i915_gem.c 101.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
47 48
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
49
				struct drm_i915_gem_pwrite *args,
50 51
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
52

53
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
54
				    struct shrink_control *sc);
55
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

72 73
static int
i915_gem_wait_for_error(struct drm_device *dev)
74 75 76 77 78 79 80 81 82 83 84 85 86
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

87 88 89 90 91 92 93 94 95 96 97
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
98 99
}

100
int i915_mutex_lock_interruptible(struct drm_device *dev)
101 102 103
{
	int ret;

104
	ret = i915_gem_wait_for_error(dev);
105 106 107 108 109 110 111
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

112
	WARN_ON(i915_verify_lists(dev));
113 114
	return 0;
}
115

116
static inline bool
117
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
118
{
119
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
120 121
}

J
Jesse Barnes 已提交
122 123
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
124
		    struct drm_file *file)
J
Jesse Barnes 已提交
125 126
{
	struct drm_i915_gem_init *args = data;
127 128 129 130

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
131

132 133 134 135
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
136
	mutex_lock(&dev->struct_mutex);
137 138
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
139 140
	mutex_unlock(&dev->struct_mutex);

141
	return 0;
142 143
}

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = dev->dev_private;
149
	struct drm_i915_gem_get_aperture *args = data;
150 151
	struct drm_i915_gem_object *obj;
	size_t pinned;
152 153 154 155

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158 159
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->mm.gtt_total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169 170 171 172
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
173
{
174
	struct drm_i915_gem_object *obj;
175 176
	int ret;
	u32 handle;
177

178
	size = roundup(size, PAGE_SIZE);
179 180
	if (size == 0)
		return -EINVAL;
181 182

	/* Allocate the new object */
183
	obj = i915_gem_alloc_object(dev, size);
184 185 186
	if (obj == NULL)
		return -ENOMEM;

187
	ret = drm_gem_handle_create(file, &obj->base, &handle);
188
	if (ret) {
189 190
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
191
		kfree(obj);
192
		return ret;
193
	}
194

195
	/* drop reference from allocate - handle holds it now */
196
	drm_gem_object_unreference(&obj->base);
197 198
	trace_i915_gem_object_create(obj);

199
	*handle_p = handle;
200 201 202
	return 0;
}

203 204 205 206 207 208
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
209
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

234
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
235
{
236
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
237 238

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
239
		obj->tiling_mode != I915_TILING_NONE;
240 241
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static inline int
__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
			  const char *cpu_vaddr,
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

294 295 296
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
297
static int
298 299 300 301 302 303 304
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

305
	if (unlikely(page_do_bit17_swizzling))
306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

320 321 322 323
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
324
	if (unlikely(swizzled)) {
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

342 343 344 345 346 347 348 349 350 351 352 353
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
354 355 356
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
357 358 359 360 361 362 363 364 365 366 367 368 369 370

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

371
static int
372 373 374 375
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
376
{
377
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
378
	char __user *user_data;
379
	ssize_t remain;
380
	loff_t offset;
381
	int shmem_page_offset, page_length, ret = 0;
382
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
383
	int hit_slowpath = 0;
384
	int prefaulted = 0;
385
	int needs_clflush = 0;
386
	int release_page;
387

388
	user_data = (char __user *) (uintptr_t) args->data_ptr;
389 390
	remain = args->size;

391
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
392

393 394 395 396 397 398 399 400 401 402 403
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
404

405
	offset = args->offset;
406 407

	while (remain > 0) {
408 409
		struct page *page;

410 411 412 413 414
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
415
		shmem_page_offset = offset_in_page(offset);
416 417 418 419
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

420 421 422 423 424 425 426 427 428 429
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
430
		}
431

432 433 434
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

435 436 437 438 439
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
440 441

		hit_slowpath = 1;
442
		page_cache_get(page);
443 444
		mutex_unlock(&dev->struct_mutex);

445
		if (!prefaulted) {
446
			ret = fault_in_multipages_writeable(user_data, remain);
447 448 449 450 451 452 453
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
454

455 456 457
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
458

459
		mutex_lock(&dev->struct_mutex);
460
		page_cache_release(page);
461
next_page:
462
		mark_page_accessed(page);
463 464
		if (release_page)
			page_cache_release(page);
465

466 467 468 469 470
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

471
		remain -= page_length;
472
		user_data += page_length;
473 474 475
		offset += page_length;
	}

476
out:
477 478 479 480 481
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
482 483 484 485

	return ret;
}

486 487 488 489 490 491 492
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
493
		     struct drm_file *file)
494 495
{
	struct drm_i915_gem_pread *args = data;
496
	struct drm_i915_gem_object *obj;
497
	int ret = 0;
498

499 500 501 502 503 504 505 506
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

507
	ret = i915_mutex_lock_interruptible(dev);
508
	if (ret)
509
		return ret;
510

511
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
512
	if (&obj->base == NULL) {
513 514
		ret = -ENOENT;
		goto unlock;
515
	}
516

517
	/* Bounds check source.  */
518 519
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
520
		ret = -EINVAL;
521
		goto out;
C
Chris Wilson 已提交
522 523
	}

C
Chris Wilson 已提交
524 525
	trace_i915_gem_object_pread(obj, args->offset, args->size);

526
	ret = i915_gem_shmem_pread(dev, obj, args, file);
527

528
out:
529
	drm_gem_object_unreference(&obj->base);
530
unlock:
531
	mutex_unlock(&dev->struct_mutex);
532
	return ret;
533 534
}

535 536
/* This is the fast write path which cannot handle
 * page faults in the source data
537
 */
538 539 540 541 542 543

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
544 545
{
	char *vaddr_atomic;
546
	unsigned long unwritten;
547

P
Peter Zijlstra 已提交
548
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
549 550
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
551
	io_mapping_unmap_atomic(vaddr_atomic);
552
	return unwritten;
553 554
}

555 556 557 558
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
559
static int
560 561
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
562
			 struct drm_i915_gem_pwrite *args,
563
			 struct drm_file *file)
564
{
565
	drm_i915_private_t *dev_priv = dev->dev_private;
566
	ssize_t remain;
567
	loff_t offset, page_base;
568
	char __user *user_data;
D
Daniel Vetter 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
582 583 584 585

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

586
	offset = obj->gtt_offset + args->offset;
587 588 589 590

	while (remain > 0) {
		/* Operation in this page
		 *
591 592 593
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
594
		 */
595 596
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
597 598 599 600 601
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
602 603
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
604
		 */
605
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
606 607 608 609
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
610

611 612 613
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
614 615
	}

D
Daniel Vetter 已提交
616 617 618
out_unpin:
	i915_gem_object_unpin(obj);
out:
619
	return ret;
620 621
}

622 623 624 625
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
626
static int
627 628 629 630 631
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
632
{
633
	char *vaddr;
634
	int ret;
635

636
	if (unlikely(page_do_bit17_swizzling))
637
		return -EINVAL;
638

639 640 641 642 643 644 645 646 647 648 649
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
650 651 652 653

	return ret;
}

654 655
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
656
static int
657 658 659 660 661
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
662
{
663 664
	char *vaddr;
	int ret;
665

666
	vaddr = kmap(page);
667
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
668 669 670
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
671 672
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
673 674
						user_data,
						page_length);
675 676 677 678 679
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
680 681 682
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
683
	kunmap(page);
684

685
	return ret;
686 687 688
}

static int
689 690 691 692
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
693
{
694
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
695
	ssize_t remain;
696 697
	loff_t offset;
	char __user *user_data;
698
	int shmem_page_offset, page_length, ret = 0;
699
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
700
	int hit_slowpath = 0;
701 702
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
703
	int release_page;
704

705
	user_data = (char __user *) (uintptr_t) args->data_ptr;
706 707
	remain = args->size;

708
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

727
	offset = args->offset;
728
	obj->dirty = 1;
729

730
	while (remain > 0) {
731
		struct page *page;
732
		int partial_cacheline_write;
733

734 735 736 737 738
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
739
		shmem_page_offset = offset_in_page(offset);
740 741 742 743 744

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

745 746 747 748 749 750 751
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

752 753 754 755 756 757 758 759 760 761
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
762 763
		}

764 765 766
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

767 768 769 770 771 772
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
773 774

		hit_slowpath = 1;
775
		page_cache_get(page);
776 777
		mutex_unlock(&dev->struct_mutex);

778 779 780 781
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
782

783
		mutex_lock(&dev->struct_mutex);
784
		page_cache_release(page);
785
next_page:
786 787
		set_page_dirty(page);
		mark_page_accessed(page);
788 789
		if (release_page)
			page_cache_release(page);
790

791 792 793 794 795
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

796
		remain -= page_length;
797
		user_data += page_length;
798
		offset += page_length;
799 800
	}

801
out:
802 803 804 805 806 807 808 809 810 811
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
812
	}
813

814 815 816
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

817
	return ret;
818 819 820 821 822 823 824 825 826
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
827
		      struct drm_file *file)
828 829
{
	struct drm_i915_gem_pwrite *args = data;
830
	struct drm_i915_gem_object *obj;
831 832 833 834 835 836 837 838 839 840
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

841 842
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
843 844
	if (ret)
		return -EFAULT;
845

846
	ret = i915_mutex_lock_interruptible(dev);
847
	if (ret)
848
		return ret;
849

850
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
851
	if (&obj->base == NULL) {
852 853
		ret = -ENOENT;
		goto unlock;
854
	}
855

856
	/* Bounds check destination. */
857 858
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
859
		ret = -EINVAL;
860
		goto out;
C
Chris Wilson 已提交
861 862
	}

C
Chris Wilson 已提交
863 864
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
865
	ret = -EFAULT;
866 867 868 869 870 871
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
872
	if (obj->phys_obj) {
873
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
874 875 876 877
		goto out;
	}

	if (obj->gtt_space &&
878
	    obj->cache_level == I915_CACHE_NONE &&
879
	    obj->tiling_mode == I915_TILING_NONE &&
880
	    obj->map_and_fenceable &&
881
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
882
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
883 884 885
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
886
	}
887

888
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
889
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
890

891
out:
892
	drm_gem_object_unreference(&obj->base);
893
unlock:
894
	mutex_unlock(&dev->struct_mutex);
895 896 897 898
	return ret;
}

/**
899 900
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
901 902 903
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
904
			  struct drm_file *file)
905 906
{
	struct drm_i915_gem_set_domain *args = data;
907
	struct drm_i915_gem_object *obj;
908 909
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
910 911 912 913 914
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

915
	/* Only handle setting domains to types used by the CPU. */
916
	if (write_domain & I915_GEM_GPU_DOMAINS)
917 918
		return -EINVAL;

919
	if (read_domains & I915_GEM_GPU_DOMAINS)
920 921 922 923 924 925 926 927
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

928
	ret = i915_mutex_lock_interruptible(dev);
929
	if (ret)
930
		return ret;
931

932
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
933
	if (&obj->base == NULL) {
934 935
		ret = -ENOENT;
		goto unlock;
936
	}
937

938 939
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
940 941 942 943 944 945 946

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
947
	} else {
948
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
949 950
	}

951
	drm_gem_object_unreference(&obj->base);
952
unlock:
953 954 955 956 957 958 959 960 961
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
962
			 struct drm_file *file)
963 964
{
	struct drm_i915_gem_sw_finish *args = data;
965
	struct drm_i915_gem_object *obj;
966 967 968 969 970
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

971
	ret = i915_mutex_lock_interruptible(dev);
972
	if (ret)
973
		return ret;
974

975
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976
	if (&obj->base == NULL) {
977 978
		ret = -ENOENT;
		goto unlock;
979 980 981
	}

	/* Pinned buffers may be scanout, so flush the cache */
982
	if (obj->pin_count)
983 984
		i915_gem_object_flush_cpu_write_domain(obj);

985
	drm_gem_object_unreference(&obj->base);
986
unlock:
987 988 989 990 991 992 993 994 995 996 997 998 999
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1000
		    struct drm_file *file)
1001 1002 1003 1004 1005 1006 1007 1008
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1009
	obj = drm_gem_object_lookup(dev, file, args->handle);
1010
	if (obj == NULL)
1011
		return -ENOENT;
1012 1013 1014 1015 1016 1017

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1018
	drm_gem_object_unreference_unlocked(obj);
1019 1020 1021 1022 1023 1024 1025 1026
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1045 1046
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1047
	drm_i915_private_t *dev_priv = dev->dev_private;
1048 1049 1050
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1051
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1052 1053 1054 1055 1056

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1057 1058 1059
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1060

C
Chris Wilson 已提交
1061 1062
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1063
	/* Now bind it into the GTT if needed */
1064 1065 1066 1067
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1068
	}
1069
	if (!obj->gtt_space) {
1070
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1071 1072
		if (ret)
			goto unlock;
1073

1074 1075 1076 1077
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1078

1079 1080 1081
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1082
	ret = i915_gem_object_get_fence(obj);
1083 1084
	if (ret)
		goto unlock;
1085

1086 1087
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1088

1089 1090
	obj->fault_mappable = true;

1091
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1092 1093 1094 1095
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1096
unlock:
1097
	mutex_unlock(&dev->struct_mutex);
1098
out:
1099
	switch (ret) {
1100
	case -EIO:
1101
	case -EAGAIN:
1102 1103 1104 1105 1106 1107 1108
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1109
		set_need_resched();
1110 1111
	case 0:
	case -ERESTARTSYS:
1112
	case -EINTR:
1113
		return VM_FAULT_NOPAGE;
1114 1115 1116
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1117
		return VM_FAULT_SIGBUS;
1118 1119 1120
	}
}

1121 1122 1123 1124
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1125
 * Preserve the reservation of the mmapping with the DRM core code, but
1126 1127 1128 1129 1130 1131 1132 1133 1134
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1135
void
1136
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1137
{
1138 1139
	if (!obj->fault_mappable)
		return;
1140

1141 1142 1143 1144
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1145

1146
	obj->fault_mappable = false;
1147 1148
}

1149
static uint32_t
1150
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1151
{
1152
	uint32_t gtt_size;
1153 1154

	if (INTEL_INFO(dev)->gen >= 4 ||
1155 1156
	    tiling_mode == I915_TILING_NONE)
		return size;
1157 1158 1159

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1160
		gtt_size = 1024*1024;
1161
	else
1162
		gtt_size = 512*1024;
1163

1164 1165
	while (gtt_size < size)
		gtt_size <<= 1;
1166

1167
	return gtt_size;
1168 1169
}

1170 1171 1172 1173 1174
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1175
 * potential fence register mapping.
1176 1177
 */
static uint32_t
1178 1179 1180
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1181 1182 1183 1184 1185
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1186
	if (INTEL_INFO(dev)->gen >= 4 ||
1187
	    tiling_mode == I915_TILING_NONE)
1188 1189
		return 4096;

1190 1191 1192 1193
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1194
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1195 1196
}

1197 1198 1199
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1200 1201 1202
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1203 1204 1205 1206
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1207
uint32_t
1208 1209 1210
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1211 1212 1213 1214 1215
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1216
	    tiling_mode == I915_TILING_NONE)
1217 1218
		return 4096;

1219 1220 1221
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1222
	 */
1223
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1224 1225
}

1226
int
1227 1228 1229 1230
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1231
{
1232
	struct drm_i915_private *dev_priv = dev->dev_private;
1233
	struct drm_i915_gem_object *obj;
1234 1235 1236 1237 1238
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1239
	ret = i915_mutex_lock_interruptible(dev);
1240
	if (ret)
1241
		return ret;
1242

1243
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1244
	if (&obj->base == NULL) {
1245 1246 1247
		ret = -ENOENT;
		goto unlock;
	}
1248

1249
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1250
		ret = -E2BIG;
1251
		goto out;
1252 1253
	}

1254
	if (obj->madv != I915_MADV_WILLNEED) {
1255
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1256 1257
		ret = -EINVAL;
		goto out;
1258 1259
	}

1260
	if (!obj->base.map_list.map) {
1261
		ret = drm_gem_create_mmap_offset(&obj->base);
1262 1263
		if (ret)
			goto out;
1264 1265
	}

1266
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1267

1268
out:
1269
	drm_gem_object_unreference(&obj->base);
1270
unlock:
1271
	mutex_unlock(&dev->struct_mutex);
1272
	return ret;
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1303
static int
1304
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1315 1316 1317 1318
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1319 1320
		return -ENOMEM;

1321
	inode = obj->base.filp->f_path.dentry->d_inode;
1322
	mapping = inode->i_mapping;
1323 1324
	gfpmask |= mapping_gfp_mask(mapping);

1325
	for (i = 0; i < page_count; i++) {
1326
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1327 1328 1329
		if (IS_ERR(page))
			goto err_pages;

1330
		obj->pages[i] = page;
1331 1332
	}

1333
	if (i915_gem_object_needs_bit17_swizzle(obj))
1334 1335 1336 1337 1338 1339
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1340
		page_cache_release(obj->pages[i]);
1341

1342 1343
	drm_free_large(obj->pages);
	obj->pages = NULL;
1344 1345 1346
	return PTR_ERR(page);
}

1347
static void
1348
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1349
{
1350
	int page_count = obj->base.size / PAGE_SIZE;
1351 1352
	int i;

1353
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1354

1355
	if (i915_gem_object_needs_bit17_swizzle(obj))
1356 1357
		i915_gem_object_save_bit_17_swizzle(obj);

1358 1359
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1360 1361

	for (i = 0; i < page_count; i++) {
1362 1363
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1364

1365 1366
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1367

1368
		page_cache_release(obj->pages[i]);
1369
	}
1370
	obj->dirty = 0;
1371

1372 1373
	drm_free_large(obj->pages);
	obj->pages = NULL;
1374 1375
}

1376
void
1377
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1378 1379
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1380
{
1381
	struct drm_device *dev = obj->base.dev;
1382
	struct drm_i915_private *dev_priv = dev->dev_private;
1383

1384
	BUG_ON(ring == NULL);
1385
	obj->ring = ring;
1386 1387

	/* Add a reference if we're newly entering the active list. */
1388 1389 1390
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1391
	}
1392

1393
	/* Move from whatever list we were on to the tail of execution. */
1394 1395
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1396

1397
	obj->last_rendering_seqno = seqno;
1398

1399
	if (obj->fenced_gpu_access) {
1400 1401 1402
		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

1403 1404 1405 1406 1407 1408 1409 1410
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1411 1412 1413 1414 1415 1416 1417 1418
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1419
	obj->last_fenced_seqno = 0;
1420 1421
}

1422
static void
1423
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1424
{
1425
	struct drm_device *dev = obj->base.dev;
1426 1427
	drm_i915_private_t *dev_priv = dev->dev_private;

1428 1429
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;
1448
	obj->last_fenced_ring = NULL;
1449 1450 1451 1452 1453

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1454
	obj->pending_gpu_write = false;
1455 1456 1457
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1458
}
1459

1460 1461
/* Immediately discard the backing storage */
static void
1462
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1463
{
C
Chris Wilson 已提交
1464
	struct inode *inode;
1465

1466 1467 1468
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1469
	 * backing pages, *now*.
1470
	 */
1471
	inode = obj->base.filp->f_path.dentry->d_inode;
1472
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1473

1474 1475 1476
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1477
	obj->madv = __I915_MADV_PURGED;
1478 1479 1480
}

static inline int
1481
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1482
{
1483
	return obj->madv == I915_MADV_DONTNEED;
1484 1485
}

1486
static void
C
Chris Wilson 已提交
1487 1488
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1489
{
1490
	struct drm_i915_gem_object *obj, *next;
1491

1492
	list_for_each_entry_safe(obj, next,
1493
				 &ring->gpu_write_list,
1494
				 gpu_write_list) {
1495 1496
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1497

1498 1499
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1500
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1501
						       i915_gem_next_request_seqno(ring));
1502 1503

			trace_i915_gem_object_change_domain(obj,
1504
							    obj->base.read_domains,
1505 1506 1507 1508
							    old_write_domain);
		}
	}
}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1532
int
C
Chris Wilson 已提交
1533
i915_add_request(struct intel_ring_buffer *ring,
1534
		 struct drm_file *file,
C
Chris Wilson 已提交
1535
		 struct drm_i915_gem_request *request)
1536
{
C
Chris Wilson 已提交
1537
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1538
	uint32_t seqno;
1539
	u32 request_ring_position;
1540
	int was_empty;
1541 1542 1543
	int ret;

	BUG_ON(request == NULL);
1544
	seqno = i915_gem_next_request_seqno(ring);
1545

1546 1547 1548 1549 1550 1551 1552
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1553 1554 1555
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1556

C
Chris Wilson 已提交
1557
	trace_i915_gem_request_add(ring, seqno);
1558 1559

	request->seqno = seqno;
1560
	request->ring = ring;
1561
	request->tail = request_ring_position;
1562
	request->emitted_jiffies = jiffies;
1563 1564 1565
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1566 1567 1568
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1569
		spin_lock(&file_priv->mm.lock);
1570
		request->file_priv = file_priv;
1571
		list_add_tail(&request->client_list,
1572
			      &file_priv->mm.request_list);
1573
		spin_unlock(&file_priv->mm.lock);
1574
	}
1575

1576
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1577

B
Ben Gamari 已提交
1578
	if (!dev_priv->mm.suspended) {
1579 1580 1581 1582 1583
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1584
		if (was_empty)
1585 1586
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1587
	}
1588
	return 0;
1589 1590
}

1591 1592
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1593
{
1594
	struct drm_i915_file_private *file_priv = request->file_priv;
1595

1596 1597
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1598

1599
	spin_lock(&file_priv->mm.lock);
1600 1601 1602 1603
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1604
	spin_unlock(&file_priv->mm.lock);
1605 1606
}

1607 1608
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1609
{
1610 1611
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1612

1613 1614 1615
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1616

1617
		list_del(&request->list);
1618
		i915_gem_request_remove_from_client(request);
1619 1620
		kfree(request);
	}
1621

1622
	while (!list_empty(&ring->active_list)) {
1623
		struct drm_i915_gem_object *obj;
1624

1625 1626 1627
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1628

1629 1630 1631
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1632 1633 1634
	}
}

1635 1636 1637 1638 1639
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1640
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1641
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1642 1643 1644 1645 1646 1647 1648 1649
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1650 1651 1652 1653 1654
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1655 1656 1657
	}
}

1658
void i915_gem_reset(struct drm_device *dev)
1659
{
1660
	struct drm_i915_private *dev_priv = dev->dev_private;
1661
	struct drm_i915_gem_object *obj;
1662
	int i;
1663

1664 1665
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1666 1667 1668 1669 1670 1671

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1672
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1673 1674
				      struct drm_i915_gem_object,
				      mm_list);
1675

1676 1677 1678
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1679 1680 1681 1682 1683
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1684
	list_for_each_entry(obj,
1685
			    &dev_priv->mm.inactive_list,
1686
			    mm_list)
1687
	{
1688
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1689
	}
1690 1691

	/* The fence registers are invalidated so clear them out */
1692
	i915_gem_reset_fences(dev);
1693 1694 1695 1696 1697
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1698
void
C
Chris Wilson 已提交
1699
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1700 1701
{
	uint32_t seqno;
1702
	int i;
1703

C
Chris Wilson 已提交
1704
	if (list_empty(&ring->request_list))
1705 1706
		return;

C
Chris Wilson 已提交
1707
	WARN_ON(i915_verify_lists(ring->dev));
1708

1709
	seqno = ring->get_seqno(ring);
1710

1711
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1712 1713 1714
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1715
	while (!list_empty(&ring->request_list)) {
1716 1717
		struct drm_i915_gem_request *request;

1718
		request = list_first_entry(&ring->request_list,
1719 1720 1721
					   struct drm_i915_gem_request,
					   list);

1722
		if (!i915_seqno_passed(seqno, request->seqno))
1723 1724
			break;

C
Chris Wilson 已提交
1725
		trace_i915_gem_request_retire(ring, request->seqno);
1726 1727 1728 1729 1730 1731
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1732 1733

		list_del(&request->list);
1734
		i915_gem_request_remove_from_client(request);
1735 1736
		kfree(request);
	}
1737

1738 1739 1740 1741
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1742
		struct drm_i915_gem_object *obj;
1743

1744
		obj = list_first_entry(&ring->active_list,
1745 1746
				      struct drm_i915_gem_object,
				      ring_list);
1747

1748
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1749
			break;
1750

1751
		if (obj->base.write_domain != 0)
1752 1753 1754
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1755
	}
1756

C
Chris Wilson 已提交
1757 1758
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1759
		ring->irq_put(ring);
C
Chris Wilson 已提交
1760
		ring->trace_irq_seqno = 0;
1761
	}
1762

C
Chris Wilson 已提交
1763
	WARN_ON(i915_verify_lists(ring->dev));
1764 1765
}

1766 1767 1768 1769
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1770
	int i;
1771

1772
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1773
	    struct drm_i915_gem_object *obj, *next;
1774 1775 1776 1777 1778 1779

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1780
	    list_for_each_entry_safe(obj, next,
1781
				     &dev_priv->mm.deferred_free_list,
1782
				     mm_list)
1783
		    i915_gem_free_object_tail(obj);
1784 1785
	}

1786
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1787
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1788 1789
}

1790
static void
1791 1792 1793 1794
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1795 1796
	bool idle;
	int i;
1797 1798 1799 1800 1801

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1802 1803 1804 1805 1806 1807
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1808
	i915_gem_retire_requests(dev);
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1821 1822
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1823 1824
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1825
			    i915_add_request(ring, NULL, request))
1826 1827 1828 1829 1830 1831 1832
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1833
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1834

1835 1836 1837
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1838 1839 1840 1841
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1842
int
C
Chris Wilson 已提交
1843
i915_wait_request(struct intel_ring_buffer *ring,
1844 1845
		  uint32_t seqno,
		  bool do_retire)
1846
{
C
Chris Wilson 已提交
1847
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1848
	u32 ier;
1849 1850 1851 1852
	int ret = 0;

	BUG_ON(seqno == 0);

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1865

1866
	if (seqno == ring->outstanding_lazy_request) {
1867 1868 1869 1870
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1871
			return -ENOMEM;
1872

C
Chris Wilson 已提交
1873
		ret = i915_add_request(ring, NULL, request);
1874 1875 1876 1877 1878 1879
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1880
	}
1881

1882
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1883
		if (HAS_PCH_SPLIT(ring->dev))
1884
			ier = I915_READ(DEIER) | I915_READ(GTIER);
1885 1886
		else if (IS_VALLEYVIEW(ring->dev))
			ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1887 1888
		else
			ier = I915_READ(IER);
1889 1890 1891
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1892 1893
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1894 1895
		}

C
Chris Wilson 已提交
1896
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1897

1898
		ring->waiting_seqno = seqno;
1899
		if (ring->irq_get(ring)) {
1900
			if (dev_priv->mm.interruptible)
1901 1902 1903 1904 1905 1906 1907 1908 1909
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1910 1911 1912
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1913
			ret = -EBUSY;
1914
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1915

C
Chris Wilson 已提交
1916
		trace_i915_gem_request_wait_end(ring, seqno);
1917
	}
1918
	if (atomic_read(&dev_priv->mm.wedged))
1919
		ret = -EAGAIN;
1920 1921 1922 1923 1924 1925

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1926
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1927
		i915_gem_retire_requests_ring(ring);
1928 1929 1930 1931 1932 1933 1934 1935

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1936
int
1937
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1938 1939 1940
{
	int ret;

1941 1942
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1943
	 */
1944
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1945 1946 1947 1948

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1949
	if (obj->active) {
1950 1951
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
1952
		if (ret)
1953 1954 1955 1956 1957 1958
			return ret;
	}

	return 0;
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

1982
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(from, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}


2008
	ret = to->sync_to(to, from, seqno);
2009 2010
	if (!ret)
		from->sync_seqno[idx] = seqno;
2011

2012
	return ret;
2013 2014
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2025 2026 2027
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2039 2040 2041
/**
 * Unbinds an object from the GTT aperture.
 */
2042
int
2043
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2044
{
2045
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2046 2047
	int ret = 0;

2048
	if (obj->gtt_space == NULL)
2049 2050
		return 0;

2051
	if (obj->pin_count != 0) {
2052 2053 2054 2055
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2056 2057 2058 2059 2060 2061 2062 2063
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2064
	i915_gem_object_finish_gtt(obj);
2065

2066 2067
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2068
	 * are flushed when we go to remap it.
2069
	 */
2070 2071
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2072
	if (ret == -ERESTARTSYS)
2073
		return ret;
2074
	if (ret) {
2075 2076 2077
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2078
		i915_gem_clflush_object(obj);
2079
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2080
	}
2081

2082
	/* release the fence reg _after_ flushing */
2083 2084 2085
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2086

C
Chris Wilson 已提交
2087 2088
	trace_i915_gem_object_unbind(obj);

2089 2090
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2091 2092 2093 2094
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2095
	i915_gem_gtt_finish_object(obj);
2096

2097
	i915_gem_object_put_pages_gtt(obj);
2098

2099
	list_del_init(&obj->gtt_list);
2100
	list_del_init(&obj->mm_list);
2101
	/* Avoid an unnecessary call to unbind on rebind. */
2102
	obj->map_and_fenceable = true;
2103

2104 2105 2106
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2107

2108
	if (i915_gem_object_is_purgeable(obj))
2109 2110
		i915_gem_object_truncate(obj);

2111
	return ret;
2112 2113
}

2114
int
C
Chris Wilson 已提交
2115
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2116 2117 2118
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2119 2120
	int ret;

2121 2122 2123
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2124 2125
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2126 2127 2128 2129
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2130 2131 2132
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2133
	return 0;
2134 2135
}

2136
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2137
{
2138 2139
	int ret;

2140
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2141 2142
		return 0;

2143
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2144
		ret = i915_gem_flush_ring(ring,
2145
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2146 2147 2148 2149
		if (ret)
			return ret;
	}

2150 2151
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2152 2153
}

2154
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2155 2156
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2157
	int ret, i;
2158 2159

	/* Flush everything onto the inactive list. */
2160
	for (i = 0; i < I915_NUM_RINGS; i++) {
2161
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2162 2163 2164
		if (ret)
			return ret;
	}
2165

2166
	return 0;
2167 2168
}

C
Chris Wilson 已提交
2169
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj)
2170
{
2171
	struct drm_device *dev = obj->base.dev;
2172
	drm_i915_private_t *dev_priv = dev->dev_private;
2173 2174
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2175 2176
	uint64_t val;

2177
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2178
			 0xfffff000) << 32;
2179 2180
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2181 2182
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2183
	if (obj->tiling_mode == I915_TILING_Y)
2184 2185 2186
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

C
Chris Wilson 已提交
2187
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2188 2189

	return 0;
2190 2191
}

C
Chris Wilson 已提交
2192
static int i965_write_fence_reg(struct drm_i915_gem_object *obj)
2193
{
2194
	struct drm_device *dev = obj->base.dev;
2195
	drm_i915_private_t *dev_priv = dev->dev_private;
2196 2197
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2198 2199
	uint64_t val;

2200
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2201
		    0xfffff000) << 32;
2202 2203 2204
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2205 2206 2207
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

C
Chris Wilson 已提交
2208
	I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2209 2210

	return 0;
2211 2212
}

C
Chris Wilson 已提交
2213
static int i915_write_fence_reg(struct drm_i915_gem_object *obj)
2214
{
2215
	struct drm_device *dev = obj->base.dev;
2216
	drm_i915_private_t *dev_priv = dev->dev_private;
2217
	u32 size = obj->gtt_space->size;
2218
	u32 fence_reg, val, pitch_val;
2219
	int tile_width;
2220

2221 2222 2223 2224 2225 2226
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2227

2228
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2229
		tile_width = 128;
2230
	else
2231 2232 2233
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2234
	pitch_val = obj->stride / tile_width;
2235
	pitch_val = ffs(pitch_val) - 1;
2236

2237 2238
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2239
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2240
	val |= I915_FENCE_SIZE_BITS(size);
2241 2242 2243
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2244
	fence_reg = obj->fence_reg;
2245 2246
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2247
	else
2248
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2249

C
Chris Wilson 已提交
2250
	I915_WRITE(fence_reg, val);
2251 2252

	return 0;
2253 2254
}

C
Chris Wilson 已提交
2255
static int i830_write_fence_reg(struct drm_i915_gem_object *obj)
2256
{
2257
	struct drm_device *dev = obj->base.dev;
2258
	drm_i915_private_t *dev_priv = dev->dev_private;
2259 2260
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2261 2262 2263
	uint32_t val;
	uint32_t pitch_val;

2264 2265 2266 2267 2268 2269
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2270

2271
	pitch_val = obj->stride / 128;
2272 2273
	pitch_val = ffs(pitch_val) - 1;

2274 2275
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2276
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2277
	val |= I830_FENCE_SIZE_BITS(size);
2278 2279 2280
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

C
Chris Wilson 已提交
2281
	I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2282 2283

	return 0;
2284 2285
}

2286 2287 2288 2289 2290 2291
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
C
Chris Wilson 已提交
2292
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2293 2294 2295 2296
{
	int ret;

	if (obj->fenced_gpu_access) {
2297
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2298
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2299 2300 2301 2302
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2303 2304 2305 2306

		obj->fenced_gpu_access = false;
	}

C
Chris Wilson 已提交
2307
	if (obj->last_fenced_seqno && NULL != obj->last_fenced_ring) {
2308 2309
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2310
			ret = i915_wait_request(obj->last_fenced_ring,
2311 2312
						obj->last_fenced_seqno,
						true);
2313 2314 2315 2316 2317 2318 2319 2320
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2321 2322 2323 2324 2325 2326
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

C
Chris Wilson 已提交
2338
	ret = i915_gem_object_flush_fence(obj);
2339 2340 2341 2342 2343
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2344 2345

		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2356
i915_find_fence_reg(struct drm_device *dev)
2357 2358
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2359 2360
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2361 2362

	/* First try to find a free reg */
2363
	avail = NULL;
2364 2365 2366
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2367
			return reg;
2368

2369
		if (!reg->pin_count)
2370
			avail = reg;
2371 2372
	}

2373 2374
	if (avail == NULL)
		return NULL;
2375 2376

	/* None available, try to steal one or wait for a user to finish */
2377 2378
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2379
		if (reg->pin_count)
2380 2381
			continue;

2382 2383 2384
		if (first == NULL)
			first = reg;

C
Chris Wilson 已提交
2385
		if (reg->obj->last_fenced_ring == NULL) {
2386 2387 2388
			avail = reg;
			break;
		}
2389 2390
	}

2391 2392
	if (avail == NULL)
		avail = first;
2393

2394
	return avail;
2395 2396
}

2397
/**
2398
 * i915_gem_object_get_fence - set up fencing for an object
2399 2400 2401 2402 2403 2404 2405 2406 2407
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2408 2409
 *
 * For an untiled surface, this removes any existing fence.
2410
 */
2411
int
2412
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2413
{
2414
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2415
	struct drm_i915_private *dev_priv = dev->dev_private;
2416
	struct drm_i915_fence_reg *reg;
2417
	int ret;
2418

2419 2420 2421
	if (obj->tiling_mode == I915_TILING_NONE)
		return i915_gem_object_put_fence(obj);

2422
	/* Just update our place in the LRU if our fence is getting reused. */
2423 2424
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2425
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2426

2427
		if (obj->tiling_changed) {
C
Chris Wilson 已提交
2428
			ret = i915_gem_object_flush_fence(obj);
2429 2430 2431 2432 2433
			if (ret)
				return ret;

			goto update;
		}
2434

2435 2436 2437
		return 0;
	}

C
Chris Wilson 已提交
2438
	reg = i915_find_fence_reg(dev);
2439
	if (reg == NULL)
2440
		return -EDEADLK;
2441

C
Chris Wilson 已提交
2442
	ret = i915_gem_object_flush_fence(obj);
2443
	if (ret)
2444
		return ret;
2445

2446 2447 2448 2449 2450 2451 2452 2453
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

C
Chris Wilson 已提交
2454
		ret = i915_gem_object_flush_fence(old);
2455 2456 2457 2458 2459 2460
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		old->fence_reg = I915_FENCE_REG_NONE;
C
Chris Wilson 已提交
2461 2462
		old->last_fenced_ring = NULL;
		old->last_fenced_seqno = 0;
2463 2464

		drm_gem_object_unreference(&old->base);
C
Chris Wilson 已提交
2465
	}
2466

2467
	reg->obj = obj;
2468 2469
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
C
Chris Wilson 已提交
2470
	obj->last_fenced_ring = NULL;
2471

2472 2473
update:
	obj->tiling_changed = false;
2474
	switch (INTEL_INFO(dev)->gen) {
2475
	case 7:
2476
	case 6:
C
Chris Wilson 已提交
2477
		ret = sandybridge_write_fence_reg(obj);
2478 2479 2480
		break;
	case 5:
	case 4:
C
Chris Wilson 已提交
2481
		ret = i965_write_fence_reg(obj);
2482 2483
		break;
	case 3:
C
Chris Wilson 已提交
2484
		ret = i915_write_fence_reg(obj);
2485 2486
		break;
	case 2:
C
Chris Wilson 已提交
2487
		ret = i830_write_fence_reg(obj);
2488 2489
		break;
	}
2490

2491
	return ret;
2492 2493 2494 2495 2496 2497 2498
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2499
 * data structures in dev_priv and obj.
2500 2501
 */
static void
2502 2503
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2504
{
J
Jesse Barnes 已提交
2505
	drm_i915_private_t *dev_priv = dev->dev_private;
2506
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2507

2508
	switch (INTEL_INFO(dev)->gen) {
2509
	case 7:
2510
	case 6:
2511
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2512 2513 2514
		break;
	case 5:
	case 4:
2515
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2516 2517
		break;
	case 3:
2518 2519
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2520
		else
2521
	case 2:
2522
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2523 2524

		I915_WRITE(fence_reg, 0);
2525
		break;
2526
	}
2527

2528
	list_del_init(&reg->lru_list);
2529
	reg->obj = NULL;
2530
	reg->pin_count = 0;
2531 2532
}

2533 2534 2535 2536
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2537
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2538
			    unsigned alignment,
2539
			    bool map_and_fenceable)
2540
{
2541
	struct drm_device *dev = obj->base.dev;
2542 2543
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2544
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2545
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2546
	bool mappable, fenceable;
2547
	int ret;
2548

2549
	if (obj->madv != I915_MADV_WILLNEED) {
2550 2551 2552 2553
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2564

2565
	if (alignment == 0)
2566 2567
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2568
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2569 2570 2571 2572
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2573
	size = map_and_fenceable ? fence_size : obj->base.size;
2574

2575 2576 2577
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2578
	if (obj->base.size >
2579
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2580 2581 2582 2583
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2584
 search_free:
2585
	if (map_and_fenceable)
2586 2587
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2588
						    size, alignment, 0,
2589 2590 2591 2592
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2593
						size, alignment, 0);
2594 2595

	if (free_space != NULL) {
2596
		if (map_and_fenceable)
2597
			obj->gtt_space =
2598
				drm_mm_get_block_range_generic(free_space,
2599
							       size, alignment, 0,
2600 2601 2602
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2603
			obj->gtt_space =
2604
				drm_mm_get_block(free_space, size, alignment);
2605
	}
2606
	if (obj->gtt_space == NULL) {
2607 2608 2609
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2610 2611
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2612
		if (ret)
2613
			return ret;
2614

2615 2616 2617
		goto search_free;
	}

2618
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2619
	if (ret) {
2620 2621
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2622 2623

		if (ret == -ENOMEM) {
2624 2625
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2626 2627
			if (ret) {
				/* now try to shrink everyone else */
2628 2629 2630
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2631 2632
				}

2633
				return -ENOMEM;
2634 2635 2636 2637 2638
			}

			goto search_free;
		}

2639 2640 2641
		return ret;
	}

2642
	ret = i915_gem_gtt_prepare_object(obj);
2643
	if (ret) {
2644
		i915_gem_object_put_pages_gtt(obj);
2645 2646
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2647

2648
		if (i915_gem_evict_everything(dev, false))
2649 2650 2651
			return ret;

		goto search_free;
2652 2653
	}

2654 2655
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2656

2657
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2658
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2659

2660 2661 2662 2663
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2664 2665
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2666

2667
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2668

2669
	fenceable =
2670
		obj->gtt_space->size == fence_size &&
2671
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2672

2673
	mappable =
2674
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2675

2676
	obj->map_and_fenceable = mappable && fenceable;
2677

C
Chris Wilson 已提交
2678
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2679 2680 2681 2682
	return 0;
}

void
2683
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2684 2685 2686 2687 2688
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2689
	if (obj->pages == NULL)
2690 2691
		return;

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2703
	trace_i915_gem_object_clflush(obj);
2704

2705
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2706 2707
}

2708
/** Flushes any GPU write domain for the object if it's dirty. */
2709
static int
2710
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2711
{
2712
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2713
		return 0;
2714 2715

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2716
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2717 2718 2719 2720
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2721
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2722
{
C
Chris Wilson 已提交
2723 2724
	uint32_t old_write_domain;

2725
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2726 2727
		return;

2728
	/* No actual flushing is required for the GTT write domain.  Writes
2729 2730
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2731 2732 2733 2734
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2735
	 */
2736 2737
	wmb();

2738 2739
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2740 2741

	trace_i915_gem_object_change_domain(obj,
2742
					    obj->base.read_domains,
C
Chris Wilson 已提交
2743
					    old_write_domain);
2744 2745 2746 2747
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2748
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2749
{
C
Chris Wilson 已提交
2750
	uint32_t old_write_domain;
2751

2752
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2753 2754 2755
		return;

	i915_gem_clflush_object(obj);
2756
	intel_gtt_chipset_flush();
2757 2758
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2759 2760

	trace_i915_gem_object_change_domain(obj,
2761
					    obj->base.read_domains,
C
Chris Wilson 已提交
2762
					    old_write_domain);
2763 2764
}

2765 2766 2767 2768 2769 2770
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2771
int
2772
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2773
{
C
Chris Wilson 已提交
2774
	uint32_t old_write_domain, old_read_domains;
2775
	int ret;
2776

2777
	/* Not valid to be called on unbound objects. */
2778
	if (obj->gtt_space == NULL)
2779 2780
		return -EINVAL;

2781 2782 2783
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2784 2785 2786 2787
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2788
	if (obj->pending_gpu_write || write) {
2789
		ret = i915_gem_object_wait_rendering(obj);
2790 2791 2792
		if (ret)
			return ret;
	}
2793

2794
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2795

2796 2797
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2798

2799 2800 2801
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2802 2803
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2804
	if (write) {
2805 2806 2807
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2808 2809
	}

C
Chris Wilson 已提交
2810 2811 2812 2813
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2814 2815 2816
	return 0;
}

2817 2818 2819
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2820 2821
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2849 2850
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2851 2852 2853
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2883
/*
2884 2885 2886
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2887 2888
 */
int
2889 2890
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2891
				     struct intel_ring_buffer *pipelined)
2892
{
2893
	u32 old_read_domains, old_write_domain;
2894 2895
	int ret;

2896 2897 2898 2899
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2900
	if (pipelined != obj->ring) {
2901 2902
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2903 2904 2905
			return ret;
	}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2919 2920 2921 2922 2923 2924 2925 2926
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2927 2928
	i915_gem_object_flush_cpu_write_domain(obj);

2929
	old_write_domain = obj->base.write_domain;
2930
	old_read_domains = obj->base.read_domains;
2931 2932 2933 2934 2935

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2936
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2937 2938 2939

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2940
					    old_write_domain);
2941 2942 2943 2944

	return 0;
}

2945
int
2946
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2947
{
2948 2949
	int ret;

2950
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2951 2952
		return 0;

2953
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2954
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2955 2956 2957
		if (ret)
			return ret;
	}
2958

2959 2960 2961 2962
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2963 2964
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2965
	return 0;
2966 2967
}

2968 2969 2970 2971 2972 2973
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2974
int
2975
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2976
{
C
Chris Wilson 已提交
2977
	uint32_t old_write_domain, old_read_domains;
2978 2979
	int ret;

2980 2981 2982
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2983 2984 2985 2986
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2987 2988 2989 2990 2991
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2992

2993
	i915_gem_object_flush_gtt_write_domain(obj);
2994

2995 2996
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2997

2998
	/* Flush the CPU cache if it's still invalid. */
2999
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3000 3001
		i915_gem_clflush_object(obj);

3002
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3003 3004 3005 3006 3007
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3008
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3009 3010 3011 3012 3013

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3014 3015
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3016
	}
3017

C
Chris Wilson 已提交
3018 3019 3020 3021
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3022 3023 3024
	return 0;
}

3025 3026 3027
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3028 3029 3030 3031
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3032 3033 3034
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3035
static int
3036
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3037
{
3038 3039
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3040
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3041 3042 3043 3044
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3045

3046 3047 3048
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3049
	spin_lock(&file_priv->mm.lock);
3050
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3051 3052
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3053

3054 3055
		ring = request->ring;
		seqno = request->seqno;
3056
	}
3057
	spin_unlock(&file_priv->mm.lock);
3058

3059 3060
	if (seqno == 0)
		return 0;
3061

3062
	ret = 0;
3063
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3064 3065 3066 3067 3068
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3069 3070 3071 3072 3073
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3074

3075 3076
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3077 3078
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3079 3080
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3081
		}
3082 3083
	}

3084 3085
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3086 3087 3088 3089

	return ret;
}

3090
int
3091 3092
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3093
		    bool map_and_fenceable)
3094
{
3095
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3096
	struct drm_i915_private *dev_priv = dev->dev_private;
3097 3098
	int ret;

3099
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3100
	WARN_ON(i915_verify_lists(dev));
3101

3102 3103 3104 3105
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3106
			     "bo is already pinned with incorrect alignment:"
3107 3108
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3109
			     obj->gtt_offset, alignment,
3110
			     map_and_fenceable,
3111
			     obj->map_and_fenceable);
3112 3113 3114 3115 3116 3117
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3118
	if (obj->gtt_space == NULL) {
3119
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3120
						  map_and_fenceable);
3121
		if (ret)
3122
			return ret;
3123
	}
J
Jesse Barnes 已提交
3124

3125 3126 3127
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3128 3129 3130
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3131
				       &dev_priv->mm.pinned_list);
3132
	}
3133
	obj->pin_mappable |= map_and_fenceable;
3134

3135
	WARN_ON(i915_verify_lists(dev));
3136 3137 3138 3139
	return 0;
}

void
3140
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3141
{
3142
	struct drm_device *dev = obj->base.dev;
3143 3144
	drm_i915_private_t *dev_priv = dev->dev_private;

3145
	WARN_ON(i915_verify_lists(dev));
3146 3147
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3148

3149 3150 3151
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3152
				       &dev_priv->mm.inactive_list);
3153
		obj->pin_mappable = false;
3154
	}
3155
	WARN_ON(i915_verify_lists(dev));
3156 3157 3158 3159
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3160
		   struct drm_file *file)
3161 3162
{
	struct drm_i915_gem_pin *args = data;
3163
	struct drm_i915_gem_object *obj;
3164 3165
	int ret;

3166 3167 3168
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3169

3170
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3171
	if (&obj->base == NULL) {
3172 3173
		ret = -ENOENT;
		goto unlock;
3174 3175
	}

3176
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3177
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3178 3179
		ret = -EINVAL;
		goto out;
3180 3181
	}

3182
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3183 3184
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3185 3186
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3187 3188
	}

3189 3190 3191
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3192
		ret = i915_gem_object_pin(obj, args->alignment, true);
3193 3194
		if (ret)
			goto out;
3195 3196 3197 3198 3199
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3200
	i915_gem_object_flush_cpu_write_domain(obj);
3201
	args->offset = obj->gtt_offset;
3202
out:
3203
	drm_gem_object_unreference(&obj->base);
3204
unlock:
3205
	mutex_unlock(&dev->struct_mutex);
3206
	return ret;
3207 3208 3209 3210
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3211
		     struct drm_file *file)
3212 3213
{
	struct drm_i915_gem_pin *args = data;
3214
	struct drm_i915_gem_object *obj;
3215
	int ret;
3216

3217 3218 3219
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3220

3221
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3222
	if (&obj->base == NULL) {
3223 3224
		ret = -ENOENT;
		goto unlock;
3225
	}
3226

3227
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3228 3229
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3230 3231
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3232
	}
3233 3234 3235
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3236 3237
		i915_gem_object_unpin(obj);
	}
3238

3239
out:
3240
	drm_gem_object_unreference(&obj->base);
3241
unlock:
3242
	mutex_unlock(&dev->struct_mutex);
3243
	return ret;
3244 3245 3246 3247
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3248
		    struct drm_file *file)
3249 3250
{
	struct drm_i915_gem_busy *args = data;
3251
	struct drm_i915_gem_object *obj;
3252 3253
	int ret;

3254
	ret = i915_mutex_lock_interruptible(dev);
3255
	if (ret)
3256
		return ret;
3257

3258
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259
	if (&obj->base == NULL) {
3260 3261
		ret = -ENOENT;
		goto unlock;
3262
	}
3263

3264 3265 3266 3267
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3268
	 */
3269
	args->busy = obj->active;
3270 3271 3272 3273 3274 3275
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3276
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3277
			ret = i915_gem_flush_ring(obj->ring,
3278
						  0, obj->base.write_domain);
3279 3280 3281 3282
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3283 3284 3285
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3286
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3287
			if (request) {
3288
				ret = i915_add_request(obj->ring, NULL, request);
3289 3290 3291
				if (ret)
					kfree(request);
			} else
3292 3293
				ret = -ENOMEM;
		}
3294 3295 3296 3297 3298 3299

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3300
		i915_gem_retire_requests_ring(obj->ring);
3301

3302
		args->busy = obj->active;
3303
	}
3304

3305
	drm_gem_object_unreference(&obj->base);
3306
unlock:
3307
	mutex_unlock(&dev->struct_mutex);
3308
	return ret;
3309 3310 3311 3312 3313 3314
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3315
	return i915_gem_ring_throttle(dev, file_priv);
3316 3317
}

3318 3319 3320 3321 3322
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3323
	struct drm_i915_gem_object *obj;
3324
	int ret;
3325 3326 3327 3328 3329 3330 3331 3332 3333

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3334 3335 3336 3337
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3338
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3339
	if (&obj->base == NULL) {
3340 3341
		ret = -ENOENT;
		goto unlock;
3342 3343
	}

3344
	if (obj->pin_count) {
3345 3346
		ret = -EINVAL;
		goto out;
3347 3348
	}

3349 3350
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3351

3352
	/* if the object is no longer bound, discard its backing storage */
3353 3354
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3355 3356
		i915_gem_object_truncate(obj);

3357
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3358

3359
out:
3360
	drm_gem_object_unreference(&obj->base);
3361
unlock:
3362
	mutex_unlock(&dev->struct_mutex);
3363
	return ret;
3364 3365
}

3366 3367
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3368
{
3369
	struct drm_i915_private *dev_priv = dev->dev_private;
3370
	struct drm_i915_gem_object *obj;
3371
	struct address_space *mapping;
3372

3373 3374 3375
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3376

3377 3378 3379 3380
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3381

3382 3383 3384
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3385 3386
	i915_gem_info_add_obj(dev_priv, size);

3387 3388
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3389

3390 3391
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3407
	obj->base.driver_private = NULL;
3408
	obj->fence_reg = I915_FENCE_REG_NONE;
3409
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3410
	INIT_LIST_HEAD(&obj->gtt_list);
3411
	INIT_LIST_HEAD(&obj->ring_list);
3412
	INIT_LIST_HEAD(&obj->exec_list);
3413 3414
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3415 3416
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3417

3418
	return obj;
3419 3420 3421 3422 3423
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3424

3425 3426 3427
	return 0;
}

3428
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3429
{
3430
	struct drm_device *dev = obj->base.dev;
3431 3432
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3433

3434 3435
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3436
		list_move(&obj->mm_list,
3437 3438 3439
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3440

3441 3442
	trace_i915_gem_object_destroy(obj);

3443
	if (obj->base.map_list.map)
3444
		drm_gem_free_mmap_offset(&obj->base);
3445

3446 3447
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3448

3449 3450
	kfree(obj->bit_17);
	kfree(obj);
3451 3452
}

3453
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3454
{
3455 3456
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3457

3458
	while (obj->pin_count > 0)
3459 3460
		i915_gem_object_unpin(obj);

3461
	if (obj->phys_obj)
3462 3463 3464 3465 3466
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3467 3468 3469 3470 3471
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3472

3473
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3474

3475
	if (dev_priv->mm.suspended) {
3476 3477
		mutex_unlock(&dev->struct_mutex);
		return 0;
3478 3479
	}

3480
	ret = i915_gpu_idle(dev, true);
3481 3482
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3483
		return ret;
3484
	}
3485

3486 3487
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3488
		ret = i915_gem_evict_inactive(dev, false);
3489 3490 3491 3492 3493 3494
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3495 3496
	i915_gem_reset_fences(dev);

3497 3498 3499 3500 3501
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3502
	del_timer_sync(&dev_priv->hangcheck_timer);
3503 3504

	i915_kernel_lost_context(dev);
3505
	i915_gem_cleanup_ringbuffer(dev);
3506

3507 3508
	mutex_unlock(&dev->struct_mutex);

3509 3510 3511
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3512 3513 3514
	return 0;
}

3515 3516 3517 3518
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3519
	if (INTEL_INFO(dev)->gen < 5 ||
3520 3521 3522 3523 3524 3525
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3526 3527 3528
	if (IS_GEN5(dev))
		return;

3529 3530 3531 3532 3533 3534
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
	else
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
D
Daniel Vetter 已提交
3535 3536 3537 3538 3539 3540

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3541 3542 3543
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3544 3545 3546 3547 3548
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3567 3568 3569 3570
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3571 3572 3573 3574
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3575 3576 3577 3578 3579

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
		I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
				   GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3600
int
3601
i915_gem_init_hw(struct drm_device *dev)
3602 3603 3604
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3605

3606 3607
	i915_gem_init_swizzling(dev);

3608
	ret = intel_init_render_ring_buffer(dev);
3609
	if (ret)
3610
		return ret;
3611 3612

	if (HAS_BSD(dev)) {
3613
		ret = intel_init_bsd_ring_buffer(dev);
3614 3615
		if (ret)
			goto cleanup_render_ring;
3616
	}
3617

3618 3619 3620 3621 3622 3623
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3624 3625
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3626 3627
	i915_gem_init_ppgtt(dev);

3628 3629
	return 0;

3630
cleanup_bsd_ring:
3631
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3632
cleanup_render_ring:
3633
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3634 3635 3636 3637 3638 3639 3640
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3641
	int i;
3642

3643 3644
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3645 3646
}

3647 3648 3649 3650 3651
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3652
	int ret, i;
3653

J
Jesse Barnes 已提交
3654 3655 3656
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3657
	if (atomic_read(&dev_priv->mm.wedged)) {
3658
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3659
		atomic_set(&dev_priv->mm.wedged, 0);
3660 3661 3662
	}

	mutex_lock(&dev->struct_mutex);
3663 3664
	dev_priv->mm.suspended = 0;

3665
	ret = i915_gem_init_hw(dev);
3666 3667
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3668
		return ret;
3669
	}
3670

3671
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3672 3673
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3674 3675 3676 3677
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3678
	mutex_unlock(&dev->struct_mutex);
3679

3680 3681 3682
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3683

3684
	return 0;
3685 3686 3687 3688 3689 3690 3691 3692

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3693 3694 3695 3696 3697 3698
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3699 3700 3701
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3702
	drm_irq_uninstall(dev);
3703
	return i915_gem_idle(dev);
3704 3705 3706 3707 3708 3709 3710
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3711 3712 3713
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3714 3715 3716
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3717 3718
}

3719 3720 3721 3722 3723 3724 3725 3726
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3727 3728 3729
void
i915_gem_load(struct drm_device *dev)
{
3730
	int i;
3731 3732
	drm_i915_private_t *dev_priv = dev->dev_private;

3733
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3734 3735
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3736
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3737
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3738
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3739
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3740 3741
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3742
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3743
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3744 3745
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3746
	init_completion(&dev_priv->error_completion);
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3758 3759
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3760
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3761 3762
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3763

3764
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3765 3766 3767 3768
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3769
	/* Initialize fence registers to zero */
3770 3771
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3772
	}
3773

3774
	i915_gem_detect_bit_6_swizzle(dev);
3775
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3776

3777 3778
	dev_priv->mm.interruptible = true;

3779 3780 3781
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3782
}
3783 3784 3785 3786 3787

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3788 3789
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3790 3791 3792 3793 3794 3795 3796 3797
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3798
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3799 3800 3801 3802 3803
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3804
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3817
	kfree(phys_obj);
3818 3819 3820
	return ret;
}

3821
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3846
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3847 3848 3849 3850
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3851
				 struct drm_i915_gem_object *obj)
3852
{
3853
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3854
	char *vaddr;
3855 3856 3857
	int i;
	int page_count;

3858
	if (!obj->phys_obj)
3859
		return;
3860
	vaddr = obj->phys_obj->handle->vaddr;
3861

3862
	page_count = obj->base.size / PAGE_SIZE;
3863
	for (i = 0; i < page_count; i++) {
3864
		struct page *page = shmem_read_mapping_page(mapping, i);
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3876
	}
3877
	intel_gtt_chipset_flush();
3878

3879 3880
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3881 3882 3883 3884
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3885
			    struct drm_i915_gem_object *obj,
3886 3887
			    int id,
			    int align)
3888
{
3889
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3890 3891 3892 3893 3894 3895 3896 3897
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3898 3899
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3900 3901 3902 3903 3904 3905 3906
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3907
						obj->base.size, align);
3908
		if (ret) {
3909 3910
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3911
			return ret;
3912 3913 3914 3915
		}
	}

	/* bind to the object */
3916 3917
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3918

3919
	page_count = obj->base.size / PAGE_SIZE;
3920 3921

	for (i = 0; i < page_count; i++) {
3922 3923 3924
		struct page *page;
		char *dst, *src;

3925
		page = shmem_read_mapping_page(mapping, i);
3926 3927
		if (IS_ERR(page))
			return PTR_ERR(page);
3928

3929
		src = kmap_atomic(page);
3930
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3931
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3932
		kunmap_atomic(src);
3933

3934 3935 3936
		mark_page_accessed(page);
		page_cache_release(page);
	}
3937

3938 3939 3940 3941
	return 0;
}

static int
3942 3943
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3944 3945 3946
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3947
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3948
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3949

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3963

3964
	intel_gtt_chipset_flush();
3965 3966
	return 0;
}
3967

3968
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3969
{
3970
	struct drm_i915_file_private *file_priv = file->driver_priv;
3971 3972 3973 3974 3975

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3976
	spin_lock(&file_priv->mm.lock);
3977 3978 3979 3980 3981 3982 3983 3984 3985
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3986
	spin_unlock(&file_priv->mm.lock);
3987
}
3988

3989 3990 3991 3992 3993 3994 3995
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3996
		      list_empty(&dev_priv->mm.active_list);
3997 3998 3999 4000

	return !lists_empty;
}

4001
static int
4002
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4003
{
4004 4005 4006 4007 4008 4009
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4010
	int nr_to_scan = sc->nr_to_scan;
4011 4012 4013
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4014
		return 0;
4015 4016 4017

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4018 4019 4020 4021 4022 4023 4024
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4025 4026
	}

4027
rescan:
4028
	/* first scan for clean buffers */
4029
	i915_gem_retire_requests(dev);
4030

4031 4032 4033 4034
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4035 4036
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4037
				break;
4038 4039 4040 4041
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4042 4043 4044 4045
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4046 4047
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4048
			nr_to_scan--;
4049
		else
4050 4051 4052 4053
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4054 4055 4056 4057 4058 4059
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4060
		if (i915_gpu_idle(dev, true) == 0)
4061 4062
			goto rescan;
	}
4063 4064
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4065
}