i915_gem.c 127.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247
	if (ret) {
248 249 250
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
251
		return ret;
252
	}
253

254 255 256 257
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

258
	args->handle = handle;
259 260 261
	return 0;
}

262 263 264 265 266 267
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
268
	char *vaddr;
269
	int ret;
270 271

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272
	ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 274
	kunmap_atomic(vaddr, KM_USER0);

275
	return ret;
276 277
}

278 279 280
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
281
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282 283 284 285 286

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

287
static inline void
288 289 290 291 292 293 294 295
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

296 297
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
298 299 300

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

301 302
	kunmap(src_page);
	kunmap(dst_page);
303 304
}

305
static inline void
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

325 326
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

350 351
	kunmap(cpu_page);
	kunmap(gpu_page);
352 353
}

354 355 356 357 358 359 360 361 362 363
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
364
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 366 367 368 369 370 371 372
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

373
	obj_priv = to_intel_bo(obj);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

389 390 391 392
		if (fast_shmem_read(obj_priv->pages,
				    page_base, page_offset,
				    user_data, page_length))
			return -EFAULT;
393 394 395 396 397 398

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

399
	return 0;
400 401
}

402 403 404 405 406
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

407
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408 409 410 411 412 413 414

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

415 416
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
417 418 419
		if (ret)
			return ret;

420
		ret = i915_gem_object_get_pages(obj, 0);
421 422 423 424 425
	}

	return ret;
}

426 427 428 429 430 431 432 433 434 435 436
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 439 440 441 442 443 444 445 446 447
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
448
	int do_bit17_swizzling;
449 450 451 452 453 454 455 456 457 458 459

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

460
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 462 463
	if (user_pages == NULL)
		return -ENOMEM;

464
	mutex_unlock(&dev->struct_mutex);
465 466
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467
				      num_pages, 1, 0, user_pages, NULL);
468
	up_read(&mm->mmap_sem);
469
	mutex_lock(&dev->struct_mutex);
470 471
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
472
		goto out;
473 474
	}

475 476 477
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
478
	if (ret)
479
		goto out;
480

481
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482

483
	obj_priv = to_intel_bo(obj);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

506
		if (do_bit17_swizzling) {
507
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508
					      shmem_page_offset,
509 510 511 512 513 514 515 516 517 518
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
519
		}
520 521 522 523 524 525

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

526
out:
527 528 529 530
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
531
	drm_free_large(user_pages);
532 533 534 535

	return ret;
}

536 537 538 539 540 541 542 543 544 545 546 547
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
548
	int ret = 0;
549

550
	ret = i915_mutex_lock_interruptible(dev);
551
	if (ret)
552
		return ret;
553 554 555 556 557

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
558
	}
559
	obj_priv = to_intel_bo(obj);
560

561 562
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
563
		ret = -EINVAL;
564
		goto out;
C
Chris Wilson 已提交
565 566
	}

567 568 569
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
570 571 572 573
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
574
		goto out;
575 576
	}

577 578 579 580 581 582 583
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
		goto out;

	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
		goto out_put;

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
596
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 598
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599

600 601
out_put:
	i915_gem_object_put_pages(obj);
602
out:
603
	drm_gem_object_unreference(obj);
604
unlock:
605
	mutex_unlock(&dev->struct_mutex);
606
	return ret;
607 608
}

609 610
/* This is the fast write path which cannot handle
 * page faults in the source data
611
 */
612 613 614 615 616 617

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
618 619
{
	char *vaddr_atomic;
620
	unsigned long unwritten;
621

622
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
623 624
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
625
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
626
	return unwritten;
627 628 629 630 631 632
}

/* Here's the write path which can sleep for
 * page faults
 */

633
static inline void
634 635 636 637
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
638
{
639 640
	char __iomem *dst_vaddr;
	char *src_vaddr;
641

642 643 644 645 646 647 648 649 650
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
651 652
}

653 654 655 656 657 658
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
659
	char *vaddr;
660
	int ret;
661 662

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
663
	ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 665
	kunmap_atomic(vaddr, KM_USER0);

666
	return ret;
667 668
}

669 670 671 672
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
673
static int
674 675 676
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
677
{
678
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679
	drm_i915_private_t *dev_priv = dev->dev_private;
680
	ssize_t remain;
681
	loff_t offset, page_base;
682
	char __user *user_data;
683
	int page_offset, page_length;
684 685 686 687

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

688
	obj_priv = to_intel_bo(obj);
689 690 691 692 693
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
694 695 696
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
697
		 */
698 699 700 701 702 703 704
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
705 706
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
707
		 */
708 709 710 711
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
712

713 714 715
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
716 717
	}

718
	return 0;
719 720
}

721 722 723 724 725 726 727
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
728
static int
729 730 731
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
732
{
733
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 735 736 737 738 739 740 741
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
742
	int ret;
743 744 745 746 747 748 749 750 751 752 753 754
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

755
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 757 758
	if (user_pages == NULL)
		return -ENOMEM;

759
	mutex_unlock(&dev->struct_mutex);
760 761 762 763
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
764
	mutex_lock(&dev->struct_mutex);
765 766 767 768
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
769

770 771
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
772
		goto out_unpin_pages;
773

774
	obj_priv = to_intel_bo(obj);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

797 798 799 800 801
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
802 803 804 805 806 807 808 809 810

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
811
	drm_free_large(user_pages);
812 813 814 815

	return ret;
}

816 817 818 819
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
820
static int
821 822 823
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
824
{
825
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 827 828 829 830 831 832
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
833

834
	obj_priv = to_intel_bo(obj);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

851
		if (fast_shmem_write(obj_priv->pages,
852
				       page_base, page_offset,
853 854
				       user_data, page_length))
			return -EFAULT;
855 856 857 858 859 860

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

861
	return 0;
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
876
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 878 879 880 881 882 883 884 885 886
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
887
	int do_bit17_swizzling;
888 889 890 891 892 893 894 895 896 897 898

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

899
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 901 902
	if (user_pages == NULL)
		return -ENOMEM;

903
	mutex_unlock(&dev->struct_mutex);
904 905 906 907
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
908
	mutex_lock(&dev->struct_mutex);
909 910
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
911
		goto out;
912 913
	}

914
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915
	if (ret)
916
		goto out;
917

918
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919

920
	obj_priv = to_intel_bo(obj);
921
	offset = args->offset;
922
	obj_priv->dirty = 1;
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

944
		if (do_bit17_swizzling) {
945
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 947 948
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
949 950 951 952 953 954 955 956
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
957
		}
958 959 960 961

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
962 963
	}

964
out:
965 966
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
967
	drm_free_large(user_pages);
968

969
	return ret;
970 971 972 973 974 975 976 977 978
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979
		      struct drm_file *file)
980 981 982 983 984 985
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

986
	ret = i915_mutex_lock_interruptible(dev);
987
	if (ret)
988
		return ret;
989 990 991 992 993

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
994
	}
995 996
	obj_priv = to_intel_bo(obj);

997

998 999
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1000
		ret = -EINVAL;
1001
		goto out;
C
Chris Wilson 已提交
1002 1003
	}

1004 1005 1006
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1007 1008 1009 1010
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1011
		goto out;
1012 1013
	}

1014 1015 1016 1017 1018 1019 1020
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

1021 1022 1023 1024 1025 1026
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1027
	if (obj_priv->phys_obj)
1028
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030
		 obj_priv->gtt_space &&
1031
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		ret = i915_gem_object_pin(obj, 0);
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1046
	} else {
1047 1048 1049
		ret = i915_gem_object_get_pages_or_evict(obj);
		if (ret)
			goto out;
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			goto out_put;

		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);

out_put:
		i915_gem_object_put_pages(obj);
	}
1064

1065
out:
1066
	drm_gem_object_unreference(obj);
1067
unlock:
1068
	mutex_unlock(&dev->struct_mutex);
1069 1070 1071 1072
	return ret;
}

/**
1073 1074
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1075 1076 1077 1078 1079
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1080
	struct drm_i915_private *dev_priv = dev->dev_private;
1081 1082
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1083
	struct drm_i915_gem_object *obj_priv;
1084 1085
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1086 1087 1088 1089 1090
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1091
	/* Only handle setting domains to types used by the CPU. */
1092
	if (write_domain & I915_GEM_GPU_DOMAINS)
1093 1094
		return -EINVAL;

1095
	if (read_domains & I915_GEM_GPU_DOMAINS)
1096 1097 1098 1099 1100 1101 1102 1103
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1104
	ret = i915_mutex_lock_interruptible(dev);
1105
	if (ret)
1106
		return ret;
1107 1108 1109 1110 1111

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1112
	}
1113
	obj_priv = to_intel_bo(obj);
1114 1115 1116

	intel_mark_busy(dev, obj);

1117 1118
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119

1120 1121 1122 1123
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 1125 1126
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1127 1128 1129
				       &dev_priv->mm.fence_list);
		}

1130 1131 1132 1133 1134 1135
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1136
	} else {
1137
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 1139
	}

1140 1141 1142 1143
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1144
	drm_gem_object_unreference(obj);
1145
unlock:
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1164
	ret = i915_mutex_lock_interruptible(dev);
1165
	if (ret)
1166
		return ret;
1167 1168 1169 1170 1171

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1172 1173 1174
	}

	/* Pinned buffers may be scanout, so flush the cache */
1175
	if (to_intel_bo(obj)->pin_count)
1176 1177
		i915_gem_object_flush_cpu_write_domain(obj);

1178
	drm_gem_object_unreference(obj);
1179
unlock:
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1205
		return -ENOENT;
1206 1207 1208 1209 1210 1211 1212 1213

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1214
	drm_gem_object_unreference_unlocked(obj);
1215 1216 1217 1218 1219 1220 1221 1222
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1243
	drm_i915_private_t *dev_priv = dev->dev_private;
1244
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 1246 1247
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1248
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249 1250 1251 1252 1253 1254 1255 1256

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1257
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 1259
		if (ret)
			goto unlock;
1260 1261

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 1263
		if (ret)
			goto unlock;
1264 1265 1266
	}

	/* Need a new fence register? */
1267
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268
		ret = i915_gem_object_get_fence_reg(obj, true);
1269 1270
		if (ret)
			goto unlock;
1271
	}
1272

1273 1274 1275
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1276 1277 1278 1279 1280
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281
unlock:
1282 1283 1284
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1285 1286 1287
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1288 1289 1290 1291
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1292
		return VM_FAULT_SIGBUS;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1312
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313
	struct drm_map_list *list;
1314
	struct drm_local_map *map;
1315 1316 1317 1318
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1319
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333
		ret = -ENOSPC;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1345 1346
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1360
	kfree(list->map);
1361 1362 1363 1364

	return ret;
}

1365 1366 1367 1368
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1369
 * Preserve the reservation of the mmapping with the DRM core code, but
1370 1371 1372 1373 1374 1375 1376 1377 1378
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1379
void
1380 1381 1382
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1383
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384 1385 1386 1387 1388 1389

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1390 1391 1392 1393
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1394
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1407
		kfree(list->map);
1408 1409 1410 1411 1412 1413
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1425
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 1427 1428 1429 1430 1431
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1432
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 1434 1435 1436 1437 1438
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1439
	if (INTEL_INFO(dev)->gen == 3)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1477
	ret = i915_mutex_lock_interruptible(dev);
1478
	if (ret)
1479
		return ret;
1480

1481 1482 1483 1484 1485
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1486
	obj_priv = to_intel_bo(obj);
1487

1488 1489
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 1491
		ret = -EINVAL;
		goto out;
1492 1493
	}

1494 1495
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1496 1497
		if (ret)
			goto out;
1498 1499 1500 1501 1502 1503 1504 1505 1506
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1507
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 1509
		if (ret)
			goto out;
1510 1511
	}

1512
out:
1513
	drm_gem_object_unreference(obj);
1514
unlock:
1515
	mutex_unlock(&dev->struct_mutex);
1516
	return ret;
1517 1518
}

1519
static void
1520
i915_gem_object_put_pages(struct drm_gem_object *obj)
1521
{
1522
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 1524 1525
	int page_count = obj->size / PAGE_SIZE;
	int i;

1526
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1527
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528

1529 1530
	if (--obj_priv->pages_refcount != 0)
		return;
1531

1532 1533 1534
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1535
	if (obj_priv->madv == I915_MADV_DONTNEED)
1536
		obj_priv->dirty = 0;
1537 1538 1539 1540 1541 1542

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1543
			mark_page_accessed(obj_priv->pages[i]);
1544 1545 1546

		page_cache_release(obj_priv->pages[i]);
	}
1547 1548
	obj_priv->dirty = 0;

1549
	drm_free_large(obj_priv->pages);
1550
	obj_priv->pages = NULL;
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1563
static void
1564
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565
			       struct intel_ring_buffer *ring)
1566
{
1567
	struct drm_device *dev = obj->dev;
1568
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1570

1571 1572
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1573 1574 1575 1576 1577 1578

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1579

1580
	/* Move from whatever list we were on to the tail of execution. */
1581
	list_move_tail(&obj_priv->list, &ring->active_list);
1582
	obj_priv->last_rendering_seqno = seqno;
1583 1584
}

1585 1586 1587 1588 1589
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1590
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1591 1592 1593 1594 1595

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1596

1597 1598 1599 1600
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1601
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1602
	struct inode *inode;
1603

1604 1605 1606 1607 1608 1609
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1610
	inode = obj->filp->f_path.dentry->d_inode;
1611 1612 1613
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1614 1615

	obj_priv->madv = __I915_MADV_PURGED;
1616 1617 1618 1619 1620 1621 1622 1623
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1624 1625 1626 1627 1628
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1629
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1630 1631

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1632
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1633 1634 1635
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1636 1637
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1638
	obj_priv->last_rendering_seqno = 0;
1639
	obj_priv->ring = NULL;
1640 1641 1642 1643
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1644
	WARN_ON(i915_verify_lists(dev));
1645 1646
}

1647
static void
1648
i915_gem_process_flushing_list(struct drm_device *dev,
1649
			       uint32_t flush_domains,
1650
			       struct intel_ring_buffer *ring)
1651 1652 1653 1654 1655 1656 1657
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1658
		struct drm_gem_object *obj = &obj_priv->base;
1659

1660 1661
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1662 1663 1664 1665
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1666
			i915_gem_object_move_to_active(obj, ring);
1667 1668

			/* update the fence lru list */
1669 1670 1671 1672
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1673
						&dev_priv->mm.fence_list);
1674
			}
1675 1676 1677 1678 1679 1680 1681

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1682

1683
uint32_t
1684
i915_add_request(struct drm_device *dev,
1685
		 struct drm_file *file,
C
Chris Wilson 已提交
1686
		 struct drm_i915_gem_request *request,
1687
		 struct intel_ring_buffer *ring)
1688 1689
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1690
	struct drm_i915_file_private *file_priv = NULL;
1691 1692 1693
	uint32_t seqno;
	int was_empty;

1694 1695
	if (file != NULL)
		file_priv = file->driver_priv;
1696

C
Chris Wilson 已提交
1697 1698 1699 1700 1701
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1702

1703
	seqno = ring->add_request(dev, ring, 0);
1704
	ring->outstanding_lazy_request = false;
1705 1706

	request->seqno = seqno;
1707
	request->ring = ring;
1708
	request->emitted_jiffies = jiffies;
1709 1710 1711
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1712
	if (file_priv) {
1713
		spin_lock(&file_priv->mm.lock);
1714
		request->file_priv = file_priv;
1715
		list_add_tail(&request->client_list,
1716
			      &file_priv->mm.request_list);
1717
		spin_unlock(&file_priv->mm.lock);
1718
	}
1719

B
Ben Gamari 已提交
1720
	if (!dev_priv->mm.suspended) {
1721 1722
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1723
		if (was_empty)
1724 1725
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1726
	}
1727 1728 1729 1730 1731 1732 1733 1734 1735
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1736
static void
1737
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1738 1739 1740 1741
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1742
	if (INTEL_INFO(dev)->gen >= 4)
1743
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1744 1745 1746

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1747 1748
}

1749 1750
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1751
{
1752 1753 1754 1755 1756 1757 1758 1759 1760
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1761 1762
}

1763 1764
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1765
{
1766 1767
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1768

1769 1770 1771 1772 1773
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1774
		i915_gem_request_remove_from_client(request);
1775 1776 1777 1778
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1779 1780
		struct drm_i915_gem_object *obj_priv;

1781
		obj_priv = list_first_entry(&ring->active_list,
1782 1783 1784 1785
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1786
		list_del_init(&obj_priv->gpu_write_list);
1787 1788 1789 1790
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1791
void i915_gem_reset(struct drm_device *dev)
1792 1793 1794
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1795
	int i;
1796

1797
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1798
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1817 1818 1819 1820 1821 1822
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1834 1835
}

1836 1837 1838
/**
 * This function clears the request list as sequence numbers are passed.
 */
1839 1840 1841
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1842 1843 1844 1845
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1846 1847
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1848 1849
		return;

1850 1851
	WARN_ON(i915_verify_lists(dev));

1852
	seqno = ring->get_seqno(dev, ring);
1853
	while (!list_empty(&ring->request_list)) {
1854 1855
		struct drm_i915_gem_request *request;

1856
		request = list_first_entry(&ring->request_list,
1857 1858 1859
					   struct drm_i915_gem_request,
					   list);

1860
		if (!i915_seqno_passed(seqno, request->seqno))
1861 1862 1863 1864 1865
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1866
		i915_gem_request_remove_from_client(request);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1880

1881
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1882
			break;
1883 1884 1885 1886 1887 1888

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1889
	}
1890 1891 1892

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1893
		ring->user_irq_put(dev, ring);
1894 1895
		dev_priv->trace_irq_seqno = 0;
	}
1896 1897

	WARN_ON(i915_verify_lists(dev));
1898 1899
}

1900 1901 1902 1903 1904
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1919
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1920
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1921 1922
}

1923
static void
1924 1925 1926 1927 1928 1929 1930 1931 1932
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1933 1934 1935 1936 1937 1938
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1939
	i915_gem_retire_requests(dev);
1940

1941
	if (!dev_priv->mm.suspended &&
1942
		(!list_empty(&dev_priv->render_ring.request_list) ||
1943
		 !list_empty(&dev_priv->bsd_ring.request_list)))
1944
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1945 1946 1947
	mutex_unlock(&dev->struct_mutex);
}

1948
int
1949
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1950
		     bool interruptible, struct intel_ring_buffer *ring)
1951 1952
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1953
	u32 ier;
1954 1955 1956 1957
	int ret = 0;

	BUG_ON(seqno == 0);

1958 1959 1960
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1961
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1962
		seqno = i915_add_request(dev, NULL, NULL, ring);
1963 1964 1965
		if (seqno == 0)
			return -ENOMEM;
	}
1966
	BUG_ON(seqno == dev_priv->next_seqno);
1967

1968
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1969
		if (HAS_PCH_SPLIT(dev))
1970 1971 1972
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1973 1974 1975 1976 1977 1978 1979
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1980 1981
		trace_i915_gem_request_wait_begin(dev, seqno);

1982
		ring->waiting_gem_seqno = seqno;
1983
		ring->user_irq_get(dev, ring);
1984
		if (interruptible)
1985 1986
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1987
					ring->get_seqno(dev, ring), seqno)
1988
				|| atomic_read(&dev_priv->mm.wedged));
1989
		else
1990 1991
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1992
					ring->get_seqno(dev, ring), seqno)
1993
				|| atomic_read(&dev_priv->mm.wedged));
1994

1995
		ring->user_irq_put(dev, ring);
1996
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1997 1998

		trace_i915_gem_request_wait_end(dev, seqno);
1999
	}
2000
	if (atomic_read(&dev_priv->mm.wedged))
2001
		ret = -EAGAIN;
2002 2003

	if (ret && ret != -ERESTARTSYS)
2004
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2005
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2006
			  dev_priv->next_seqno);
2007 2008 2009 2010 2011 2012 2013

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2014
		i915_gem_retire_requests_ring(dev, ring);
2015 2016 2017 2018

	return ret;
}

2019 2020 2021 2022 2023
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2024
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2025
		  struct intel_ring_buffer *ring)
2026
{
2027
	return i915_do_wait_request(dev, seqno, 1, ring);
2028 2029
}

2030
static void
2031
i915_gem_flush_ring(struct drm_device *dev,
2032
		    struct drm_file *file_priv,
2033 2034 2035 2036 2037 2038 2039 2040
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2041 2042
static void
i915_gem_flush(struct drm_device *dev,
2043
	       struct drm_file *file_priv,
2044
	       uint32_t invalidate_domains,
2045 2046
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2047 2048
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2049

2050 2051
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2052

2053 2054
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2055
			i915_gem_flush_ring(dev, file_priv,
2056 2057 2058
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2059
			i915_gem_flush_ring(dev, file_priv,
2060 2061 2062
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2063 2064
}

2065 2066 2067 2068 2069
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2070 2071
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2072 2073
{
	struct drm_device *dev = obj->dev;
2074
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2075 2076
	int ret;

2077 2078
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2079
	 */
2080
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2081 2082 2083 2084 2085

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2086 2087 2088 2089 2090
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2091 2092 2093 2094 2095 2096 2097 2098 2099
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2100
int
2101 2102 2103
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2104
	struct drm_i915_private *dev_priv = dev->dev_private;
2105
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2116 2117 2118
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2119 2120 2121 2122 2123 2124
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2125
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2126
	if (ret == -ERESTARTSYS)
2127
		return ret;
2128 2129 2130 2131
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2132 2133 2134 2135
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2136

2137 2138 2139 2140
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2141 2142
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2143

2144
	i915_gem_object_put_pages(obj);
2145
	BUG_ON(obj_priv->pages_refcount);
2146

2147
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2148
	list_del_init(&obj_priv->list);
2149

2150 2151
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2152
	obj_priv->gtt_offset = 0;
2153

2154 2155 2156
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2157 2158
	trace_i915_gem_object_unbind(obj);

2159
	return ret;
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2172
int
2173 2174 2175 2176
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2177
	int ret;
2178

2179 2180
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2181
		       list_empty(&dev_priv->bsd_ring.active_list));
2182 2183 2184 2185
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2186
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2187 2188
	if (ret)
		return ret;
2189

2190 2191 2192
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2193

2194
	return 0;
2195 2196
}

2197
static int
2198 2199
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2200
{
2201
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2202 2203 2204 2205 2206
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2207 2208 2209
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2210
	if (obj_priv->pages_refcount++ != 0)
2211 2212 2213 2214 2215 2216
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2217
	BUG_ON(obj_priv->pages != NULL);
2218
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2219 2220
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2221 2222 2223 2224 2225 2226
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2227
		page = read_cache_page_gfp(mapping, i,
2228
					   GFP_HIGHUSER |
2229
					   __GFP_COLD |
2230
					   __GFP_RECLAIMABLE |
2231
					   gfpmask);
2232 2233 2234
		if (IS_ERR(page))
			goto err_pages;

2235
		obj_priv->pages[i] = page;
2236
	}
2237 2238 2239 2240

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2241
	return 0;
2242 2243 2244 2245 2246 2247 2248 2249 2250

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2251 2252
}

2253 2254 2255 2256 2257
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2258
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2275 2276 2277 2278 2279
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2280
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2300
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2301
	int regnum = obj_priv->fence_reg;
2302
	int tile_width;
2303
	uint32_t fence_reg, val;
2304 2305 2306 2307
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2308
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2309
		     __func__, obj_priv->gtt_offset, obj->size);
2310 2311 2312
		return;
	}

2313 2314 2315
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2316
	else
2317 2318 2319 2320 2321
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2322

2323 2324 2325 2326 2327 2328
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2329 2330 2331 2332 2333 2334 2335
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2336 2337 2338 2339 2340
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2341 2342 2343 2344 2345 2346 2347
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2348
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2349 2350 2351
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2352
	uint32_t fence_size_bits;
2353

2354
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2355
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2356
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2357
		     __func__, obj_priv->gtt_offset);
2358 2359 2360
		return;
	}

2361 2362 2363 2364
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2365 2366 2367
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2368 2369 2370
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2371 2372 2373 2374 2375 2376
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2377 2378
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2393
		obj_priv = to_intel_bo(reg->obj);
2394 2395 2396 2397 2398 2399 2400 2401 2402
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2403 2404 2405 2406
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2423
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2424 2425 2426 2427 2428 2429 2430
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2444
int
2445 2446
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2447 2448
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2449
	struct drm_i915_private *dev_priv = dev->dev_private;
2450
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2451
	struct drm_i915_fence_reg *reg = NULL;
2452
	int ret;
2453

2454 2455
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2456 2457
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2458 2459 2460
		return 0;
	}

2461 2462 2463 2464 2465
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2466 2467 2468 2469 2470
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2471 2472
		break;
	case I915_TILING_Y:
2473 2474 2475 2476 2477
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2478 2479 2480
		break;
	}

2481
	ret = i915_find_fence_reg(dev, interruptible);
2482 2483
	if (ret < 0)
		return ret;
2484

2485 2486
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2487
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2488

2489 2490
	reg->obj = obj;

2491 2492
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2493
		sandybridge_write_fence_reg(reg);
2494 2495 2496
		break;
	case 5:
	case 4:
2497
		i965_write_fence_reg(reg);
2498 2499
		break;
	case 3:
2500
		i915_write_fence_reg(reg);
2501 2502
		break;
	case 2:
2503
		i830_write_fence_reg(reg);
2504 2505
		break;
	}
2506

2507 2508
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2509

2510
	return 0;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2524
	drm_i915_private_t *dev_priv = dev->dev_private;
2525
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2526 2527
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2528
	uint32_t fence_reg;
2529

2530 2531
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2532 2533
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2534 2535 2536
		break;
	case 5:
	case 4:
2537
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2538 2539
		break;
	case 3:
2540
		if (obj_priv->fence_reg >= 8)
2541
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2542
		else
2543 2544
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2545 2546

		I915_WRITE(fence_reg, 0);
2547
		break;
2548
	}
2549

2550
	reg->obj = NULL;
2551
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2552
	list_del_init(&reg->lru_list);
2553 2554
}

2555 2556 2557 2558
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2559
 * @bool: whether the wait upon the fence is interruptible
2560 2561 2562 2563 2564
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2565 2566
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2567 2568
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2569
	struct drm_i915_private *dev_priv = dev->dev_private;
2570
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2571
	struct drm_i915_fence_reg *reg;
2572 2573 2574 2575

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2576 2577 2578 2579 2580 2581
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2582 2583 2584 2585
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2586 2587
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2588 2589
		int ret;

2590
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2591 2592 2593
		if (ret)
			return ret;

2594
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2595
		if (ret)
2596
			return ret;
C
Chris Wilson 已提交
2597 2598

		reg->gpu = false;
2599 2600
	}

2601
	i915_gem_object_flush_gtt_write_domain(obj);
2602
	i915_gem_clear_fence_reg(obj);
2603 2604 2605 2606

	return 0;
}

2607 2608 2609 2610 2611 2612 2613 2614
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2615
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2616
	struct drm_mm_node *free_space;
2617
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2618
	int ret;
2619

C
Chris Wilson 已提交
2620
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2621 2622 2623 2624
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2625
	if (alignment == 0)
2626
		alignment = i915_gem_get_gtt_alignment(obj);
2627
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2628 2629 2630 2631
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2632 2633 2634
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2635
	if (obj->size > dev_priv->mm.gtt_total) {
2636 2637 2638 2639
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2640 2641 2642
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
2643
	if (free_space != NULL)
2644 2645 2646 2647 2648 2649
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2650
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2651
		if (ret)
2652
			return ret;
2653

2654 2655 2656
		goto search_free;
	}

2657
	ret = i915_gem_object_get_pages(obj, gfpmask);
2658 2659 2660
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2661 2662 2663

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2664 2665
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2666 2667
			if (ret) {
				/* now try to shrink everyone else */
2668 2669 2670
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2671 2672 2673 2674 2675 2676 2677 2678
				}

				return ret;
			}

			goto search_free;
		}

2679 2680 2681 2682 2683 2684 2685
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2686
					       obj_priv->pages,
2687
					       obj->size >> PAGE_SHIFT,
2688
					       obj_priv->gtt_space->start,
2689
					       obj_priv->agp_type);
2690
	if (obj_priv->agp_mem == NULL) {
2691
		i915_gem_object_put_pages(obj);
2692 2693
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2694

2695
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2696
		if (ret)
2697 2698 2699
			return ret;

		goto search_free;
2700 2701
	}

2702 2703
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2704
	i915_gem_info_add_gtt(dev_priv, obj->size);
2705

2706 2707 2708 2709
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2710 2711
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2712

2713
	obj_priv->gtt_offset = obj_priv->gtt_space->start;
C
Chris Wilson 已提交
2714 2715
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2716 2717 2718 2719 2720 2721
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2722
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2723 2724 2725 2726 2727

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2728
	if (obj_priv->pages == NULL)
2729 2730
		return;

C
Chris Wilson 已提交
2731
	trace_i915_gem_object_clflush(obj);
2732

2733
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2734 2735
}

2736
/** Flushes any GPU write domain for the object if it's dirty. */
2737
static int
2738 2739
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2740 2741
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2742
	uint32_t old_write_domain;
2743 2744

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2745
		return 0;
2746 2747

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2748
	old_write_domain = obj->write_domain;
2749
	i915_gem_flush_ring(dev, NULL,
2750 2751
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2752
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2753 2754 2755 2756

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2757 2758 2759 2760

	if (pipelined)
		return 0;

2761
	return i915_gem_object_wait_rendering(obj, true);
2762 2763 2764 2765 2766 2767
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2768 2769
	uint32_t old_write_domain;

2770 2771 2772 2773 2774 2775 2776
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2777
	old_write_domain = obj->write_domain;
2778
	obj->write_domain = 0;
C
Chris Wilson 已提交
2779 2780 2781 2782

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2783 2784 2785 2786 2787 2788 2789
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2790
	uint32_t old_write_domain;
2791 2792 2793 2794 2795 2796

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2797
	old_write_domain = obj->write_domain;
2798
	obj->write_domain = 0;
C
Chris Wilson 已提交
2799 2800 2801 2802

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2803 2804
}

2805 2806 2807 2808 2809 2810
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2811
int
2812 2813
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2814
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2815
	uint32_t old_write_domain, old_read_domains;
2816
	int ret;
2817

2818 2819 2820 2821
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2822
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2823 2824 2825
	if (ret != 0)
		return ret;

2826
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2827

2828
	if (write) {
2829
		ret = i915_gem_object_wait_rendering(obj, true);
2830 2831 2832
		if (ret)
			return ret;
	}
2833

2834 2835
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2836

2837 2838 2839 2840 2841 2842
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2843
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2844 2845
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2846 2847
	}

C
Chris Wilson 已提交
2848 2849 2850 2851
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2852 2853 2854
	return 0;
}

2855 2856 2857 2858 2859
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2860 2861
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2862
{
2863
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2864
	uint32_t old_read_domains;
2865 2866 2867 2868 2869 2870
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2871
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2872
	if (ret)
2873
		return ret;
2874

2875 2876 2877 2878 2879 2880 2881
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2882 2883
	i915_gem_object_flush_cpu_write_domain(obj);

2884
	old_read_domains = obj->read_domains;
2885
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2886 2887 2888

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2889
					    obj->write_domain);
2890 2891 2892 2893

	return 0;
}

2894 2895 2896 2897 2898 2899 2900 2901 2902
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2903
	uint32_t old_write_domain, old_read_domains;
2904 2905
	int ret;

2906
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2907 2908
	if (ret != 0)
		return ret;
2909

2910
	i915_gem_object_flush_gtt_write_domain(obj);
2911

2912 2913
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2914
	 */
2915
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2916

2917
	if (write) {
2918
		ret = i915_gem_object_wait_rendering(obj, true);
2919 2920 2921 2922
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2923 2924 2925
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2926 2927
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2928 2929
		i915_gem_clflush_object(obj);

2930
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2931 2932 2933 2934 2935
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2936 2937 2938 2939 2940 2941
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2942
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2943 2944
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2945

C
Chris Wilson 已提交
2946 2947 2948 2949
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2950 2951 2952
	return 0;
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3064
static void
3065
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3066 3067
{
	struct drm_device		*dev = obj->dev;
3068
	struct drm_i915_private		*dev_priv = dev->dev_private;
3069
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3070 3071
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3072
	uint32_t			old_read_domains;
3073

3074 3075
	intel_mark_busy(dev, obj);

3076 3077 3078 3079
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3080 3081
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3082 3083 3084 3085 3086 3087 3088 3089 3090
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3091 3092
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3093
		flush_domains |= obj->write_domain;
3094 3095
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3096 3097 3098 3099 3100
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3101
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3102
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3103 3104
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3105 3106
	old_read_domains = obj->read_domains;

3107 3108 3109 3110 3111 3112 3113 3114
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3115
	obj->read_domains = obj->pending_read_domains;
3116 3117 3118

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3119 3120
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3121 3122 3123 3124

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3125 3126 3127
}

/**
3128
 * Moves the object from a partially CPU read to a full one.
3129
 *
3130 3131
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3132
 */
3133 3134
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3135
{
3136
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3137

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3149
			drm_clflush_pages(obj_priv->pages + i, 1);
3150 3151 3152 3153 3154 3155
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3156
	kfree(obj_priv->page_cpu_valid);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3176
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3177
	uint32_t old_read_domains;
3178
	int i, ret;
3179

3180 3181
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3182

3183
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3184
	if (ret != 0)
3185
		return ret;
3186 3187 3188 3189 3190 3191
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3192

3193 3194 3195
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3196
	if (obj_priv->page_cpu_valid == NULL) {
3197 3198
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3199 3200 3201 3202
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3203 3204 3205 3206

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3207 3208
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3209 3210 3211
		if (obj_priv->page_cpu_valid[i])
			continue;

3212
		drm_clflush_pages(obj_priv->pages + i, 1);
3213 3214 3215 3216

		obj_priv->page_cpu_valid[i] = 1;
	}

3217 3218 3219 3220 3221
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3222
	old_read_domains = obj->read_domains;
3223 3224
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3225 3226 3227 3228
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3229 3230 3231 3232 3233 3234 3235
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3236 3237 3238
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3239
{
3240
	struct drm_device *dev = obj->base.dev;
3241
	drm_i915_private_t *dev_priv = dev->dev_private;
3242
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3243 3244 3245
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
C
Chris Wilson 已提交
3246

3247
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3248
	for (i = 0; i < entry->relocation_count; i++) {
3249
		struct drm_i915_gem_relocation_entry reloc;
3250 3251 3252 3253 3254 3255 3256
		uint32_t target_offset;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
3257 3258
		}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);

			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3270
		}
3271
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3272

3273 3274 3275 3276 3277 3278
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3279 3280 3281 3282
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3283
			 (int) target_offset,
3284 3285
			 (int) reloc.presumed_offset,
			 reloc.delta);
3286 3287
#endif

3288 3289 3290
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3291
		if (target_offset == 0) {
3292
			DRM_ERROR("No GTT space found for object %d\n",
3293
				  reloc.target_handle);
3294 3295
			ret = -EINVAL;
			break;
3296 3297
		}

3298
		/* Validate that the target is in a valid r/w GPU domain */
3299
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3300 3301 3302
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3303 3304 3305 3306
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3307 3308
			ret = -EINVAL;
			break;
3309
		}
3310 3311
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3312 3313 3314
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3315 3316 3317 3318
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3319 3320
			ret = -EINVAL;
			break;
3321
		}
3322 3323
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3324 3325 3326
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3327 3328 3329
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3330
				  target_obj->pending_write_domain);
3331 3332
			ret = -EINVAL;
			break;
3333 3334
		}

3335
		target_obj->pending_read_domains |= reloc.read_domains;
3336
		target_obj->pending_write_domain = reloc.write_domain;
3337 3338 3339 3340

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3341
		if (target_offset == reloc.presumed_offset)
3342 3343
			continue;

3344
		/* Check that the relocation address is valid... */
3345
		if (reloc.offset > obj->base.size - 4) {
3346 3347
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3348
				  obj, reloc.target_handle,
3349 3350 3351
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3352
		}
3353
		if (reloc.offset & 3) {
3354 3355
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3356 3357
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3358 3359
			ret = -EINVAL;
			break;
3360 3361 3362
		}

		/* and points to somewhere within the target object. */
3363
		if (reloc.delta >= target_obj->size) {
3364 3365
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3366 3367
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3368 3369
			ret = -EINVAL;
			break;
3370 3371
		}

3372 3373
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3374 3375
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3376

3377
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3378 3379 3380 3381 3382 3383
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
			kunmap_atomic(vaddr, KM_USER0);
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;

3384 3385 3386
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3387 3388

			/* Map the page containing the relocation we're going to perform.  */
3389
			reloc.offset += obj->gtt_offset;
3390 3391 3392 3393 3394 3395 3396 3397
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
							      reloc.offset & PAGE_MASK,
							      KM_USER0);
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
			io_mapping_unmap_atomic(reloc_page, KM_USER0);
		}
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	}

	drm_gem_object_unreference(target_obj);
	return ret;
}

static int
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;

	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
			struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			/* Check fence reg constraints and rebind if necessary */
			if (need_fence &&
			    !i915_gem_object_fence_offset_ok(&obj->base,
							     obj->tiling_mode)) {
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}

			ret = i915_gem_object_pin(&obj->base, entry->alignment);
			if (ret)
				break;

			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}

				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}

			entry->offset = obj->gtt_offset;
		}

		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3459

3460 3461 3462 3463 3464 3465
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3466 3467 3468 3469 3470 3471 3472 3473
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3474 3475 3476 3477
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3478 3479 3480 3481
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3482
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3483
{
3484 3485
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3486
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3487 3488 3489 3490
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3491

3492
	spin_lock(&file_priv->mm.lock);
3493
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3494 3495 3496
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3497 3498
		ring = request->ring;
		seqno = request->seqno;
3499
	}
3500
	spin_unlock(&file_priv->mm.lock);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3524

3525 3526 3527
	return ret;
}

3528
static int
3529 3530
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3531
{
3532
	uint32_t exec_start, exec_len;
3533

3534 3535
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3536

3537 3538
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3539

3540 3541
	if (!exec_start)
		return -EINVAL;
3542

3543
	return 0;
3544 3545 3546
}

static int
3547 3548
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3549
{
3550
	int i;
3551

3552 3553 3554
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3555

3556 3557
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3558

3559 3560
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3561 3562
	}

3563 3564 3565
	return 0;
}

C
Chris Wilson 已提交
3566
static int
J
Jesse Barnes 已提交
3567
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3568
		       struct drm_file *file,
J
Jesse Barnes 已提交
3569 3570
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3571 3572 3573 3574
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3575
	struct drm_i915_gem_object *obj_priv;
3576
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3577
	struct drm_i915_gem_request *request = NULL;
3578
	int ret, i, flips;
3579 3580
	uint64_t exec_offset;

3581 3582
	struct intel_ring_buffer *ring = NULL;

3583 3584 3585 3586
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3587 3588 3589 3590
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3591 3592 3593 3594
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3605 3606 3607 3608
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3609
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3610 3611
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3612 3613 3614 3615 3616
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3617
	if (args->num_cliprects != 0) {
3618 3619
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3620 3621
		if (cliprects == NULL) {
			ret = -ENOMEM;
3622
			goto pre_mutex_err;
3623
		}
3624 3625 3626 3627 3628 3629 3630 3631

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3632
			ret = -EFAULT;
3633 3634 3635 3636
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3637 3638 3639 3640 3641 3642
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3643 3644 3645
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3646 3647 3648

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3649 3650
		ret = -EBUSY;
		goto pre_mutex_err;
3651 3652
	}

3653
	/* Look up object handles */
3654
	for (i = 0; i < args->buffer_count; i++) {
3655
		object_list[i] = drm_gem_object_lookup(dev, file,
3656 3657 3658 3659
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3660 3661
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3662
			ret = -ENOENT;
3663 3664
			goto err;
		}
3665

3666
		obj_priv = to_intel_bo(object_list[i]);
3667 3668 3669
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3670 3671
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3672
			ret = -EINVAL;
3673 3674 3675
			goto err;
		}
		obj_priv->in_execbuffer = true;
3676
	}
3677

3678 3679 3680 3681 3682 3683
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3684

3685 3686 3687 3688 3689 3690 3691
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3692
			goto err;
3693 3694 3695 3696
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3697 3698 3699 3700 3701 3702
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3703

3704 3705 3706
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3707 3708 3709 3710 3711
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3712 3713 3714 3715 3716 3717
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3718
	dev_priv->mm.flush_rings = 0;
3719

3720 3721 3722
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3723
		/* Compute new gpu domains and update invalidate/flush */
3724
		i915_gem_object_set_to_gpu_domain(obj);
3725 3726
	}

3727 3728 3729 3730 3731 3732 3733
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3734
		i915_gem_flush(dev, file,
3735
			       dev->invalidate_domains,
3736 3737
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3738 3739
	}

3740 3741
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3742
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3743
		uint32_t old_write_domain = obj->write_domain;
3744 3745

		obj->write_domain = obj->pending_write_domain;
3746 3747 3748 3749
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3750 3751 3752
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3753 3754
	}

3755 3756 3757 3758 3759 3760 3761 3762
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3763
	i915_gem_dump_object(batch_obj,
3764 3765 3766 3767 3768
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3798
	/* Exec the batchbuffer */
3799
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3800
					    cliprects, exec_offset);
3801 3802 3803 3804 3805 3806 3807 3808 3809
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3810
	i915_retire_commands(dev, ring);
3811

3812 3813 3814 3815 3816 3817
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3818

3819
	i915_add_request(dev, file, request, ring);
C
Chris Wilson 已提交
3820
	request = NULL;
3821 3822

err:
3823 3824
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3825
			obj_priv = to_intel_bo(object_list[i]);
3826 3827
			obj_priv->in_execbuffer = false;
		}
3828
		drm_gem_object_unreference(object_list[i]);
3829
	}
3830 3831 3832

	mutex_unlock(&dev->struct_mutex);

3833
pre_mutex_err:
3834
	drm_free_large(object_list);
3835
	kfree(cliprects);
C
Chris Wilson 已提交
3836
	kfree(request);
3837 3838 3839 3840

	return ret;
}

J
Jesse Barnes 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3893
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3907
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

3986 3987 3988 3989
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
3990
	struct drm_i915_private *dev_priv = dev->dev_private;
3991
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3992 3993
	int ret;

3994
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3995
	WARN_ON(i915_verify_lists(dev));
3996 3997 3998 3999 4000

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4001 4002 4003 4004
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4005 4006 4007 4008 4009 4010
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4011 4012
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4013
		if (ret)
4014
			return ret;
4015
	}
J
Jesse Barnes 已提交
4016

4017 4018 4019 4020 4021 4022
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4023
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4024 4025 4026
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4027 4028
	}

4029
	WARN_ON(i915_verify_lists(dev));
4030 4031 4032 4033 4034 4035 4036 4037
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4038
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4039

4040
	WARN_ON(i915_verify_lists(dev));
4041 4042 4043 4044 4045 4046 4047 4048 4049
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4050
		if (!obj_priv->active)
4051 4052
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4053
		i915_gem_info_remove_pin(dev_priv, obj->size);
4054
	}
4055
	WARN_ON(i915_verify_lists(dev));
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4067 4068 4069 4070
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4071 4072
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4073 4074
		ret = -ENOENT;
		goto unlock;
4075
	}
4076
	obj_priv = to_intel_bo(obj);
4077

C
Chris Wilson 已提交
4078 4079
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4080 4081
		ret = -EINVAL;
		goto out;
4082 4083
	}

J
Jesse Barnes 已提交
4084 4085 4086
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4087 4088
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4089 4090 4091 4092 4093 4094
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
4095 4096
		if (ret)
			goto out;
4097 4098 4099 4100 4101
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4102
	i915_gem_object_flush_cpu_write_domain(obj);
4103
	args->offset = obj_priv->gtt_offset;
4104
out:
4105
	drm_gem_object_unreference(obj);
4106
unlock:
4107
	mutex_unlock(&dev->struct_mutex);
4108
	return ret;
4109 4110 4111 4112 4113 4114 4115 4116
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4117
	struct drm_i915_gem_object *obj_priv;
4118
	int ret;
4119

4120 4121 4122 4123
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4124 4125
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4126 4127
		ret = -ENOENT;
		goto unlock;
4128
	}
4129
	obj_priv = to_intel_bo(obj);
4130

J
Jesse Barnes 已提交
4131 4132 4133
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4134 4135
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4136 4137 4138 4139 4140 4141
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4142

4143
out:
4144
	drm_gem_object_unreference(obj);
4145
unlock:
4146
	mutex_unlock(&dev->struct_mutex);
4147
	return ret;
4148 4149 4150 4151 4152 4153 4154 4155 4156
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4157 4158
	int ret;

4159
	ret = i915_mutex_lock_interruptible(dev);
4160
	if (ret)
4161
		return ret;
4162 4163 4164 4165 4166

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
4167
	}
4168
	obj_priv = to_intel_bo(obj);
4169

4170 4171 4172 4173
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4174
	 */
4175 4176 4177 4178 4179 4180 4181
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4182 4183
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4184 4185
					    obj_priv->ring,
					    0, obj->write_domain);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4196 4197

	drm_gem_object_unreference(obj);
4198
unlock:
4199
	mutex_unlock(&dev->struct_mutex);
4200
	return ret;
4201 4202 4203 4204 4205 4206 4207 4208 4209
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4210 4211 4212 4213 4214 4215 4216
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4217
	int ret;
4218 4219 4220 4221 4222 4223 4224 4225 4226

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4227 4228 4229 4230
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4231 4232
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4233 4234
		ret = -ENOENT;
		goto unlock;
4235
	}
4236
	obj_priv = to_intel_bo(obj);
4237 4238

	if (obj_priv->pin_count) {
4239 4240
		ret = -EINVAL;
		goto out;
4241 4242
	}

C
Chris Wilson 已提交
4243 4244
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4245

4246 4247 4248 4249 4250
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4251 4252
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4253
out:
4254
	drm_gem_object_unreference(obj);
4255
unlock:
4256
	mutex_unlock(&dev->struct_mutex);
4257
	return ret;
4258 4259
}

4260 4261 4262
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4263
	struct drm_i915_private *dev_priv = dev->dev_private;
4264
	struct drm_i915_gem_object *obj;
4265

4266 4267 4268
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4269

4270 4271 4272 4273
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4274

4275 4276
	i915_gem_info_add_obj(dev_priv, size);

4277 4278
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4279

4280
	obj->agp_type = AGP_USER_MEMORY;
4281
	obj->base.driver_private = NULL;
4282 4283 4284 4285
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4286

4287 4288 4289 4290 4291 4292
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4293

4294 4295 4296
	return 0;
}

4297
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4298
{
4299
	struct drm_device *dev = obj->dev;
4300
	drm_i915_private_t *dev_priv = dev->dev_private;
4301
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4302
	int ret;
4303

4304 4305 4306 4307 4308 4309
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4310

4311 4312
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4313

4314
	drm_gem_object_release(obj);
4315
	i915_gem_info_remove_obj(dev_priv, obj->size);
4316

4317
	kfree(obj_priv->page_cpu_valid);
4318
	kfree(obj_priv->bit_17);
4319
	kfree(obj_priv);
4320 4321
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4338 4339 4340 4341 4342
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4343

4344
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4345

4346
	if (dev_priv->mm.suspended) {
4347 4348
		mutex_unlock(&dev->struct_mutex);
		return 0;
4349 4350
	}

4351
	ret = i915_gpu_idle(dev);
4352 4353
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4354
		return ret;
4355
	}
4356

4357 4358
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4359
		ret = i915_gem_evict_inactive(dev);
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4371
	del_timer_sync(&dev_priv->hangcheck_timer);
4372 4373

	i915_kernel_lost_context(dev);
4374
	i915_gem_cleanup_ringbuffer(dev);
4375

4376 4377
	mutex_unlock(&dev->struct_mutex);

4378 4379 4380
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4381 4382 4383
	return 0;
}

4384 4385 4386 4387
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4388
static int
4389 4390 4391 4392 4393 4394 4395
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4396
	obj = i915_gem_alloc_object(dev, 4096);
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4427 4428

static void
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4443 4444
}

4445 4446 4447 4448 4449
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4450

4451 4452 4453 4454 4455
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4456

4457
	ret = intel_init_render_ring_buffer(dev);
4458 4459 4460 4461
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4462
		ret = intel_init_bsd_ring_buffer(dev);
4463 4464
		if (ret)
			goto cleanup_render_ring;
4465
	}
4466

4467 4468
	dev_priv->next_seqno = 1;

4469 4470 4471 4472 4473 4474 4475
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4476 4477 4478 4479 4480 4481 4482 4483 4484
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4485
	intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4486 4487 4488 4489
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4490 4491 4492 4493 4494 4495 4496
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4497 4498 4499
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4500
	if (atomic_read(&dev_priv->mm.wedged)) {
4501
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4502
		atomic_set(&dev_priv->mm.wedged, 0);
4503 4504 4505
	}

	mutex_lock(&dev->struct_mutex);
4506 4507 4508
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4509 4510
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4511
		return ret;
4512
	}
4513

4514
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4515
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4516 4517
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4518
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4519
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4520
	mutex_unlock(&dev->struct_mutex);
4521

4522 4523 4524
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4525

4526
	return 0;
4527 4528 4529 4530 4531 4532 4533 4534

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4535 4536 4537 4538 4539 4540
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4541 4542 4543
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4544
	drm_irq_uninstall(dev);
4545
	return i915_gem_idle(dev);
4546 4547 4548 4549 4550 4551 4552
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4553 4554 4555
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4556 4557 4558
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4559 4560 4561 4562 4563
}

void
i915_gem_load(struct drm_device *dev)
{
4564
	int i;
4565 4566 4567
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4568
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4569
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4570
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4571
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4572
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4573 4574
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4575 4576
	INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4577 4578
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4579 4580
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4581
	init_completion(&dev_priv->error_completion);
4582 4583 4584 4585
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4596
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4597 4598
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4599

4600
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4601 4602 4603 4604
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4605
	/* Initialize fence registers to zero */
4606 4607 4608 4609 4610 4611 4612
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4613 4614
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4615 4616
		break;
	case 3:
4617 4618 4619
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4620 4621 4622 4623
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4624
	}
4625
	i915_gem_detect_bit_6_swizzle(dev);
4626
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4627
}
4628 4629 4630 4631 4632

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4633 4634
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4635 4636 4637 4638 4639 4640 4641 4642
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4643
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4644 4645 4646 4647 4648
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4649
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4662
	kfree(phys_obj);
4663 4664 4665
	return ret;
}

4666
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4691
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4703
	obj_priv = to_intel_bo(obj);
4704 4705 4706
	if (!obj_priv->phys_obj)
		return;

4707
	ret = i915_gem_object_get_pages(obj, 0);
4708 4709 4710 4711 4712 4713
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4714
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4715 4716 4717 4718 4719
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4720
	drm_clflush_pages(obj_priv->pages, page_count);
4721
	drm_agp_chipset_flush(dev);
4722 4723

	i915_gem_object_put_pages(obj);
4724 4725 4726 4727 4728 4729 4730
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4731 4732 4733
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4744
	obj_priv = to_intel_bo(obj);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4755
						obj->size, align);
4756
		if (ret) {
4757
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4758 4759 4760 4761 4762 4763 4764 4765
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4766
	ret = i915_gem_object_get_pages(obj, 0);
4767 4768 4769 4770 4771 4772 4773 4774
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4775
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4776 4777 4778 4779 4780 4781
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4782 4783
	i915_gem_object_put_pages(obj);

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4794
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4795 4796 4797 4798 4799 4800 4801
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4802
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4803 4804 4805 4806 4807 4808 4809
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4810

4811
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4812
{
4813
	struct drm_i915_file_private *file_priv = file->driver_priv;
4814 4815 4816 4817 4818

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4819
	spin_lock(&file_priv->mm.lock);
4820 4821 4822 4823 4824 4825 4826 4827 4828
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4829
	spin_unlock(&file_priv->mm.lock);
4830
}
4831

4832 4833 4834 4835 4836 4837 4838
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4839 4840
		      list_empty(&dev_priv->render_ring.active_list) &&
		      list_empty(&dev_priv->bsd_ring.active_list);
4841 4842 4843 4844

	return !lists_empty;
}

4845
static int
4846
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4874
rescan:
4875 4876 4877 4878 4879 4880 4881 4882 4883
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4884
		i915_gem_retire_requests(dev);
4885 4886 4887 4888 4889

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4890
				i915_gem_object_unbind(&obj_priv->base);
4891 4892 4893 4894 4895 4896 4897 4898
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4899 4900
		would_deadlock = 0;

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4919
				i915_gem_object_unbind(&obj_priv->base);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}