpu_write_list,
1563
				 gpu_write_list) {
1564 1565
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1566

1567 1568
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1569
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1570
						       i915_gem_next_request_seqno(ring));
1571 1572

			trace_i915_gem_object_change_domain(obj,
1573
							    obj->base.read_domains,
1574 1575 1576 1577
							    old_write_domain);
		}
	}
}
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1601
int
C
Chris Wilson 已提交
1602
i915_add_request(struct intel_ring_buffer *ring,
1603
		 struct drm_file *file,
C
Chris Wilson 已提交
1604
		 struct drm_i915_gem_request *request)
1605
{
C
Chris Wilson 已提交
1606
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1607
	uint32_t seqno;
1608
	u32 request_ring_position;
1609
	int was_empty;
1610 1611 1612
	int ret;

	BUG_ON(request == NULL);
1613
	seqno = i915_gem_next_request_seqno(ring);
1614

1615 1616 1617 1618 1619 1620 1621
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1622 1623 1624
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1625

C
Chris Wilson 已提交
1626
	trace_i915_gem_request_add(ring, seqno);
1627 1628

	request->seqno = seqno;
1629
	request->ring = ring;
1630
	request->tail = request_ring_position;
1631
	request->emitted_jiffies = jiffies;
1632 1633 1634
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1635 1636 1637
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1638
		spin_lock(&file_priv->mm.lock);
1639
		request->file_priv = file_priv;
1640
		list_add_tail(&request->client_list,
1641
			      &file_priv->mm.request_list);
1642
		spin_unlock(&file_priv->mm.lock);
1643
	}
1644

1645
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1646

B
Ben Gamari 已提交
1647
	if (!dev_priv->mm.suspended) {
1648 1649 1650 1651 1652
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1653
		if (was_empty)
1654 1655
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1656
	}
1657
	return 0;
1658 1659
}

1660 1661
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1662
{
1663
	struct drm_i915_file_private *file_priv = request->file_priv;
1664

1665 1666
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1667

1668
	spin_lock(&file_priv->mm.lock);
1669 1670 1671 1672
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1673
	spin_unlock(&file_priv->mm.lock);
1674 1675
}

1676 1677
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1678
{
1679 1680
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1681

1682 1683 1684
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1685

1686
		list_del(&request->list);
1687
		i915_gem_request_remove_from_client(request);
1688 1689
		kfree(request);
	}
1690

1691
	while (!list_empty(&ring->active_list)) {
1692
		struct drm_i915_gem_object *obj;
1693

1694 1695 1696
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1697

1698 1699 1700
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1701 1702 1703
	}
}

1704 1705 1706 1707 1708
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1709
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1710
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1711 1712 1713 1714 1715 1716 1717 1718
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1719 1720 1721 1722 1723
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1724 1725 1726
	}
}

1727
void i915_gem_reset(struct drm_device *dev)
1728
{
1729
	struct drm_i915_private *dev_priv = dev->dev_private;
1730
	struct drm_i915_gem_object *obj;
1731
	int i;
1732

1733 1734
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1735 1736 1737 1738 1739 1740

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1741
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1742 1743
				      struct drm_i915_gem_object,
				      mm_list);
1744

1745 1746 1747
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1748 1749 1750 1751 1752
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1753
	list_for_each_entry(obj,
1754
			    &dev_priv->mm.inactive_list,
1755
			    mm_list)
1756
	{
1757
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1758
	}
1759 1760

	/* The fence registers are invalidated so clear them out */
1761
	i915_gem_reset_fences(dev);
1762 1763 1764 1765 1766
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1767
void
C
Chris Wilson 已提交
1768
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1769 1770
{
	uint32_t seqno;
1771
	int i;
1772

C
Chris Wilson 已提交
1773
	if (list_empty(&ring->request_list))
1774 1775
		return;

C
Chris Wilson 已提交
1776
	WARN_ON(i915_verify_lists(ring->dev));
1777

1778
	seqno = ring->get_seqno(ring);
1779

1780
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1781 1782 1783
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1784
	while (!list_empty(&ring->request_list)) {
1785 1786
		struct drm_i915_gem_request *request;

1787
		request = list_first_entry(&ring->request_list,
1788 1789 1790
					   struct drm_i915_gem_request,
					   list);

1791
		if (!i915_seqno_passed(seqno, request->seqno))
1792 1793
			break;

C
Chris Wilson 已提交
1794
		trace_i915_gem_request_retire(ring, request->seqno);
1795 1796 1797 1798 1799 1800
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1801 1802

		list_del(&request->list);
1803
		i915_gem_request_remove_from_client(request);
1804 1805
		kfree(request);
	}
1806

1807 1808 1809 1810
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1811
		struct drm_i915_gem_object *obj;
1812

1813
		obj = list_first_entry(&ring->active_list,
1814 1815
				      struct drm_i915_gem_object,
				      ring_list);
1816

1817
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1818
			break;
1819

1820
		if (obj->base.write_domain != 0)
1821 1822 1823
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1824
	}
1825

C
Chris Wilson 已提交
1826 1827
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1828
		ring->irq_put(ring);
C
Chris Wilson 已提交
1829
		ring->trace_irq_seqno = 0;
1830
	}
1831

C
Chris Wilson 已提交
1832
	WARN_ON(i915_verify_lists(ring->dev));
1833 1834
}

1835 1836 1837 1838
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1839
	int i;
1840

1841
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1842
	    struct drm_i915_gem_object *obj, *next;
1843 1844 1845 1846 1847 1848

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1849
	    list_for_each_entry_safe(obj, next,
1850
				     &dev_priv->mm.deferred_free_list,
1851
				     mm_list)
1852
		    i915_gem_free_object_tail(obj);
1853 1854
	}

1855
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1856
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1857 1858
}

1859
static void
1860 1861 1862 1863
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1864 1865
	bool idle;
	int i;
1866 1867 1868 1869 1870

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1871 1872 1873 1874 1875 1876
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1877
	i915_gem_retire_requests(dev);
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1890 1891
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1892 1893
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1894
			    i915_add_request(ring, NULL, request))
1895 1896 1897 1898 1899 1900 1901
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1902
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1903

1904 1905 1906
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1907 1908 1909 1910
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1911
int
C
Chris Wilson 已提交
1912
i915_wait_request(struct intel_ring_buffer *ring,
1913 1914
		  uint32_t seqno,
		  bool do_retire)
1915
{
C
Chris Wilson 已提交
1916
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1917
	u32 ier;
1918 1919 1920 1921
	int ret = 0;

	BUG_ON(seqno == 0);

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1934

1935
	if (seqno == ring->outstanding_lazy_request) {
1936 1937 1938 1939
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1940
			return -ENOMEM;
1941

C
Chris Wilson 已提交
1942
		ret = i915_add_request(ring, NULL, request);
1943 1944 1945 1946 1947 1948
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1949
	}
1950

1951
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1952
		if (HAS_PCH_SPLIT(ring->dev))
1953 1954 1955
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1956 1957 1958
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1959 1960
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1961 1962
		}

C
Chris Wilson 已提交
1963
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1964

1965
		ring->waiting_seqno = seqno;
1966
		if (ring->irq_get(ring)) {
1967
			if (dev_priv->mm.interruptible)
1968 1969 1970 1971 1972 1973 1974 1975 1976
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1977 1978 1979
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1980
			ret = -EBUSY;
1981
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1982

C
Chris Wilson 已提交
1983
		trace_i915_gem_request_wait_end(ring, seqno);
1984
	}
1985
	if (atomic_read(&dev_priv->mm.wedged))
1986
		ret = -EAGAIN;
1987 1988 1989 1990 1991 1992

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1993
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1994
		i915_gem_retire_requests_ring(ring);
1995 1996 1997 1998 1999 2000 2001 2002

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2003
int
2004
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2005 2006 2007
{
	int ret;

2008 2009
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2010
	 */
2011
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2012 2013 2014 2015

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2016
	if (obj->active) {
2017 2018
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
2019
		if (ret)
2020 2021 2022 2023 2024 2025
			return ret;
	}

	return 0;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2036 2037 2038
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2050 2051 2052
/**
 * Unbinds an object from the GTT aperture.
 */
2053
int
2054
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2055
{
2056
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2057 2058
	int ret = 0;

2059
	if (obj->gtt_space == NULL)
2060 2061
		return 0;

2062
	if (obj->pin_count != 0) {
2063 2064 2065 2066
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2067 2068 2069 2070 2071 2072 2073 2074
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2075
	i915_gem_object_finish_gtt(obj);
2076

2077 2078
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2079
	 * are flushed when we go to remap it.
2080
	 */
2081 2082
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2083
	if (ret == -ERESTARTSYS)
2084
		return ret;
2085
	if (ret) {
2086 2087 2088
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2089
		i915_gem_clflush_object(obj);
2090
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2091
	}
2092

2093
	/* release the fence reg _after_ flushing */
2094 2095 2096
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2097

C
Chris Wilson 已提交
2098 2099
	trace_i915_gem_object_unbind(obj);

2100
	i915_gem_gtt_unbind_object(obj);
2101 2102 2103 2104 2105
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}

2106
	i915_gem_object_put_pages_gtt(obj);
2107

2108
	list_del_init(&obj->gtt_list);
2109
	list_del_init(&obj->mm_list);
2110
	/* Avoid an unnecessary call to unbind on rebind. */
2111
	obj->map_and_fenceable = true;
2112

2113 2114 2115
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2116

2117
	if (i915_gem_object_is_purgeable(obj))
2118 2119
		i915_gem_object_truncate(obj);

2120
	return ret;
2121 2122
}

2123
int
C
Chris Wilson 已提交
2124
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2125 2126 2127
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2128 2129
	int ret;

2130 2131 2132
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2133 2134
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2135 2136 2137 2138
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2139 2140 2141
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2142
	return 0;
2143 2144
}

2145
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2146
{
2147 2148
	int ret;

2149
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2150 2151
		return 0;

2152
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2153
		ret = i915_gem_flush_ring(ring,
2154
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2155 2156 2157 2158
		if (ret)
			return ret;
	}

2159 2160
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2161 2162
}

2163
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2164 2165
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2166
	int ret, i;
2167 2168

	/* Flush everything onto the inactive list. */
2169
	for (i = 0; i < I915_NUM_RINGS; i++) {
2170
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2171 2172 2173
		if (ret)
			return ret;
	}
2174

2175
	return 0;
2176 2177
}

2178 2179
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2180
{
2181
	struct drm_device *dev = obj->base.dev;
2182
	drm_i915_private_t *dev_priv = dev->dev_private;
2183 2184
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2185 2186
	uint64_t val;

2187
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2188
			 0xfffff000) << 32;
2189 2190
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2191 2192
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2193
	if (obj->tiling_mode == I915_TILING_Y)
2194 2195 2196
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2213 2214
}

2215 2216
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2217
{
2218
	struct drm_device *dev = obj->base.dev;
2219
	drm_i915_private_t *dev_priv = dev->dev_private;
2220 2221
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2222 2223
	uint64_t val;

2224
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2225
		    0xfffff000) << 32;
2226 2227 2228
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2229 2230 2231
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2248 2249
}

2250 2251
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2252
{
2253
	struct drm_device *dev = obj->base.dev;
2254
	drm_i915_private_t *dev_priv = dev->dev_private;
2255
	u32 size = obj->gtt_space->size;
2256
	u32 fence_reg, val, pitch_val;
2257
	int tile_width;
2258

2259 2260 2261 2262 2263 2264
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2265

2266
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2267
		tile_width = 128;
2268
	else
2269 2270 2271
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2272
	pitch_val = obj->stride / tile_width;
2273
	pitch_val = ffs(pitch_val) - 1;
2274

2275 2276
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2277
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2278
	val |= I915_FENCE_SIZE_BITS(size);
2279 2280 2281
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2282
	fence_reg = obj->fence_reg;
2283 2284
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2285
	else
2286
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2302 2303
}

2304 2305
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2306
{
2307
	struct drm_device *dev = obj->base.dev;
2308
	drm_i915_private_t *dev_priv = dev->dev_private;
2309 2310
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2311 2312 2313
	uint32_t val;
	uint32_t pitch_val;

2314 2315 2316 2317 2318 2319
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2320

2321
	pitch_val = obj->stride / 128;
2322 2323
	pitch_val = ffs(pitch_val) - 1;

2324 2325
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2326
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2327
	val |= I830_FENCE_SIZE_BITS(size);
2328 2329 2330
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2345 2346
}

2347 2348 2349 2350 2351 2352 2353
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2354
			    struct intel_ring_buffer *pipelined)
2355 2356 2357 2358
{
	int ret;

	if (obj->fenced_gpu_access) {
2359
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2360
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2361 2362 2363 2364
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2365 2366 2367 2368 2369 2370 2371

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2372
			ret = i915_wait_request(obj->last_fenced_ring,
2373 2374
						obj->last_fenced_seqno,
						true);
2375 2376 2377 2378 2379 2380 2381 2382
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2383 2384 2385 2386 2387 2388
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2400
	ret = i915_gem_object_flush_fence(obj, NULL);
2401 2402 2403 2404 2405
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2406 2407

		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2420 2421
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2422 2423
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2424 2425

	/* First try to find a free reg */
2426
	avail = NULL;
2427 2428 2429
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2430
			return reg;
2431

2432
		if (!reg->pin_count)
2433
			avail = reg;
2434 2435
	}

2436 2437
	if (avail == NULL)
		return NULL;
2438 2439

	/* None available, try to steal one or wait for a user to finish */
2440 2441
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2442
		if (reg->pin_count)
2443 2444
			continue;

2445 2446 2447 2448 2449 2450 2451 2452 2453
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2454 2455
	}

2456 2457
	if (avail == NULL)
		avail = first;
2458

2459
	return avail;
2460 2461
}

2462
/**
2463
 * i915_gem_object_get_fence - set up a fence reg for an object
2464
 * @obj: object to map through a fence reg
2465 2466
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2477
int
2478
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2479
			  struct intel_ring_buffer *pipelined)
2480
{
2481
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2482
	struct drm_i915_private *dev_priv = dev->dev_private;
2483
	struct drm_i915_fence_reg *reg;
2484
	int ret;
2485

2486 2487 2488
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2489
	/* Just update our place in the LRU if our fence is getting reused. */
2490 2491
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2492
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2493

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2511 2512 2513 2514 2515

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2516
					ret = i915_wait_request(obj->last_fenced_ring,
2517 2518
								reg->setup_seqno,
								true);
2519 2520 2521 2522 2523 2524 2525 2526
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2527
			ret = i915_gem_object_flush_fence(obj, pipelined);
2528 2529 2530 2531
			if (ret)
				return ret;
		}

2532 2533 2534
		return 0;
	}

2535 2536
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
2537
		return -EDEADLK;
2538

2539
	ret = i915_gem_object_flush_fence(obj, pipelined);
2540
	if (ret)
2541
		return ret;
2542

2543 2544 2545 2546 2547 2548 2549 2550
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2551
		ret = i915_gem_object_flush_fence(old, pipelined);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2563
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2564 2565 2566 2567

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2568

2569
	reg->obj = obj;
2570 2571 2572
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2573

2574
	reg->setup_seqno =
C
Chris Wilson 已提交
2575
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2576 2577 2578 2579
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2580
	switch (INTEL_INFO(dev)->gen) {
2581
	case 7:
2582
	case 6:
2583
		ret = sandybridge_write_fence_reg(obj, pipelined);
2584 2585 2586
		break;
	case 5:
	case 4:
2587
		ret = i965_write_fence_reg(obj, pipelined);
2588 2589
		break;
	case 3:
2590
		ret = i915_write_fence_reg(obj, pipelined);
2591 2592
		break;
	case 2:
2593
		ret = i830_write_fence_reg(obj, pipelined);
2594 2595
		break;
	}
2596

2597
	return ret;
2598 2599 2600 2601 2602 2603 2604
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2605
 * data structures in dev_priv and obj.
2606 2607
 */
static void
2608 2609
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2610
{
J
Jesse Barnes 已提交
2611
	drm_i915_private_t *dev_priv = dev->dev_private;
2612
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2613

2614
	switch (INTEL_INFO(dev)->gen) {
2615
	case 7:
2616
	case 6:
2617
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2618 2619 2620
		break;
	case 5:
	case 4:
2621
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2622 2623
		break;
	case 3:
2624 2625
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2626
		else
2627
	case 2:
2628
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2629 2630

		I915_WRITE(fence_reg, 0);
2631
		break;
2632
	}
2633

2634
	list_del_init(&reg->lru_list);
2635 2636
	reg->obj = NULL;
	reg->setup_seqno = 0;
2637
	reg->pin_count = 0;
2638 2639
}

2640 2641 2642 2643
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2644
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2645
			    unsigned alignment,
2646
			    bool map_and_fenceable)
2647
{
2648
	struct drm_device *dev = obj->base.dev;
2649 2650
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2651
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2652
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2653
	bool mappable, fenceable;
2654
	int ret;
2655

2656
	if (obj->madv != I915_MADV_WILLNEED) {
2657 2658 2659 2660
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2671

2672
	if (alignment == 0)
2673 2674
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2675
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2676 2677 2678 2679
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2680
	size = map_and_fenceable ? fence_size : obj->base.size;
2681

2682 2683 2684
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2685
	if (obj->base.size >
2686
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2687 2688 2689 2690
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2691
 search_free:
2692
	if (map_and_fenceable)
2693 2694
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2695
						    size, alignment, 0,
2696 2697 2698 2699
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2700
						size, alignment, 0);
2701 2702

	if (free_space != NULL) {
2703
		if (map_and_fenceable)
2704
			obj->gtt_space =
2705
				drm_mm_get_block_range_generic(free_space,
2706
							       size, alignment, 0,
2707 2708 2709
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2710
			obj->gtt_space =
2711
				drm_mm_get_block(free_space, size, alignment);
2712
	}
2713
	if (obj->gtt_space == NULL) {
2714 2715 2716
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2717 2718
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2719
		if (ret)
2720
			return ret;
2721

2722 2723 2724
		goto search_free;
	}

2725
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2726
	if (ret) {
2727 2728
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2729 2730

		if (ret == -ENOMEM) {
2731 2732
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2733 2734
			if (ret) {
				/* now try to shrink everyone else */
2735 2736 2737
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2738 2739
				}

2740
				return -ENOMEM;
2741 2742 2743 2744 2745
			}

			goto search_free;
		}

2746 2747 2748
		return ret;
	}

2749 2750
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2751
		i915_gem_object_put_pages_gtt(obj);
2752 2753
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2754

2755
		if (i915_gem_evict_everything(dev, false))
2756 2757 2758
			return ret;

		goto search_free;
2759 2760
	}

2761
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2762
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2763

2764 2765 2766 2767
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2768 2769
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2770

2771
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2772

2773
	fenceable =
2774
		obj->gtt_space->size == fence_size &&
2775
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2776

2777
	mappable =
2778
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2779

2780
	obj->map_and_fenceable = mappable && fenceable;
2781

C
Chris Wilson 已提交
2782
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2783 2784 2785 2786
	return 0;
}

void
2787
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2788 2789 2790 2791 2792
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2793
	if (obj->pages == NULL)
2794 2795
		return;

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2807
	trace_i915_gem_object_clflush(obj);
2808

2809
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2810 2811
}

2812
/** Flushes any GPU write domain for the object if it's dirty. */
2813
static int
2814
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2815
{
2816
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2817
		return 0;
2818 2819

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2820
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2821 2822 2823 2824
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2825
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2826
{
C
Chris Wilson 已提交
2827 2828
	uint32_t old_write_domain;

2829
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2830 2831
		return;

2832
	/* No actual flushing is required for the GTT write domain.  Writes
2833 2834
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2835 2836 2837 2838
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2839
	 */
2840 2841
	wmb();

2842 2843
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2844 2845

	trace_i915_gem_object_change_domain(obj,
2846
					    obj->base.read_domains,
C
Chris Wilson 已提交
2847
					    old_write_domain);
2848 2849 2850 2851
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2852
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2853
{
C
Chris Wilson 已提交
2854
	uint32_t old_write_domain;
2855

2856
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2857 2858 2859
		return;

	i915_gem_clflush_object(obj);
2860
	intel_gtt_chipset_flush();
2861 2862
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2863 2864

	trace_i915_gem_object_change_domain(obj,
2865
					    obj->base.read_domains,
C
Chris Wilson 已提交
2866
					    old_write_domain);
2867 2868
}

2869 2870 2871 2872 2873 2874
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2875
int
2876
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2877
{
C
Chris Wilson 已提交
2878
	uint32_t old_write_domain, old_read_domains;
2879
	int ret;
2880

2881
	/* Not valid to be called on unbound objects. */
2882
	if (obj->gtt_space == NULL)
2883 2884
		return -EINVAL;

2885 2886 2887
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2888 2889 2890 2891
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2892
	if (obj->pending_gpu_write || write) {
2893
		ret = i915_gem_object_wait_rendering(obj);
2894 2895 2896
		if (ret)
			return ret;
	}
2897

2898
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2899

2900 2901
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2902

2903 2904 2905
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2906 2907
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2908
	if (write) {
2909 2910 2911
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2912 2913
	}

C
Chris Wilson 已提交
2914 2915 2916 2917
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2918 2919 2920
	return 0;
}

2921 2922 2923
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2924 2925
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

		i915_gem_gtt_rebind_object(obj, cache_level);
2954 2955 2956
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2986
/*
2987 2988 2989 2990 2991 2992 2993 2994
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
2995 2996
 */
int
2997 2998
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2999
				     struct intel_ring_buffer *pipelined)
3000
{
3001
	u32 old_read_domains, old_write_domain;
3002 3003
	int ret;

3004 3005 3006 3007
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3008
	if (pipelined != obj->ring) {
3009
		ret = i915_gem_object_wait_rendering(obj);
3010
		if (ret == -ERESTARTSYS)
3011 3012 3013
			return ret;
	}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3027 3028 3029 3030 3031 3032 3033 3034
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3035 3036
	i915_gem_object_flush_cpu_write_domain(obj);

3037
	old_write_domain = obj->base.write_domain;
3038
	old_read_domains = obj->base.read_domains;
3039 3040 3041 3042 3043

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3044
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3045 3046 3047

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3048
					    old_write_domain);
3049 3050 3051 3052

	return 0;
}

3053
int
3054
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3055
{
3056 3057
	int ret;

3058
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3059 3060
		return 0;

3061
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3062
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3063 3064 3065
		if (ret)
			return ret;
	}
3066

3067 3068 3069 3070
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

3071 3072
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3073
	return 0;
3074 3075
}

3076 3077 3078 3079 3080 3081 3082
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3083
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3084
{
C
Chris Wilson 已提交
3085
	uint32_t old_write_domain, old_read_domains;
3086 3087
	int ret;

3088 3089 3090
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3091 3092 3093 3094
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3095
	ret = i915_gem_object_wait_rendering(obj);
3096
	if (ret)
3097
		return ret;
3098

3099
	i915_gem_object_flush_gtt_write_domain(obj);
3100

3101 3102
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3103
	 */
3104
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3105

3106 3107
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3108

3109
	/* Flush the CPU cache if it's still invalid. */
3110
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3111 3112
		i915_gem_clflush_object(obj);

3113
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3114 3115 3116 3117 3118
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3119
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3120 3121 3122 3123 3124

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3125 3126
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3127
	}
3128

C
Chris Wilson 已提交
3129 3130 3131 3132
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3133 3134 3135
	return 0;
}

3136
/**
3137
 * Moves the object from a partially CPU read to a full one.
3138
 *
3139 3140
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3141
 */
3142
static void
3143
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3144
{
3145
	if (!obj->page_cpu_valid)
3146 3147 3148 3149
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3150
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3151 3152
		int i;

3153 3154
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3155
				continue;
3156
			drm_clflush_pages(obj->pages + i, 1);
3157 3158 3159 3160 3161 3162
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3163 3164
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3180
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3181 3182
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3183
	uint32_t old_read_domains;
3184
	int i, ret;
3185

3186
	if (offset == 0 && size == obj->base.size)
3187
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3188

3189 3190 3191 3192
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3193
	ret = i915_gem_object_wait_rendering(obj);
3194
	if (ret)
3195
		return ret;
3196

3197 3198 3199
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3200 3201
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3202
		return 0;
3203

3204 3205 3206
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3207 3208 3209 3210
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3211
			return -ENOMEM;
3212 3213
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3214 3215 3216 3217

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3218 3219
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3220
		if (obj->page_cpu_valid[i])
3221 3222
			continue;

3223
		drm_clflush_pages(obj->pages + i, 1);
3224

3225
		obj->page_cpu_valid[i] = 1;
3226 3227
	}

3228 3229 3230
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3231
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3232

3233 3234
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3235

C
Chris Wilson 已提交
3236 3237
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3238
					    obj->base.write_domain);
C
Chris Wilson 已提交
3239

3240 3241 3242 3243 3244 3245
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3246 3247 3248 3249
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3250 3251 3252
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3253
static int
3254
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3255
{
3256 3257
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3258
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3259 3260 3261 3262
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3263

3264 3265 3266
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3267
	spin_lock(&file_priv->mm.lock);
3268
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3269 3270
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3271

3272 3273
		ring = request->ring;
		seqno = request->seqno;
3274
	}
3275
	spin_unlock(&file_priv->mm.lock);
3276

3277 3278
	if (seqno == 0)
		return 0;
3279

3280
	ret = 0;
3281
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3282 3283 3284 3285 3286
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3287 3288 3289 3290 3291
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3292

3293 3294
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3295 3296
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3297 3298
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3299
		}
3300 3301
	}

3302 3303
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3304 3305 3306 3307

	return ret;
}

3308
int
3309 3310
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3311
		    bool map_and_fenceable)
3312
{
3313
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3314
	struct drm_i915_private *dev_priv = dev->dev_private;
3315 3316
	int ret;

3317
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3318
	WARN_ON(i915_verify_lists(dev));
3319

3320 3321 3322 3323
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3324
			     "bo is already pinned with incorrect alignment:"
3325 3326
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3327
			     obj->gtt_offset, alignment,
3328
			     map_and_fenceable,
3329
			     obj->map_and_fenceable);
3330 3331 3332 3333 3334 3335
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3336
	if (obj->gtt_space == NULL) {
3337
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3338
						  map_and_fenceable);
3339
		if (ret)
3340
			return ret;
3341
	}
J
Jesse Barnes 已提交
3342

3343 3344 3345
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3346
				       &dev_priv->mm.pinned_list);
3347
	}
3348
	obj->pin_mappable |= map_and_fenceable;
3349

3350
	WARN_ON(i915_verify_lists(dev));
3351 3352 3353 3354
	return 0;
}

void
3355
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3356
{
3357
	struct drm_device *dev = obj->base.dev;
3358 3359
	drm_i915_private_t *dev_priv = dev->dev_private;

3360
	WARN_ON(i915_verify_lists(dev));
3361 3362
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3363

3364 3365 3366
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3367
				       &dev_priv->mm.inactive_list);
3368
		obj->pin_mappable = false;
3369
	}
3370
	WARN_ON(i915_verify_lists(dev));
3371 3372 3373 3374
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3375
		   struct drm_file *file)
3376 3377
{
	struct drm_i915_gem_pin *args = data;
3378
	struct drm_i915_gem_object *obj;
3379 3380
	int ret;

3381 3382 3383
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3384

3385
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3386
	if (&obj->base == NULL) {
3387 3388
		ret = -ENOENT;
		goto unlock;
3389 3390
	}

3391
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3392
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3393 3394
		ret = -EINVAL;
		goto out;
3395 3396
	}

3397
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3398 3399
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3400 3401
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3402 3403
	}

3404 3405 3406
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3407
		ret = i915_gem_object_pin(obj, args->alignment, true);
3408 3409
		if (ret)
			goto out;
3410 3411 3412 3413 3414
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3415
	i915_gem_object_flush_cpu_write_domain(obj);
3416
	args->offset = obj->gtt_offset;
3417
out:
3418
	drm_gem_object_unreference(&obj->base);
3419
unlock:
3420
	mutex_unlock(&dev->struct_mutex);
3421
	return ret;
3422 3423 3424 3425
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3426
		     struct drm_file *file)
3427 3428
{
	struct drm_i915_gem_pin *args = data;
3429
	struct drm_i915_gem_object *obj;
3430
	int ret;
3431

3432 3433 3434
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3435

3436
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3437
	if (&obj->base == NULL) {
3438 3439
		ret = -ENOENT;
		goto unlock;
3440
	}
3441

3442
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3443 3444
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3445 3446
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3447
	}
3448 3449 3450
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3451 3452
		i915_gem_object_unpin(obj);
	}
3453

3454
out:
3455
	drm_gem_object_unreference(&obj->base);
3456
unlock:
3457
	mutex_unlock(&dev->struct_mutex);
3458
	return ret;
3459 3460 3461 3462
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3463
		    struct drm_file *file)
3464 3465
{
	struct drm_i915_gem_busy *args = data;
3466
	struct drm_i915_gem_object *obj;
3467 3468
	int ret;

3469
	ret = i915_mutex_lock_interruptible(dev);
3470
	if (ret)
3471
		return ret;
3472

3473
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3474
	if (&obj->base == NULL) {
3475 3476
		ret = -ENOENT;
		goto unlock;
3477
	}
3478

3479 3480 3481 3482
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3483
	 */
3484
	args->busy = obj->active;
3485 3486 3487 3488 3489 3490
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3491
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3492
			ret = i915_gem_flush_ring(obj->ring,
3493
						  0, obj->base.write_domain);
3494 3495 3496 3497
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3498 3499 3500
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3501
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3502
			if (request) {
3503
				ret = i915_add_request(obj->ring, NULL, request);
3504 3505 3506
				if (ret)
					kfree(request);
			} else
3507 3508
				ret = -ENOMEM;
		}
3509 3510 3511 3512 3513 3514

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3515
		i915_gem_retire_requests_ring(obj->ring);
3516

3517
		args->busy = obj->active;
3518
	}
3519

3520
	drm_gem_object_unreference(&obj->base);
3521
unlock:
3522
	mutex_unlock(&dev->struct_mutex);
3523
	return ret;
3524 3525 3526 3527 3528 3529
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3530
	return i915_gem_ring_throttle(dev, file_priv);
3531 3532
}

3533 3534 3535 3536 3537
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3538
	struct drm_i915_gem_object *obj;
3539
	int ret;
3540 3541 3542 3543 3544 3545 3546 3547 3548

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3549 3550 3551 3552
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3553
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3554
	if (&obj->base == NULL) {
3555 3556
		ret = -ENOENT;
		goto unlock;
3557 3558
	}

3559
	if (obj->pin_count) {
3560 3561
		ret = -EINVAL;
		goto out;
3562 3563
	}

3564 3565
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3566

3567
	/* if the object is no longer bound, discard its backing storage */
3568 3569
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3570 3571
		i915_gem_object_truncate(obj);

3572
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3573

3574
out:
3575
	drm_gem_object_unreference(&obj->base);
3576
unlock:
3577
	mutex_unlock(&dev->struct_mutex);
3578
	return ret;
3579 3580
}

3581 3582
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3583
{
3584
	struct drm_i915_private *dev_priv = dev->dev_private;
3585
	struct drm_i915_gem_object *obj;
3586
	struct address_space *mapping;
3587

3588 3589 3590
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3591

3592 3593 3594 3595
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3596

3597 3598 3599
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3600 3601
	i915_gem_info_add_obj(dev_priv, size);

3602 3603
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3604

3605 3606
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3622
	obj->base.driver_private = NULL;
3623
	obj->fence_reg = I915_FENCE_REG_NONE;
3624
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3625
	INIT_LIST_HEAD(&obj->gtt_list);
3626
	INIT_LIST_HEAD(&obj->ring_list);
3627
	INIT_LIST_HEAD(&obj->exec_list);
3628 3629
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3630 3631
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3632

3633
	return obj;
3634 3635 3636 3637 3638
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3639

3640 3641 3642
	return 0;
}

3643
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3644
{
3645
	struct drm_device *dev = obj->base.dev;
3646 3647
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3648

3649 3650
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3651
		list_move(&obj->mm_list,
3652 3653 3654
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3655

3656 3657
	trace_i915_gem_object_destroy(obj);

3658
	if (obj->base.map_list.map)
3659
		drm_gem_free_mmap_offset(&obj->base);
3660

3661 3662
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3663

3664 3665 3666
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3667 3668
}

3669
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3670
{
3671 3672
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3673

3674
	while (obj->pin_count > 0)
3675 3676
		i915_gem_object_unpin(obj);

3677
	if (obj->phys_obj)
3678 3679 3680 3681 3682
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3683 3684 3685 3686 3687
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3688

3689
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3690

3691
	if (dev_priv->mm.suspended) {
3692 3693
		mutex_unlock(&dev->struct_mutex);
		return 0;
3694 3695
	}

3696
	ret = i915_gpu_idle(dev, true);
3697 3698
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3699
		return ret;
3700
	}
3701

3702 3703
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3704
		ret = i915_gem_evict_inactive(dev, false);
3705 3706 3707 3708 3709 3710
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3711 3712
	i915_gem_reset_fences(dev);

3713 3714 3715 3716 3717
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3718
	del_timer_sync(&dev_priv->hangcheck_timer);
3719 3720

	i915_kernel_lost_context(dev);
3721
	i915_gem_cleanup_ringbuffer(dev);
3722

3723 3724
	mutex_unlock(&dev->struct_mutex);

3725 3726 3727
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3728 3729 3730
	return 0;
}

3731 3732 3733 3734
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3735
	if (INTEL_INFO(dev)->gen < 5 ||
3736 3737 3738 3739 3740 3741
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3742 3743 3744
	if (IS_GEN5(dev))
		return;

3745 3746 3747 3748 3749 3750
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
	else
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
D
Daniel Vetter 已提交
3751 3752 3753 3754 3755 3756

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3757 3758 3759
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3760 3761 3762 3763 3764
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
		uint32_t ecochk = I915_READ(GAM_ECOCHK);
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
		I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
				   GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3808
int
3809
i915_gem_init_hw(struct drm_device *dev)
3810 3811 3812
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3813

3814 3815
	i915_gem_init_swizzling(dev);

3816
	ret = intel_init_render_ring_buffer(dev);
3817
	if (ret)
3818
		return ret;
3819 3820

	if (HAS_BSD(dev)) {
3821
		ret = intel_init_bsd_ring_buffer(dev);
3822 3823
		if (ret)
			goto cleanup_render_ring;
3824
	}
3825

3826 3827 3828 3829 3830 3831
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3832 3833
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3834 3835
	i915_gem_init_ppgtt(dev);

3836 3837
	return 0;

3838
cleanup_bsd_ring:
3839
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3840
cleanup_render_ring:
3841
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3842 3843 3844 3845 3846 3847 3848
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3849
	int i;
3850

3851 3852
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3853 3854
}

3855 3856 3857 3858 3859
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3860
	int ret, i;
3861

J
Jesse Barnes 已提交
3862 3863 3864
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3865
	if (atomic_read(&dev_priv->mm.wedged)) {
3866
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3867
		atomic_set(&dev_priv->mm.wedged, 0);
3868 3869 3870
	}

	mutex_lock(&dev->struct_mutex);
3871 3872
	dev_priv->mm.suspended = 0;

3873
	ret = i915_gem_init_hw(dev);
3874 3875
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3876
		return ret;
3877
	}
3878

3879
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3880 3881
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3882 3883 3884 3885
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3886
	mutex_unlock(&dev->struct_mutex);
3887

3888 3889 3890
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3891

3892
	return 0;
3893 3894 3895 3896 3897 3898 3899 3900

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3901 3902 3903 3904 3905 3906
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3907 3908 3909
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3910
	drm_irq_uninstall(dev);
3911
	return i915_gem_idle(dev);
3912 3913 3914 3915 3916 3917 3918
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3919 3920 3921
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3922 3923 3924
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3925 3926
}

3927 3928 3929 3930 3931 3932 3933 3934
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3935 3936 3937
void
i915_gem_load(struct drm_device *dev)
{
3938
	int i;
3939 3940
	drm_i915_private_t *dev_priv = dev->dev_private;

3941
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3942 3943
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3944
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3945
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3946
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3947
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3948 3949
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3950
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3951
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3952 3953
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3954
	init_completion(&dev_priv->error_completion);
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3966 3967
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3968
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3969 3970
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3971

3972
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3973 3974 3975 3976
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3977
	/* Initialize fence registers to zero */
3978 3979
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3980
	}
3981

3982
	i915_gem_detect_bit_6_swizzle(dev);
3983
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3984

3985 3986
	dev_priv->mm.interruptible = true;

3987 3988 3989
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3990
}
3991 3992 3993 3994 3995

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3996 3997
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3998 3999 4000 4001 4002 4003 4004 4005
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4006
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4007 4008 4009 4010 4011
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4012
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4025
	kfree(phys_obj);
4026 4027 4028
	return ret;
}

4029
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4054
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4055 4056 4057 4058
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4059
				 struct drm_i915_gem_object *obj)
4060
{
4061
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4062
	char *vaddr;
4063 4064 4065
	int i;
	int page_count;

4066
	if (!obj->phys_obj)
4067
		return;
4068
	vaddr = obj->phys_obj->handle->vaddr;
4069

4070
	page_count = obj->base.size / PAGE_SIZE;
4071
	for (i = 0; i < page_count; i++) {
4072
		struct page *page = shmem_read_mapping_page(mapping, i);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4084
	}
4085
	intel_gtt_chipset_flush();
4086

4087 4088
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4089 4090 4091 4092
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4093
			    struct drm_i915_gem_object *obj,
4094 4095
			    int id,
			    int align)
4096
{
4097
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4098 4099 4100 4101 4102 4103 4104 4105
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4106 4107
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4108 4109 4110 4111 4112 4113 4114
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4115
						obj->base.size, align);
4116
		if (ret) {
4117 4118
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4119
			return ret;
4120 4121 4122 4123
		}
	}

	/* bind to the object */
4124 4125
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4126

4127
	page_count = obj->base.size / PAGE_SIZE;
4128 4129

	for (i = 0; i < page_count; i++) {
4130 4131 4132
		struct page *page;
		char *dst, *src;

4133
		page = shmem_read_mapping_page(mapping, i);
4134 4135
		if (IS_ERR(page))
			return PTR_ERR(page);
4136

4137
		src = kmap_atomic(page);
4138
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4139
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4140
		kunmap_atomic(src);
4141

4142 4143 4144
		mark_page_accessed(page);
		page_cache_release(page);
	}
4145

4146 4147 4148 4149
	return 0;
}

static int
4150 4151
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4152 4153 4154
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4155
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4156
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4171

4172
	intel_gtt_chipset_flush();
4173 4174
	return 0;
}
4175

4176
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4177
{
4178
	struct drm_i915_file_private *file_priv = file->driver_priv;
4179 4180 4181 4182 4183

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4184
	spin_lock(&file_priv->mm.lock);
4185 4186 4187 4188 4189 4190 4191 4192 4193
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4194
	spin_unlock(&file_priv->mm.lock);
4195
}
4196

4197 4198 4199 4200 4201 4202 4203
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4204
		      list_empty(&dev_priv->mm.active_list);
4205 4206 4207 4208

	return !lists_empty;
}

4209
static int
4210
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4211
{
4212 4213 4214 4215 4216 4217
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4218
	int nr_to_scan = sc->nr_to_scan;
4219 4220 4221
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4222
		return 0;
4223 4224 4225

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4226 4227 4228 4229 4230 4231 4232
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4233 4234
	}

4235
rescan:
4236
	/* first scan for clean buffers */
4237
	i915_gem_retire_requests(dev);
4238

4239 4240 4241 4242
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4243 4244
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4245
				break;
4246 4247 4248 4249
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4250 4251 4252 4253
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4254 4255
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4256
			nr_to_scan--;
4257
		else
4258 4259 4260 4261
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4262 4263 4264 4265 4266 4267
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4268
		if (i915_gpu_idle(dev, true) == 0)
4269 4270
			goto rescan;
	}
4271 4272
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4273
}