i915_gem.c 102.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48
				struct drm_file *file);
49

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57
				    struct shrink_control *sc);
58
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59

60 61 62 63 64 65 66 67
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
68
	obj->fence_dirty = false;
69 70 71
	obj->fence_reg = I915_FENCE_REG_NONE;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

87 88
static int
i915_gem_wait_for_error(struct drm_device *dev)
89 90 91 92 93 94 95 96 97
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

98 99 100 101 102 103 104 105 106 107
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
108
		return ret;
109
	}
110

111 112 113 114 115 116 117 118 119 120 121
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125 126 127
{
	int ret;

128
	ret = i915_gem_wait_for_error(dev);
129 130 131 132 133 134 135
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

136
	WARN_ON(i915_verify_lists(dev));
137 138
	return 0;
}
139

140
static inline bool
141
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
142
{
143
	return !obj->active;
144 145
}

J
Jesse Barnes 已提交
146 147
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
148
		    struct drm_file *file)
J
Jesse Barnes 已提交
149 150
{
	struct drm_i915_gem_init *args = data;
151

152 153 154
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

155 156 157
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
158

159 160 161 162
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
163
	mutex_lock(&dev->struct_mutex);
164 165
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
166 167
	mutex_unlock(&dev->struct_mutex);

168
	return 0;
169 170
}

171 172
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173
			    struct drm_file *file)
174
{
175
	struct drm_i915_private *dev_priv = dev->dev_private;
176
	struct drm_i915_gem_get_aperture *args = data;
177 178
	struct drm_i915_gem_object *obj;
	size_t pinned;
179

180
	pinned = 0;
181
	mutex_lock(&dev->struct_mutex);
182 183 184
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
185
	mutex_unlock(&dev->struct_mutex);
186

187
	args->aper_size = dev_priv->mm.gtt_total;
188
	args->aper_available_size = args->aper_size - pinned;
189

190 191 192
	return 0;
}

193 194 195 196 197
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
198
{
199
	struct drm_i915_gem_object *obj;
200 201
	int ret;
	u32 handle;
202

203
	size = roundup(size, PAGE_SIZE);
204 205
	if (size == 0)
		return -EINVAL;
206 207

	/* Allocate the new object */
208
	obj = i915_gem_alloc_object(dev, size);
209 210 211
	if (obj == NULL)
		return -ENOMEM;

212
	ret = drm_gem_handle_create(file, &obj->base, &handle);
213
	if (ret) {
214 215
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
216
		kfree(obj);
217
		return ret;
218
	}
219

220
	/* drop reference from allocate - handle holds it now */
221
	drm_gem_object_unreference(&obj->base);
222 223
	trace_i915_gem_object_create(obj);

224
	*handle_p = handle;
225 226 227
	return 0;
}

228 229 230 231 232 233
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
234
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
255

256 257 258 259
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

260
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
261
{
262
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
263 264

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
265
		obj->tiling_mode != I915_TILING_NONE;
266 267
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

294
static inline int
295 296
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

320 321 322
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
323
static int
324 325 326 327 328 329 330
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

331
	if (unlikely(page_do_bit17_swizzling))
332 333 334 335 336 337 338 339 340 341 342 343 344 345
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

346 347 348 349
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
350
	if (unlikely(swizzled)) {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

368 369 370 371 372 373 374 375 376 377 378 379
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
380 381 382
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
383 384 385 386 387 388 389 390 391 392 393 394 395 396

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

397
static int
398 399 400 401
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
402
{
403
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
404
	char __user *user_data;
405
	ssize_t remain;
406
	loff_t offset;
407
	int shmem_page_offset, page_length, ret = 0;
408
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409
	int hit_slowpath = 0;
410
	int prefaulted = 0;
411
	int needs_clflush = 0;
412
	int release_page;
413

414
	user_data = (char __user *) (uintptr_t) args->data_ptr;
415 416
	remain = args->size;

417
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
418

419 420 421 422 423 424 425 426 427 428 429
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
430

431
	offset = args->offset;
432 433

	while (remain > 0) {
434 435
		struct page *page;

436 437 438 439 440
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
441
		shmem_page_offset = offset_in_page(offset);
442 443 444 445
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

446 447 448 449 450 451 452 453 454 455
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
456
		}
457

458 459 460
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

461 462 463 464 465
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
466 467

		hit_slowpath = 1;
468
		page_cache_get(page);
469 470
		mutex_unlock(&dev->struct_mutex);

471
		if (!prefaulted) {
472
			ret = fault_in_multipages_writeable(user_data, remain);
473 474 475 476 477 478 479
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
480

481 482 483
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
484

485
		mutex_lock(&dev->struct_mutex);
486
		page_cache_release(page);
487
next_page:
488
		mark_page_accessed(page);
489 490
		if (release_page)
			page_cache_release(page);
491

492 493 494 495 496
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

497
		remain -= page_length;
498
		user_data += page_length;
499 500 501
		offset += page_length;
	}

502
out:
503 504 505 506 507
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
508 509 510 511

	return ret;
}

512 513 514 515 516 517 518
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519
		     struct drm_file *file)
520 521
{
	struct drm_i915_gem_pread *args = data;
522
	struct drm_i915_gem_object *obj;
523
	int ret = 0;
524

525 526 527 528 529 530 531 532
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

533
	ret = i915_mutex_lock_interruptible(dev);
534
	if (ret)
535
		return ret;
536

537
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538
	if (&obj->base == NULL) {
539 540
		ret = -ENOENT;
		goto unlock;
541
	}
542

543
	/* Bounds check source.  */
544 545
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
546
		ret = -EINVAL;
547
		goto out;
C
Chris Wilson 已提交
548 549
	}

550 551 552 553 554 555 556 557
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
558 559
	trace_i915_gem_object_pread(obj, args->offset, args->size);

560
	ret = i915_gem_shmem_pread(dev, obj, args, file);
561

562
out:
563
	drm_gem_object_unreference(&obj->base);
564
unlock:
565
	mutex_unlock(&dev->struct_mutex);
566
	return ret;
567 568
}

569 570
/* This is the fast write path which cannot handle
 * page faults in the source data
571
 */
572 573 574 575 576 577

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
578
{
579 580
	void __iomem *vaddr_atomic;
	void *vaddr;
581
	unsigned long unwritten;
582

P
Peter Zijlstra 已提交
583
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 585 586
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
587
						      user_data, length);
P
Peter Zijlstra 已提交
588
	io_mapping_unmap_atomic(vaddr_atomic);
589
	return unwritten;
590 591
}

592 593 594 595
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
596
static int
597 598
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
599
			 struct drm_i915_gem_pwrite *args,
600
			 struct drm_file *file)
601
{
602
	drm_i915_private_t *dev_priv = dev->dev_private;
603
	ssize_t remain;
604
	loff_t offset, page_base;
605
	char __user *user_data;
D
Daniel Vetter 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
619 620 621 622

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

623
	offset = obj->gtt_offset + args->offset;
624 625 626 627

	while (remain > 0) {
		/* Operation in this page
		 *
628 629 630
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
631
		 */
632 633
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
634 635 636 637 638
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
639 640
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
641
		 */
642
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
643 644 645 646
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
647

648 649 650
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
651 652
	}

D
Daniel Vetter 已提交
653 654 655
out_unpin:
	i915_gem_object_unpin(obj);
out:
656
	return ret;
657 658
}

659 660 661 662
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
663
static int
664 665 666 667 668
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
669
{
670
	char *vaddr;
671
	int ret;
672

673
	if (unlikely(page_do_bit17_swizzling))
674
		return -EINVAL;
675

676 677 678 679 680 681 682 683 684 685 686
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
687 688 689 690

	return ret;
}

691 692
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
693
static int
694 695 696 697 698
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
699
{
700 701
	char *vaddr;
	int ret;
702

703
	vaddr = kmap(page);
704
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 706 707
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
708 709
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 711
						user_data,
						page_length);
712 713 714 715 716
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
717 718 719
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
720
	kunmap(page);
721

722
	return ret;
723 724 725
}

static int
726 727 728 729
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
730
{
731
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
732
	ssize_t remain;
733 734
	loff_t offset;
	char __user *user_data;
735
	int shmem_page_offset, page_length, ret = 0;
736
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
737
	int hit_slowpath = 0;
738 739
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
740
	int release_page;
741

742
	user_data = (char __user *) (uintptr_t) args->data_ptr;
743 744
	remain = args->size;

745
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

764
	offset = args->offset;
765
	obj->dirty = 1;
766

767
	while (remain > 0) {
768
		struct page *page;
769
		int partial_cacheline_write;
770

771 772 773 774 775
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
776
		shmem_page_offset = offset_in_page(offset);
777 778 779 780 781

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

782 783 784 785 786 787 788
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

789 790 791 792 793 794 795 796 797 798
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
799 800
		}

801 802 803
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

804 805 806 807 808 809
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
810 811

		hit_slowpath = 1;
812
		page_cache_get(page);
813 814
		mutex_unlock(&dev->struct_mutex);

815 816 817 818
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
819

820
		mutex_lock(&dev->struct_mutex);
821
		page_cache_release(page);
822
next_page:
823 824
		set_page_dirty(page);
		mark_page_accessed(page);
825 826
		if (release_page)
			page_cache_release(page);
827

828 829 830 831 832
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

833
		remain -= page_length;
834
		user_data += page_length;
835
		offset += page_length;
836 837
	}

838
out:
839 840 841 842 843 844 845 846 847 848
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
849
	}
850

851 852 853
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

854
	return ret;
855 856 857 858 859 860 861 862 863
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
864
		      struct drm_file *file)
865 866
{
	struct drm_i915_gem_pwrite *args = data;
867
	struct drm_i915_gem_object *obj;
868 869 870 871 872 873 874 875 876 877
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

878 879
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
880 881
	if (ret)
		return -EFAULT;
882

883
	ret = i915_mutex_lock_interruptible(dev);
884
	if (ret)
885
		return ret;
886

887
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888
	if (&obj->base == NULL) {
889 890
		ret = -ENOENT;
		goto unlock;
891
	}
892

893
	/* Bounds check destination. */
894 895
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
896
		ret = -EINVAL;
897
		goto out;
C
Chris Wilson 已提交
898 899
	}

900 901 902 903 904 905 906 907
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
908 909
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
910
	ret = -EFAULT;
911 912 913 914 915 916
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
917
	if (obj->phys_obj) {
918
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
919 920 921 922
		goto out;
	}

	if (obj->gtt_space &&
923
	    obj->cache_level == I915_CACHE_NONE &&
924
	    obj->tiling_mode == I915_TILING_NONE &&
925
	    obj->map_and_fenceable &&
926
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
928 929 930
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
931
	}
932

933
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
934
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935

936
out:
937
	drm_gem_object_unreference(&obj->base);
938
unlock:
939
	mutex_unlock(&dev->struct_mutex);
940 941 942 943
	return ret;
}

/**
944 945
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
946 947 948
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
949
			  struct drm_file *file)
950 951
{
	struct drm_i915_gem_set_domain *args = data;
952
	struct drm_i915_gem_object *obj;
953 954
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
955 956
	int ret;

957
	/* Only handle setting domains to types used by the CPU. */
958
	if (write_domain & I915_GEM_GPU_DOMAINS)
959 960
		return -EINVAL;

961
	if (read_domains & I915_GEM_GPU_DOMAINS)
962 963 964 965 966 967 968 969
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

970
	ret = i915_mutex_lock_interruptible(dev);
971
	if (ret)
972
		return ret;
973

974
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
975
	if (&obj->base == NULL) {
976 977
		ret = -ENOENT;
		goto unlock;
978
	}
979

980 981
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
982 983 984 985 986 987 988

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
989
	} else {
990
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
991 992
	}

993
	drm_gem_object_unreference(&obj->base);
994
unlock:
995 996 997 998 999 1000 1001 1002 1003
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1004
			 struct drm_file *file)
1005 1006
{
	struct drm_i915_gem_sw_finish *args = data;
1007
	struct drm_i915_gem_object *obj;
1008 1009
	int ret = 0;

1010
	ret = i915_mutex_lock_interruptible(dev);
1011
	if (ret)
1012
		return ret;
1013

1014
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1015
	if (&obj->base == NULL) {
1016 1017
		ret = -ENOENT;
		goto unlock;
1018 1019 1020
	}

	/* Pinned buffers may be scanout, so flush the cache */
1021
	if (obj->pin_count)
1022 1023
		i915_gem_object_flush_cpu_write_domain(obj);

1024
	drm_gem_object_unreference(&obj->base);
1025
unlock:
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1039
		    struct drm_file *file)
1040 1041 1042 1043 1044
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1045
	obj = drm_gem_object_lookup(dev, file, args->handle);
1046
	if (obj == NULL)
1047
		return -ENOENT;
1048

1049 1050 1051 1052 1053 1054 1055 1056
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1057
	addr = vm_mmap(obj->filp, 0, args->size,
1058 1059
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1060
	drm_gem_object_unreference_unlocked(obj);
1061 1062 1063 1064 1065 1066 1067 1068
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1087 1088
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1089
	drm_i915_private_t *dev_priv = dev->dev_private;
1090 1091 1092
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1093
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1094 1095 1096 1097 1098

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1099 1100 1101
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1102

C
Chris Wilson 已提交
1103 1104
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1105
	/* Now bind it into the GTT if needed */
1106 1107 1108 1109
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1110
	}
1111
	if (!obj->gtt_space) {
1112
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1113 1114
		if (ret)
			goto unlock;
1115

1116 1117 1118 1119
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1120

1121 1122 1123
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1124
	ret = i915_gem_object_get_fence(obj);
1125 1126
	if (ret)
		goto unlock;
1127

1128 1129
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1130

1131 1132
	obj->fault_mappable = true;

1133
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1134 1135 1136 1137
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1138
unlock:
1139
	mutex_unlock(&dev->struct_mutex);
1140
out:
1141
	switch (ret) {
1142
	case -EIO:
1143 1144 1145 1146 1147
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1148
	case -EAGAIN:
1149 1150 1151 1152 1153 1154 1155
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1156
		set_need_resched();
1157 1158
	case 0:
	case -ERESTARTSYS:
1159
	case -EINTR:
1160
		return VM_FAULT_NOPAGE;
1161 1162 1163
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1164
		return VM_FAULT_SIGBUS;
1165 1166 1167
	}
}

1168 1169 1170 1171
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1172
 * Preserve the reservation of the mmapping with the DRM core code, but
1173 1174 1175 1176 1177 1178 1179 1180 1181
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1182
void
1183
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1184
{
1185 1186
	if (!obj->fault_mappable)
		return;
1187

1188 1189 1190 1191
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1192

1193
	obj->fault_mappable = false;
1194 1195
}

1196
static uint32_t
1197
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1198
{
1199
	uint32_t gtt_size;
1200 1201

	if (INTEL_INFO(dev)->gen >= 4 ||
1202 1203
	    tiling_mode == I915_TILING_NONE)
		return size;
1204 1205 1206

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1207
		gtt_size = 1024*1024;
1208
	else
1209
		gtt_size = 512*1024;
1210

1211 1212
	while (gtt_size < size)
		gtt_size <<= 1;
1213

1214
	return gtt_size;
1215 1216
}

1217 1218 1219 1220 1221
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1222
 * potential fence register mapping.
1223 1224
 */
static uint32_t
1225 1226 1227
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1228 1229 1230 1231 1232
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1233
	if (INTEL_INFO(dev)->gen >= 4 ||
1234
	    tiling_mode == I915_TILING_NONE)
1235 1236
		return 4096;

1237 1238 1239 1240
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1241
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1242 1243
}

1244 1245 1246
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1247 1248 1249
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1250 1251 1252 1253
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1254
uint32_t
1255 1256 1257
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1258 1259 1260 1261 1262
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1263
	    tiling_mode == I915_TILING_NONE)
1264 1265
		return 4096;

1266 1267 1268
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1269
	 */
1270
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1271 1272
}

1273
int
1274 1275 1276 1277
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1278
{
1279
	struct drm_i915_private *dev_priv = dev->dev_private;
1280
	struct drm_i915_gem_object *obj;
1281 1282
	int ret;

1283
	ret = i915_mutex_lock_interruptible(dev);
1284
	if (ret)
1285
		return ret;
1286

1287
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1288
	if (&obj->base == NULL) {
1289 1290 1291
		ret = -ENOENT;
		goto unlock;
	}
1292

1293
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1294
		ret = -E2BIG;
1295
		goto out;
1296 1297
	}

1298
	if (obj->madv != I915_MADV_WILLNEED) {
1299
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1300 1301
		ret = -EINVAL;
		goto out;
1302 1303
	}

1304
	if (!obj->base.map_list.map) {
1305
		ret = drm_gem_create_mmap_offset(&obj->base);
1306 1307
		if (ret)
			goto out;
1308 1309
	}

1310
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1311

1312
out:
1313
	drm_gem_object_unreference(&obj->base);
1314
unlock:
1315
	mutex_unlock(&dev->struct_mutex);
1316
	return ret;
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1343
int
1344
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1345 1346 1347 1348 1349 1350 1351
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1352 1353 1354
	if (obj->pages || obj->sg_table)
		return 0;

1355 1356 1357
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1358 1359 1360 1361
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1362 1363
		return -ENOMEM;

1364
	inode = obj->base.filp->f_path.dentry->d_inode;
1365
	mapping = inode->i_mapping;
1366 1367
	gfpmask |= mapping_gfp_mask(mapping);

1368
	for (i = 0; i < page_count; i++) {
1369
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1370 1371 1372
		if (IS_ERR(page))
			goto err_pages;

1373
		obj->pages[i] = page;
1374 1375
	}

1376
	if (i915_gem_object_needs_bit17_swizzle(obj))
1377 1378 1379 1380 1381 1382
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1383
		page_cache_release(obj->pages[i]);
1384

1385 1386
	drm_free_large(obj->pages);
	obj->pages = NULL;
1387 1388 1389
	return PTR_ERR(page);
}

1390
static void
1391
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1392
{
1393
	int page_count = obj->base.size / PAGE_SIZE;
1394 1395
	int i;

1396 1397 1398
	if (!obj->pages)
		return;

1399
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1400

1401
	if (i915_gem_object_needs_bit17_swizzle(obj))
1402 1403
		i915_gem_object_save_bit_17_swizzle(obj);

1404 1405
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1406 1407

	for (i = 0; i < page_count; i++) {
1408 1409
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1410

1411 1412
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1413

1414
		page_cache_release(obj->pages[i]);
1415
	}
1416
	obj->dirty = 0;
1417

1418 1419
	drm_free_large(obj->pages);
	obj->pages = NULL;
1420 1421
}

1422
void
1423
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1424 1425
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1426
{
1427
	struct drm_device *dev = obj->base.dev;
1428
	struct drm_i915_private *dev_priv = dev->dev_private;
1429

1430
	BUG_ON(ring == NULL);
1431
	obj->ring = ring;
1432 1433

	/* Add a reference if we're newly entering the active list. */
1434 1435 1436
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1437
	}
1438

1439
	/* Move from whatever list we were on to the tail of execution. */
1440 1441
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1442

1443
	obj->last_read_seqno = seqno;
1444

1445
	if (obj->fenced_gpu_access) {
1446 1447
		obj->last_fenced_seqno = seqno;

1448 1449 1450 1451 1452 1453 1454 1455
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1456 1457 1458 1459 1460 1461 1462 1463 1464
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1465
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1466

1467
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1468
	BUG_ON(!obj->active);
1469 1470

	list_del_init(&obj->ring_list);
1471 1472
	obj->ring = NULL;

1473 1474 1475 1476 1477
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1478 1479 1480 1481 1482 1483
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1484
}
1485

1486 1487
/* Immediately discard the backing storage */
static void
1488
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1489
{
C
Chris Wilson 已提交
1490
	struct inode *inode;
1491

1492 1493 1494
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1495
	 * backing pages, *now*.
1496
	 */
1497
	inode = obj->base.filp->f_path.dentry->d_inode;
1498
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1499

1500 1501 1502
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1503
	obj->madv = __I915_MADV_PURGED;
1504 1505 1506
}

static inline int
1507
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1508
{
1509
	return obj->madv == I915_MADV_DONTNEED;
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1534
int
C
Chris Wilson 已提交
1535
i915_add_request(struct intel_ring_buffer *ring,
1536
		 struct drm_file *file,
C
Chris Wilson 已提交
1537
		 struct drm_i915_gem_request *request)
1538
{
C
Chris Wilson 已提交
1539
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1540
	uint32_t seqno;
1541
	u32 request_ring_position;
1542
	int was_empty;
1543 1544
	int ret;

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (ring->gpu_caches_dirty) {
		ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
		if (ret)
			return ret;

		ring->gpu_caches_dirty = false;
	}

1560 1561 1562 1563 1564 1565
	if (request == NULL) {
		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
	}

1566
	seqno = i915_gem_next_request_seqno(ring);
1567

1568 1569 1570 1571 1572 1573 1574
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1575
	ret = ring->add_request(ring, &seqno);
1576 1577 1578 1579
	if (ret) {
		kfree(request);
		return ret;
	}
1580

C
Chris Wilson 已提交
1581
	trace_i915_gem_request_add(ring, seqno);
1582 1583

	request->seqno = seqno;
1584
	request->ring = ring;
1585
	request->tail = request_ring_position;
1586
	request->emitted_jiffies = jiffies;
1587 1588
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
1589
	request->file_priv = NULL;
1590

C
Chris Wilson 已提交
1591 1592 1593
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1594
		spin_lock(&file_priv->mm.lock);
1595
		request->file_priv = file_priv;
1596
		list_add_tail(&request->client_list,
1597
			      &file_priv->mm.request_list);
1598
		spin_unlock(&file_priv->mm.lock);
1599
	}
1600

1601
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1602

B
Ben Gamari 已提交
1603
	if (!dev_priv->mm.suspended) {
1604 1605 1606 1607 1608
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1609
		if (was_empty)
1610 1611
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1612
	}
1613

1614
	return 0;
1615 1616
}

1617 1618
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1619
{
1620
	struct drm_i915_file_private *file_priv = request->file_priv;
1621

1622 1623
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1624

1625
	spin_lock(&file_priv->mm.lock);
1626 1627 1628 1629
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1630
	spin_unlock(&file_priv->mm.lock);
1631 1632
}

1633 1634
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1635
{
1636 1637
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1638

1639 1640 1641
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1642

1643
		list_del(&request->list);
1644
		i915_gem_request_remove_from_client(request);
1645 1646
		kfree(request);
	}
1647

1648
	while (!list_empty(&ring->active_list)) {
1649
		struct drm_i915_gem_object *obj;
1650

1651 1652 1653
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1654

1655
		i915_gem_object_move_to_inactive(obj);
1656 1657 1658
	}
}

1659 1660 1661 1662 1663
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1664
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1665
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1666

1667
		i915_gem_write_fence(dev, i, NULL);
1668

1669 1670
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1671

1672 1673 1674
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1675
	}
1676 1677

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1678 1679
}

1680
void i915_gem_reset(struct drm_device *dev)
1681
{
1682
	struct drm_i915_private *dev_priv = dev->dev_private;
1683
	struct drm_i915_gem_object *obj;
1684
	struct intel_ring_buffer *ring;
1685
	int i;
1686

1687 1688
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1689 1690 1691 1692

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1693
	list_for_each_entry(obj,
1694
			    &dev_priv->mm.inactive_list,
1695
			    mm_list)
1696
	{
1697
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1698
	}
1699 1700

	/* The fence registers are invalidated so clear them out */
1701
	i915_gem_reset_fences(dev);
1702 1703 1704 1705 1706
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1707
void
C
Chris Wilson 已提交
1708
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1709 1710
{
	uint32_t seqno;
1711
	int i;
1712

C
Chris Wilson 已提交
1713
	if (list_empty(&ring->request_list))
1714 1715
		return;

C
Chris Wilson 已提交
1716
	WARN_ON(i915_verify_lists(ring->dev));
1717

1718
	seqno = ring->get_seqno(ring);
1719

1720
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1721 1722 1723
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1724
	while (!list_empty(&ring->request_list)) {
1725 1726
		struct drm_i915_gem_request *request;

1727
		request = list_first_entry(&ring->request_list,
1728 1729 1730
					   struct drm_i915_gem_request,
					   list);

1731
		if (!i915_seqno_passed(seqno, request->seqno))
1732 1733
			break;

C
Chris Wilson 已提交
1734
		trace_i915_gem_request_retire(ring, request->seqno);
1735 1736 1737 1738 1739 1740
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1741 1742

		list_del(&request->list);
1743
		i915_gem_request_remove_from_client(request);
1744 1745
		kfree(request);
	}
1746

1747 1748 1749 1750
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1751
		struct drm_i915_gem_object *obj;
1752

1753
		obj = list_first_entry(&ring->active_list,
1754 1755
				      struct drm_i915_gem_object,
				      ring_list);
1756

1757
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1758
			break;
1759

1760
		i915_gem_object_move_to_inactive(obj);
1761
	}
1762

C
Chris Wilson 已提交
1763 1764
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1765
		ring->irq_put(ring);
C
Chris Wilson 已提交
1766
		ring->trace_irq_seqno = 0;
1767
	}
1768

C
Chris Wilson 已提交
1769
	WARN_ON(i915_verify_lists(ring->dev));
1770 1771
}

1772 1773 1774 1775
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1776
	struct intel_ring_buffer *ring;
1777
	int i;
1778

1779 1780
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1781 1782
}

1783
static void
1784 1785 1786 1787
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1788
	struct intel_ring_buffer *ring;
1789 1790
	bool idle;
	int i;
1791 1792 1793 1794 1795

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1796 1797 1798 1799 1800 1801
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1802
	i915_gem_retire_requests(dev);
1803

1804 1805 1806 1807
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1808
	for_each_ring(ring, dev_priv, i) {
1809 1810
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
1811 1812 1813 1814 1815

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1816
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817

1818 1819 1820
	mutex_unlock(&dev->struct_mutex);
}

1821 1822 1823
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
1857
	int ret;
1858 1859 1860

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

1861 1862 1863
	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);
1864 1865 1866 1867

	return ret;
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1878
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1879
			bool interruptible, struct timespec *timeout)
1880 1881
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1882 1883 1884 1885
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1886
	int ret;
1887 1888 1889 1890 1891

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1892 1893 1894 1895 1896 1897 1898 1899

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1900 1901 1902
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1903 1904 1905
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1906 1907 1908
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1909 1910 1911 1912 1913 1914 1915 1916
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1917

1918 1919 1920
		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
1921 1922 1923
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1924 1925 1926 1927 1928

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

1929 1930 1931 1932 1933 1934
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
1935
	case -EIO:
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
1947 1948
}

C
Chris Wilson 已提交
1949 1950 1951 1952
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1953
int
1954
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1955
{
C
Chris Wilson 已提交
1956
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1957 1958 1959 1960
	int ret = 0;

	BUG_ON(seqno == 0);

1961
	ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1962 1963
	if (ret)
		return ret;
1964

1965 1966 1967
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
1968

1969
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
1970 1971 1972 1973 1974 1975 1976 1977

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1978 1979 1980
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
1981
{
1982
	u32 seqno;
1983 1984 1985 1986 1987
	int ret;

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	if (readonly)
		seqno = obj->last_write_seqno;
	else
		seqno = obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(obj->ring, seqno);
	if (ret)
		return ret;

	/* Manually manage the write flush as we may have not yet retired
	 * the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
2006 2007
	}

2008
	i915_gem_retire_requests_ring(obj->ring);
2009 2010 2011
	return 0;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2023
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2024 2025
		if (ret)
			return ret;
2026

2027 2028 2029 2030 2031 2032
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2061
	struct timespec timeout_stack, *timeout = NULL;
2062 2063 2064
	u32 seqno = 0;
	int ret = 0;

2065 2066 2067 2068
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2080 2081
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2082 2083 2084 2085
	if (ret)
		goto out;

	if (obj->active) {
2086
		seqno = obj->last_read_seqno;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2104 2105 2106 2107 2108
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2109 2110 2111 2112 2113 2114 2115 2116
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2140
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2141
		return i915_gem_object_wait_rendering(obj, false);
2142 2143 2144

	idx = intel_ring_sync_index(from, to);

2145
	seqno = obj->last_read_seqno;
2146 2147 2148
	if (seqno <= from->sync_seqno[idx])
		return 0;

2149 2150 2151
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2152

2153
	ret = to->sync_to(to, from, seqno);
2154 2155
	if (!ret)
		from->sync_seqno[idx] = seqno;
2156

2157
	return ret;
2158 2159
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2170 2171 2172
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2184 2185 2186
/**
 * Unbinds an object from the GTT aperture.
 */
2187
int
2188
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2189
{
2190
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2191 2192
	int ret = 0;

2193
	if (obj->gtt_space == NULL)
2194 2195
		return 0;

2196 2197
	if (obj->pin_count)
		return -EBUSY;
2198

2199
	ret = i915_gem_object_finish_gpu(obj);
2200
	if (ret)
2201 2202 2203 2204 2205 2206
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2207
	i915_gem_object_finish_gtt(obj);
2208

2209 2210
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2211
	 * are flushed when we go to remap it.
2212
	 */
2213 2214
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2215
	if (ret == -ERESTARTSYS)
2216
		return ret;
2217
	if (ret) {
2218 2219 2220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2221
		i915_gem_clflush_object(obj);
2222
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2223
	}
2224

2225
	/* release the fence reg _after_ flushing */
2226
	ret = i915_gem_object_put_fence(obj);
2227
	if (ret)
2228
		return ret;
2229

C
Chris Wilson 已提交
2230 2231
	trace_i915_gem_object_unbind(obj);

2232 2233
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2234 2235 2236 2237
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2238
	i915_gem_gtt_finish_object(obj);
2239

2240
	i915_gem_object_put_pages_gtt(obj);
2241

2242
	list_del_init(&obj->gtt_list);
2243
	list_del_init(&obj->mm_list);
2244
	/* Avoid an unnecessary call to unbind on rebind. */
2245
	obj->map_and_fenceable = true;
2246

2247 2248 2249
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2250

2251
	if (i915_gem_object_is_purgeable(obj))
2252 2253
		i915_gem_object_truncate(obj);

2254
	return ret;
2255 2256
}

2257
int
C
Chris Wilson 已提交
2258
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2259 2260 2261
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2262 2263
	int ret;

2264 2265 2266
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2267 2268
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2269 2270 2271 2272 2273
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

	return 0;
2274 2275
}

2276
static int i915_ring_idle(struct intel_ring_buffer *ring)
2277
{
2278
	if (list_empty(&ring->active_list))
2279 2280
		return 0;

2281
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2282 2283
}

2284
int i915_gpu_idle(struct drm_device *dev)
2285 2286
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2287
	struct intel_ring_buffer *ring;
2288
	int ret, i;
2289 2290

	/* Flush everything onto the inactive list. */
2291 2292
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2293 2294
		if (ret)
			return ret;
2295

2296 2297 2298
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;
2299
	}
2300

2301
	return 0;
2302 2303
}

2304 2305
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2306 2307 2308 2309
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2310 2311
	if (obj) {
		u32 size = obj->gtt_space->size;
2312

2313 2314 2315 2316 2317
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2318

2319 2320 2321 2322 2323
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2324

2325 2326
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2327 2328
}

2329 2330
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2331 2332 2333 2334
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2335 2336
	if (obj) {
		u32 size = obj->gtt_space->size;
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2347

2348 2349
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2350 2351
}

2352 2353
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2354 2355
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2356
	u32 val;
2357

2358 2359 2360 2361
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2362

2363 2364 2365 2366 2367
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2394 2395
}

2396 2397
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2398 2399 2400 2401
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2402 2403 2404
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2405

2406 2407 2408 2409 2410
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2411

2412 2413
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2414

2415 2416 2417 2418 2419 2420 2421 2422
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2468
static int
C
Chris Wilson 已提交
2469
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2470
{
2471
	if (obj->last_fenced_seqno) {
2472
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2473 2474
		if (ret)
			return ret;
2475 2476 2477 2478

		obj->last_fenced_seqno = 0;
	}

2479 2480 2481 2482 2483 2484
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2485
	obj->fenced_gpu_access = false;
2486 2487 2488 2489 2490 2491
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2492
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2493 2494
	int ret;

C
Chris Wilson 已提交
2495
	ret = i915_gem_object_flush_fence(obj);
2496 2497 2498
	if (ret)
		return ret;

2499 2500
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2501

2502 2503 2504 2505
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2506 2507 2508 2509 2510

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2511
i915_find_fence_reg(struct drm_device *dev)
2512 2513
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2514
	struct drm_i915_fence_reg *reg, *avail;
2515
	int i;
2516 2517

	/* First try to find a free reg */
2518
	avail = NULL;
2519 2520 2521
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2522
			return reg;
2523

2524
		if (!reg->pin_count)
2525
			avail = reg;
2526 2527
	}

2528 2529
	if (avail == NULL)
		return NULL;
2530 2531

	/* None available, try to steal one or wait for a user to finish */
2532
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2533
		if (reg->pin_count)
2534 2535
			continue;

C
Chris Wilson 已提交
2536
		return reg;
2537 2538
	}

C
Chris Wilson 已提交
2539
	return NULL;
2540 2541
}

2542
/**
2543
 * i915_gem_object_get_fence - set up fencing for an object
2544 2545 2546 2547 2548 2549 2550 2551 2552
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2553 2554
 *
 * For an untiled surface, this removes any existing fence.
2555
 */
2556
int
2557
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2558
{
2559
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2560
	struct drm_i915_private *dev_priv = dev->dev_private;
2561
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2562
	struct drm_i915_fence_reg *reg;
2563
	int ret;
2564

2565 2566 2567
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2568
	if (obj->fence_dirty) {
2569 2570 2571 2572
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2573

2574
	/* Just update our place in the LRU if our fence is getting reused. */
2575 2576
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2577
		if (!obj->fence_dirty) {
2578 2579 2580 2581 2582 2583 2584 2585
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2586

2587 2588 2589 2590
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2591 2592 2593
			if (ret)
				return ret;

2594
			i915_gem_object_fence_lost(old);
2595
		}
2596
	} else
2597 2598
		return 0;

2599
	i915_gem_object_update_fence(obj, reg, enable);
2600
	obj->fence_dirty = false;
2601

2602
	return 0;
2603 2604
}

2605 2606 2607 2608
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2609
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2610
			    unsigned alignment,
2611
			    bool map_and_fenceable)
2612
{
2613
	struct drm_device *dev = obj->base.dev;
2614 2615
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2616
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2617
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2618
	bool mappable, fenceable;
2619
	int ret;
2620

2621
	if (obj->madv != I915_MADV_WILLNEED) {
2622 2623 2624 2625
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2636

2637
	if (alignment == 0)
2638 2639
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2640
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2641 2642 2643 2644
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2645
	size = map_and_fenceable ? fence_size : obj->base.size;
2646

2647 2648 2649
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2650
	if (obj->base.size >
2651
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2652 2653 2654 2655
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2656
 search_free:
2657
	if (map_and_fenceable)
2658 2659
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2660 2661
						    size, alignment,
						    0, dev_priv->mm.gtt_mappable_end,
2662 2663 2664
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2665
						size, alignment, 0);
2666 2667

	if (free_space != NULL) {
2668
		if (map_and_fenceable)
2669
			obj->gtt_space =
2670
				drm_mm_get_block_range_generic(free_space,
2671
							       size, alignment, 0,
2672
							       0, dev_priv->mm.gtt_mappable_end,
2673 2674
							       0);
		else
2675
			obj->gtt_space =
2676
				drm_mm_get_block(free_space, size, alignment);
2677
	}
2678
	if (obj->gtt_space == NULL) {
2679 2680 2681
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2682 2683
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2684
		if (ret)
2685
			return ret;
2686

2687 2688 2689
		goto search_free;
	}

2690
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2691
	if (ret) {
2692 2693
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2694 2695

		if (ret == -ENOMEM) {
2696 2697
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2698 2699
			if (ret) {
				/* now try to shrink everyone else */
2700 2701 2702
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2703 2704
				}

2705
				return -ENOMEM;
2706 2707 2708 2709 2710
			}

			goto search_free;
		}

2711 2712 2713
		return ret;
	}

2714
	ret = i915_gem_gtt_prepare_object(obj);
2715
	if (ret) {
2716
		i915_gem_object_put_pages_gtt(obj);
2717 2718
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2719

2720
		if (i915_gem_evict_everything(dev, false))
2721 2722 2723
			return ret;

		goto search_free;
2724 2725
	}

2726 2727
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2728

2729
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2730
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2731

2732 2733 2734 2735
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2736 2737
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2738

2739
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2740

2741
	fenceable =
2742
		obj->gtt_space->size == fence_size &&
2743
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2744

2745
	mappable =
2746
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2747

2748
	obj->map_and_fenceable = mappable && fenceable;
2749

C
Chris Wilson 已提交
2750
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2751 2752 2753 2754
	return 0;
}

void
2755
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2756 2757 2758 2759 2760
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2761
	if (obj->pages == NULL)
2762 2763
		return;

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2775
	trace_i915_gem_object_clflush(obj);
2776

2777
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2778 2779
}

2780 2781
/** Flushes the GTT write domain for the object if it's dirty. */
static void
2782
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2783
{
C
Chris Wilson 已提交
2784 2785
	uint32_t old_write_domain;

2786
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2787 2788
		return;

2789
	/* No actual flushing is required for the GTT write domain.  Writes
2790 2791
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2792 2793 2794 2795
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2796
	 */
2797 2798
	wmb();

2799 2800
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2801 2802

	trace_i915_gem_object_change_domain(obj,
2803
					    obj->base.read_domains,
C
Chris Wilson 已提交
2804
					    old_write_domain);
2805 2806 2807 2808
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2809
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2810
{
C
Chris Wilson 已提交
2811
	uint32_t old_write_domain;
2812

2813
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2814 2815 2816
		return;

	i915_gem_clflush_object(obj);
2817
	intel_gtt_chipset_flush();
2818 2819
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2820 2821

	trace_i915_gem_object_change_domain(obj,
2822
					    obj->base.read_domains,
C
Chris Wilson 已提交
2823
					    old_write_domain);
2824 2825
}

2826 2827 2828 2829 2830 2831
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2832
int
2833
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2834
{
2835
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2836
	uint32_t old_write_domain, old_read_domains;
2837
	int ret;
2838

2839
	/* Not valid to be called on unbound objects. */
2840
	if (obj->gtt_space == NULL)
2841 2842
		return -EINVAL;

2843 2844 2845
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2846 2847 2848
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
2849

2850
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2851

2852 2853
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2854

2855 2856 2857
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2858 2859
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2860
	if (write) {
2861 2862 2863
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2864 2865
	}

C
Chris Wilson 已提交
2866 2867 2868 2869
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2870 2871 2872 2873
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2874 2875 2876
	return 0;
}

2877 2878 2879
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2880 2881
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2909 2910
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2911 2912 2913
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2943
/*
2944 2945 2946
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2947 2948
 */
int
2949 2950
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2951
				     struct intel_ring_buffer *pipelined)
2952
{
2953
	u32 old_read_domains, old_write_domain;
2954 2955
	int ret;

2956
	if (pipelined != obj->ring) {
2957 2958
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2959 2960 2961
			return ret;
	}

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2975 2976 2977 2978 2979 2980 2981 2982
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2983 2984
	i915_gem_object_flush_cpu_write_domain(obj);

2985
	old_write_domain = obj->base.write_domain;
2986
	old_read_domains = obj->base.read_domains;
2987 2988 2989 2990

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2991
	obj->base.write_domain = 0;
2992
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2993 2994 2995

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2996
					    old_write_domain);
2997 2998 2999 3000

	return 0;
}

3001
int
3002
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3003
{
3004 3005
	int ret;

3006
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3007 3008
		return 0;

3009
	ret = i915_gem_object_wait_rendering(obj, false);
3010 3011 3012
	if (ret)
		return ret;

3013 3014
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3015
	return 0;
3016 3017
}

3018 3019 3020 3021 3022 3023
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3024
int
3025
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3026
{
C
Chris Wilson 已提交
3027
	uint32_t old_write_domain, old_read_domains;
3028 3029
	int ret;

3030 3031 3032
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3033 3034 3035
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3036

3037
	i915_gem_object_flush_gtt_write_domain(obj);
3038

3039 3040
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3041

3042
	/* Flush the CPU cache if it's still invalid. */
3043
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3044 3045
		i915_gem_clflush_object(obj);

3046
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3047 3048 3049 3050 3051
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3052
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3053 3054 3055 3056 3057

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3058 3059
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3060
	}
3061

C
Chris Wilson 已提交
3062 3063 3064 3065
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3066 3067 3068
	return 0;
}

3069 3070 3071
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3072 3073 3074 3075
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3076 3077 3078
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3079
static int
3080
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3081
{
3082 3083
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3084
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3085 3086 3087 3088
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3089

3090 3091 3092
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3093
	spin_lock(&file_priv->mm.lock);
3094
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3095 3096
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3097

3098 3099
		ring = request->ring;
		seqno = request->seqno;
3100
	}
3101
	spin_unlock(&file_priv->mm.lock);
3102

3103 3104
	if (seqno == 0)
		return 0;
3105

3106
	ret = __wait_seqno(ring, seqno, true, NULL);
3107 3108
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3109 3110 3111 3112

	return ret;
}

3113
int
3114 3115
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3116
		    bool map_and_fenceable)
3117 3118 3119
{
	int ret;

3120
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3121

3122 3123 3124 3125
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3126
			     "bo is already pinned with incorrect alignment:"
3127 3128
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3129
			     obj->gtt_offset, alignment,
3130
			     map_and_fenceable,
3131
			     obj->map_and_fenceable);
3132 3133 3134 3135 3136 3137
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3138
	if (obj->gtt_space == NULL) {
3139
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3140
						  map_and_fenceable);
3141
		if (ret)
3142
			return ret;
3143
	}
J
Jesse Barnes 已提交
3144

3145 3146 3147
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3148
	obj->pin_count++;
3149
	obj->pin_mappable |= map_and_fenceable;
3150 3151 3152 3153 3154

	return 0;
}

void
3155
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3156
{
3157 3158
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3159

3160
	if (--obj->pin_count == 0)
3161
		obj->pin_mappable = false;
3162 3163 3164 3165
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3166
		   struct drm_file *file)
3167 3168
{
	struct drm_i915_gem_pin *args = data;
3169
	struct drm_i915_gem_object *obj;
3170 3171
	int ret;

3172 3173 3174
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3175

3176
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3177
	if (&obj->base == NULL) {
3178 3179
		ret = -ENOENT;
		goto unlock;
3180 3181
	}

3182
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3183
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3184 3185
		ret = -EINVAL;
		goto out;
3186 3187
	}

3188
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3189 3190
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3191 3192
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3193 3194
	}

3195 3196 3197
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3198
		ret = i915_gem_object_pin(obj, args->alignment, true);
3199 3200
		if (ret)
			goto out;
3201 3202 3203 3204 3205
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3206
	i915_gem_object_flush_cpu_write_domain(obj);
3207
	args->offset = obj->gtt_offset;
3208
out:
3209
	drm_gem_object_unreference(&obj->base);
3210
unlock:
3211
	mutex_unlock(&dev->struct_mutex);
3212
	return ret;
3213 3214 3215 3216
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3217
		     struct drm_file *file)
3218 3219
{
	struct drm_i915_gem_pin *args = data;
3220
	struct drm_i915_gem_object *obj;
3221
	int ret;
3222

3223 3224 3225
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3226

3227
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3228
	if (&obj->base == NULL) {
3229 3230
		ret = -ENOENT;
		goto unlock;
3231
	}
3232

3233
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3234 3235
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3236 3237
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3238
	}
3239 3240 3241
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3242 3243
		i915_gem_object_unpin(obj);
	}
3244

3245
out:
3246
	drm_gem_object_unreference(&obj->base);
3247
unlock:
3248
	mutex_unlock(&dev->struct_mutex);
3249
	return ret;
3250 3251 3252 3253
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3254
		    struct drm_file *file)
3255 3256
{
	struct drm_i915_gem_busy *args = data;
3257
	struct drm_i915_gem_object *obj;
3258 3259
	int ret;

3260
	ret = i915_mutex_lock_interruptible(dev);
3261
	if (ret)
3262
		return ret;
3263

3264
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3265
	if (&obj->base == NULL) {
3266 3267
		ret = -ENOENT;
		goto unlock;
3268
	}
3269

3270 3271 3272 3273
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3274
	 */
3275
	ret = i915_gem_object_flush_active(obj);
3276

3277
	args->busy = obj->active;
3278 3279 3280 3281
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3282

3283
	drm_gem_object_unreference(&obj->base);
3284
unlock:
3285
	mutex_unlock(&dev->struct_mutex);
3286
	return ret;
3287 3288 3289 3290 3291 3292
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3293
	return i915_gem_ring_throttle(dev, file_priv);
3294 3295
}

3296 3297 3298 3299 3300
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3301
	struct drm_i915_gem_object *obj;
3302
	int ret;
3303 3304 3305 3306 3307 3308 3309 3310 3311

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3312 3313 3314 3315
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3316
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3317
	if (&obj->base == NULL) {
3318 3319
		ret = -ENOENT;
		goto unlock;
3320 3321
	}

3322
	if (obj->pin_count) {
3323 3324
		ret = -EINVAL;
		goto out;
3325 3326
	}

3327 3328
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3329

3330
	/* if the object is no longer bound, discard its backing storage */
3331 3332
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3333 3334
		i915_gem_object_truncate(obj);

3335
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3336

3337
out:
3338
	drm_gem_object_unreference(&obj->base);
3339
unlock:
3340
	mutex_unlock(&dev->struct_mutex);
3341
	return ret;
3342 3343
}

3344 3345
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3346
{
3347
	struct drm_i915_private *dev_priv = dev->dev_private;
3348
	struct drm_i915_gem_object *obj;
3349
	struct address_space *mapping;
3350
	u32 mask;
3351

3352 3353 3354
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3355

3356 3357 3358 3359
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3360

3361 3362 3363 3364 3365 3366 3367
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3368
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3369
	mapping_set_gfp_mask(mapping, mask);
3370

3371 3372
	i915_gem_info_add_obj(dev_priv, size);

3373 3374
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375

3376 3377
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3393
	obj->base.driver_private = NULL;
3394
	obj->fence_reg = I915_FENCE_REG_NONE;
3395
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3396
	INIT_LIST_HEAD(&obj->gtt_list);
3397
	INIT_LIST_HEAD(&obj->ring_list);
3398
	INIT_LIST_HEAD(&obj->exec_list);
3399
	obj->madv = I915_MADV_WILLNEED;
3400 3401
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3402

3403
	return obj;
3404 3405 3406 3407 3408
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3409

3410 3411 3412
	return 0;
}

3413
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3414
{
3415
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3416
	struct drm_device *dev = obj->base.dev;
3417
	drm_i915_private_t *dev_priv = dev->dev_private;
3418

3419 3420
	trace_i915_gem_object_destroy(obj);

3421 3422 3423
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3439
	if (obj->base.map_list.map)
3440
		drm_gem_free_mmap_offset(&obj->base);
3441

3442 3443
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3444

3445 3446
	kfree(obj->bit_17);
	kfree(obj);
3447 3448
}

3449 3450 3451 3452 3453
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3454

3455
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3456

3457
	if (dev_priv->mm.suspended) {
3458 3459
		mutex_unlock(&dev->struct_mutex);
		return 0;
3460 3461
	}

3462
	ret = i915_gpu_idle(dev);
3463 3464
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3465
		return ret;
3466
	}
3467
	i915_gem_retire_requests(dev);
3468

3469
	/* Under UMS, be paranoid and evict. */
3470 3471
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3472

3473 3474
	i915_gem_reset_fences(dev);

3475 3476 3477 3478 3479
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3480
	del_timer_sync(&dev_priv->hangcheck_timer);
3481 3482

	i915_kernel_lost_context(dev);
3483
	i915_gem_cleanup_ringbuffer(dev);
3484

3485 3486
	mutex_unlock(&dev->struct_mutex);

3487 3488 3489
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3490 3491 3492
	return 0;
}

B
Ben Widawsky 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3525 3526 3527 3528
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3529
	if (INTEL_INFO(dev)->gen < 5 ||
3530 3531 3532 3533 3534 3535
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3536 3537 3538
	if (IS_GEN5(dev))
		return;

3539 3540
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3541
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3542
	else
3543
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3544
}
D
Daniel Vetter 已提交
3545 3546 3547 3548 3549 3550

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3551 3552 3553
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3554 3555 3556 3557 3558
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3577 3578 3579 3580
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3581 3582 3583 3584
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3585 3586 3587 3588 3589

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3590 3591
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3592
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3593 3594 3595 3596 3597
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3598
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3599 3600
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3601
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3602 3603 3604 3605 3606 3607

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3624
int
3625
i915_gem_init_hw(struct drm_device *dev)
3626 3627 3628
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3629

D
Daniel Vetter 已提交
3630 3631 3632
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3633 3634
	i915_gem_l3_remap(dev);

3635 3636
	i915_gem_init_swizzling(dev);

3637
	ret = intel_init_render_ring_buffer(dev);
3638
	if (ret)
3639
		return ret;
3640 3641

	if (HAS_BSD(dev)) {
3642
		ret = intel_init_bsd_ring_buffer(dev);
3643 3644
		if (ret)
			goto cleanup_render_ring;
3645
	}
3646

3647
	if (intel_enable_blt(dev)) {
3648 3649 3650 3651 3652
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3653 3654
	dev_priv->next_seqno = 1;

3655 3656 3657 3658 3659
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3660 3661
	i915_gem_init_ppgtt(dev);

3662 3663
	return 0;

3664
cleanup_bsd_ring:
3665
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3666
cleanup_render_ring:
3667
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3668 3669 3670
	return ret;
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3730 3731 3732
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3733 3734 3735
	return 0;
}

3736 3737 3738 3739
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3740
	struct intel_ring_buffer *ring;
3741
	int i;
3742

3743 3744
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3745 3746
}

3747 3748 3749 3750 3751
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3752
	int ret;
3753

J
Jesse Barnes 已提交
3754 3755 3756
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3757
	if (atomic_read(&dev_priv->mm.wedged)) {
3758
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3759
		atomic_set(&dev_priv->mm.wedged, 0);
3760 3761 3762
	}

	mutex_lock(&dev->struct_mutex);
3763 3764
	dev_priv->mm.suspended = 0;

3765
	ret = i915_gem_init_hw(dev);
3766 3767
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3768
		return ret;
3769
	}
3770

3771
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3772 3773
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3774

3775 3776 3777
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3778

3779
	return 0;
3780 3781 3782 3783 3784 3785 3786 3787

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3788 3789 3790 3791 3792 3793
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3794 3795 3796
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3797
	drm_irq_uninstall(dev);
3798
	return i915_gem_idle(dev);
3799 3800 3801 3802 3803 3804 3805
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3806 3807 3808
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3809 3810 3811
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3812 3813
}

3814 3815 3816 3817 3818 3819 3820
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

3821 3822 3823
void
i915_gem_load(struct drm_device *dev)
{
3824
	int i;
3825 3826
	drm_i915_private_t *dev_priv = dev->dev_private;

3827
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3828
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3829
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3830
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3831 3832
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3833
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3834
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3835 3836
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3837
	init_completion(&dev_priv->error_completion);
3838

3839 3840
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3841 3842
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3843 3844
	}

3845 3846
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3847
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3848 3849
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3850

3851
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3852 3853 3854 3855
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3856
	/* Initialize fence registers to zero */
3857
	i915_gem_reset_fences(dev);
3858

3859
	i915_gem_detect_bit_6_swizzle(dev);
3860
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3861

3862 3863
	dev_priv->mm.interruptible = true;

3864 3865 3866
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3867
}
3868 3869 3870 3871 3872

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3873 3874
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3875 3876 3877 3878 3879 3880 3881 3882
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3883
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3884 3885 3886 3887 3888
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3889
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3902
	kfree(phys_obj);
3903 3904 3905
	return ret;
}

3906
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3931
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3932 3933 3934 3935
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3936
				 struct drm_i915_gem_object *obj)
3937
{
3938
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3939
	char *vaddr;
3940 3941 3942
	int i;
	int page_count;

3943
	if (!obj->phys_obj)
3944
		return;
3945
	vaddr = obj->phys_obj->handle->vaddr;
3946

3947
	page_count = obj->base.size / PAGE_SIZE;
3948
	for (i = 0; i < page_count; i++) {
3949
		struct page *page = shmem_read_mapping_page(mapping, i);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3961
	}
3962
	intel_gtt_chipset_flush();
3963

3964 3965
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3966 3967 3968 3969
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3970
			    struct drm_i915_gem_object *obj,
3971 3972
			    int id,
			    int align)
3973
{
3974
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3975 3976 3977 3978 3979 3980 3981 3982
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3983 3984
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3985 3986 3987 3988 3989 3990 3991
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3992
						obj->base.size, align);
3993
		if (ret) {
3994 3995
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3996
			return ret;
3997 3998 3999 4000
		}
	}

	/* bind to the object */
4001 4002
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4003

4004
	page_count = obj->base.size / PAGE_SIZE;
4005 4006

	for (i = 0; i < page_count; i++) {
4007 4008 4009
		struct page *page;
		char *dst, *src;

4010
		page = shmem_read_mapping_page(mapping, i);
4011 4012
		if (IS_ERR(page))
			return PTR_ERR(page);
4013

4014
		src = kmap_atomic(page);
4015
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4016
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4017
		kunmap_atomic(src);
4018

4019 4020 4021
		mark_page_accessed(page);
		page_cache_release(page);
	}
4022

4023 4024 4025 4026
	return 0;
}

static int
4027 4028
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4029 4030 4031
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4032
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4033
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4048

4049
	intel_gtt_chipset_flush();
4050 4051
	return 0;
}
4052

4053
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4054
{
4055
	struct drm_i915_file_private *file_priv = file->driver_priv;
4056 4057 4058 4059 4060

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4061
	spin_lock(&file_priv->mm.lock);
4062 4063 4064 4065 4066 4067 4068 4069 4070
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4071
	spin_unlock(&file_priv->mm.lock);
4072
}
4073

4074 4075 4076 4077
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4078
	return !list_empty(&dev_priv->mm.active_list);
4079 4080
}

4081
static int
4082
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4083
{
4084 4085 4086 4087 4088 4089
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4090
	int nr_to_scan = sc->nr_to_scan;
4091 4092 4093
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4094
		return 0;
4095 4096 4097

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4098 4099 4100 4101 4102 4103 4104
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4105 4106
	}

4107
rescan:
4108
	/* first scan for clean buffers */
4109
	i915_gem_retire_requests(dev);
4110

4111 4112 4113 4114
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4115 4116
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4117
				break;
4118 4119 4120 4121
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4122 4123 4124 4125
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4126 4127
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4128
			nr_to_scan--;
4129
		else
4130 4131 4132 4133
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4134 4135 4136 4137 4138 4139
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4140
		if (i915_gpu_idle(dev) == 0)
4141 4142
			goto rescan;
	}
4143 4144
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4145
}