i915_gem.c 131.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39 40
static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
41 42 43

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
44 45 46 47 48 49 50 51
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
52 53
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
54
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
55 56 57
				       unsigned alignment,
				       bool mappable,
				       bool need_fence);
58
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
59 60 61
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
62
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
63

64 65 66 67
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
85
				  struct drm_i915_gem_object *obj)
86 87
{
	dev_priv->mm.gtt_count++;
88 89
	dev_priv->mm.gtt_memory += obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
90
		dev_priv->mm.mappable_gtt_used +=
91 92
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
93
	}
94 95 96
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
97
				     struct drm_i915_gem_object *obj)
98 99
{
	dev_priv->mm.gtt_count--;
100 101
	dev_priv->mm.gtt_memory -= obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
102
		dev_priv->mm.mappable_gtt_used -=
103 104
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
105 106 107 108 109 110 111 112 113 114
	}
}

/**
 * Update the mappable working set counters. Call _only_ when there is a change
 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
 * @mappable: new state the changed mappable flag (either pin_ or fault_).
 */
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
115
			      struct drm_i915_gem_object *obj,
116 117 118
			      bool mappable)
{
	if (mappable) {
119
		if (obj->pin_mappable && obj->fault_mappable)
120 121 122
			/* Combined state was already mappable. */
			return;
		dev_priv->mm.gtt_mappable_count++;
123
		dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
124
	} else {
125
		if (obj->pin_mappable || obj->fault_mappable)
126 127 128
			/* Combined state still mappable. */
			return;
		dev_priv->mm.gtt_mappable_count--;
129
		dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
130
	}
131 132 133
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
134
				  struct drm_i915_gem_object *obj,
135
				  bool mappable)
136 137
{
	dev_priv->mm.pin_count++;
138
	dev_priv->mm.pin_memory += obj->gtt_space->size;
139
	if (mappable) {
140
		obj->pin_mappable = true;
141 142
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}
143 144 145
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
146
				     struct drm_i915_gem_object *obj)
147 148
{
	dev_priv->mm.pin_count--;
149 150 151
	dev_priv->mm.pin_memory -= obj->gtt_space->size;
	if (obj->pin_mappable) {
		obj->pin_mappable = false;
152 153
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

204
	WARN_ON(i915_verify_lists(dev));
205 206
	return 0;
}
207

208 209 210 211 212 213 214 215
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

216 217
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
D
Daniel Vetter 已提交
218
		     unsigned long mappable_end,
J
Jesse Barnes 已提交
219
		     unsigned long end)
220 221 222
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
223 224 225
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
226 227 228
		return -EINVAL;
	}

J
Jesse Barnes 已提交
229 230
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
231

232
	dev_priv->mm.gtt_total = end - start;
233
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
234
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
235 236 237

	return 0;
}
238

J
Jesse Barnes 已提交
239 240 241 242 243 244 245 246
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
247
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
248 249
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
250
	return ret;
251 252
}

253 254 255 256
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
257
	struct drm_i915_private *dev_priv = dev->dev_private;
258 259 260 261 262
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

263 264 265 266
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
267 268 269 270

	return 0;
}

271 272 273 274 275 276 277 278 279 280

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
281 282
	int ret;
	u32 handle;
283 284 285 286

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
287
	obj = i915_gem_alloc_object(dev, args->size);
288 289 290 291
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
292
	if (ret) {
293 294 295
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
296
		return ret;
297
	}
298

299 300 301 302
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

303
	args->handle = handle;
304 305 306
	return 0;
}

307 308 309
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
310
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
311 312 313 314 315

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

316
static inline void
317 318 319 320 321 322 323 324
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

325 326
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
327 328 329

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

330 331
	kunmap(src_page);
	kunmap(dst_page);
332 333
}

334
static inline void
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

354 355
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

379 380
	kunmap(cpu_page);
	kunmap(gpu_page);
381 382
}

383 384 385 386 387 388 389 390 391 392
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
393
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
394
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
395
	ssize_t remain;
396
	loff_t offset;
397 398 399 400 401 402
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

403
	obj_priv = to_intel_bo(obj);
404 405 406
	offset = args->offset;

	while (remain > 0) {
407 408 409 410
		struct page *page;
		char *vaddr;
		int ret;

411 412 413 414 415 416 417 418 419 420
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

421 422 423 424 425 426 427 428 429 430 431 432 433 434
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
435
			return -EFAULT;
436 437 438 439 440 441

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

442
	return 0;
443 444 445 446 447 448 449 450 451 452 453 454 455
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
456
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
457
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458 459 460 461 462
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
463 464
	int shmem_page_offset;
	int data_page_index, data_page_offset;
465 466 467
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
468
	int do_bit17_swizzling;
469 470 471 472 473 474 475 476 477 478 479

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

480
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
481 482 483
	if (user_pages == NULL)
		return -ENOMEM;

484
	mutex_unlock(&dev->struct_mutex);
485 486
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
487
				      num_pages, 1, 0, user_pages, NULL);
488
	up_read(&mm->mmap_sem);
489
	mutex_lock(&dev->struct_mutex);
490 491
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
492
		goto out;
493 494
	}

495 496 497
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
498
	if (ret)
499
		goto out;
500

501
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
502

503
	obj_priv = to_intel_bo(obj);
504 505 506
	offset = args->offset;

	while (remain > 0) {
507 508
		struct page *page;

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

526 527 528 529 530
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

531
		if (do_bit17_swizzling) {
532
			slow_shmem_bit17_copy(page,
533
					      shmem_page_offset,
534 535 536 537 538 539 540
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
541
					page,
542 543
					shmem_page_offset,
					page_length);
544
		}
545

546 547 548
		mark_page_accessed(page);
		page_cache_release(page);

549 550 551 552 553
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

554
out:
555 556
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
557
		mark_page_accessed(user_pages[i]);
558 559
		page_cache_release(user_pages[i]);
	}
560
	drm_free_large(user_pages);
561 562 563 564

	return ret;
}

565 566 567 568 569 570 571 572 573 574 575 576
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
577
	int ret = 0;
578

579
	ret = i915_mutex_lock_interruptible(dev);
580
	if (ret)
581
		return ret;
582 583

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
584 585 586
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
587
	}
588
	obj_priv = to_intel_bo(obj);
589

590 591
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
592
		ret = -EINVAL;
593
		goto out;
C
Chris Wilson 已提交
594 595
	}

596 597 598
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
599 600 601 602
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
603
		goto out;
604 605
	}

606 607 608 609 610
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
611
	}
612

613 614 615 616
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
617
		goto out;
618 619 620

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
621
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
622 623
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
624

625
out:
626
	drm_gem_object_unreference(obj);
627
unlock:
628
	mutex_unlock(&dev->struct_mutex);
629
	return ret;
630 631
}

632 633
/* This is the fast write path which cannot handle
 * page faults in the source data
634
 */
635 636 637 638 639 640

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
641 642
{
	char *vaddr_atomic;
643
	unsigned long unwritten;
644

P
Peter Zijlstra 已提交
645
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
646 647
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
648
	io_mapping_unmap_atomic(vaddr_atomic);
649
	return unwritten;
650 651 652 653 654 655
}

/* Here's the write path which can sleep for
 * page faults
 */

656
static inline void
657 658 659 660
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
661
{
662 663
	char __iomem *dst_vaddr;
	char *src_vaddr;
664

665 666 667 668 669 670 671 672 673
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
674 675
}

676 677 678 679
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
680
static int
681 682 683
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
684
{
685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
686
	drm_i915_private_t *dev_priv = dev->dev_private;
687
	ssize_t remain;
688
	loff_t offset, page_base;
689
	char __user *user_data;
690
	int page_offset, page_length;
691 692 693 694

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

695
	obj_priv = to_intel_bo(obj);
696 697 698 699 700
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
701 702 703
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
704
		 */
705 706 707 708 709 710 711
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
712 713
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
714
		 */
715 716 717 718
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
719

720 721 722
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
723 724
	}

725
	return 0;
726 727
}

728 729 730 731 732 733 734
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
735
static int
736 737 738
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
739
{
740
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
741 742 743 744 745 746 747 748
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
749
	int ret;
750 751 752 753 754 755 756 757 758 759 760 761
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

762
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
763 764 765
	if (user_pages == NULL)
		return -ENOMEM;

766
	mutex_unlock(&dev->struct_mutex);
767 768 769 770
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
771
	mutex_lock(&dev->struct_mutex);
772 773 774 775
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
776

777 778
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
779
		goto out_unpin_pages;
780

781
	obj_priv = to_intel_bo(obj);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

804 805 806 807 808
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
809 810 811 812 813 814 815 816 817

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
818
	drm_free_large(user_pages);
819 820 821 822

	return ret;
}

823 824 825 826
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
827
static int
828 829 830
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
831
{
832
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
833
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
834
	ssize_t remain;
835
	loff_t offset;
836 837 838 839 840
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
841

842
	obj_priv = to_intel_bo(obj);
843 844 845 846
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
847 848 849 850
		struct page *page;
		char *vaddr;
		int ret;

851 852 853 854 855 856 857 858 859 860
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
881
			return -EFAULT;
882 883 884 885 886 887

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

888
	return 0;
889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
903
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
904
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
905 906 907 908 909
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
910
	int shmem_page_offset;
911 912 913 914
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
915
	int do_bit17_swizzling;
916 917 918 919 920 921 922 923 924 925 926

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

927
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
928 929 930
	if (user_pages == NULL)
		return -ENOMEM;

931
	mutex_unlock(&dev->struct_mutex);
932 933 934 935
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
936
	mutex_lock(&dev->struct_mutex);
937 938
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
939
		goto out;
940 941
	}

942
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
943
	if (ret)
944
		goto out;
945

946
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
947

948
	obj_priv = to_intel_bo(obj);
949
	offset = args->offset;
950
	obj_priv->dirty = 1;
951

952
	while (remain > 0) {
953 954
		struct page *page;

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

972 973 974 975 976 977 978
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

979
		if (do_bit17_swizzling) {
980
			slow_shmem_bit17_copy(page,
981 982 983
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
984 985 986
					      page_length,
					      0);
		} else {
987
			slow_shmem_copy(page,
988 989 990 991
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
992
		}
993

994 995 996 997
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

998 999 1000
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1001 1002
	}

1003
out:
1004 1005
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1006
	drm_free_large(user_pages);
1007

1008
	return ret;
1009 1010 1011 1012 1013 1014 1015 1016 1017
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1018
		      struct drm_file *file)
1019 1020 1021 1022 1023 1024
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

1025
	ret = i915_mutex_lock_interruptible(dev);
1026
	if (ret)
1027
		return ret;
1028 1029 1030 1031 1032

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1033
	}
1034
	obj_priv = to_intel_bo(obj);
1035

1036

1037 1038
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1039
		ret = -EINVAL;
1040
		goto out;
C
Chris Wilson 已提交
1041 1042
	}

1043 1044 1045
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1046 1047 1048 1049
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1050
		goto out;
1051 1052
	}

1053 1054 1055 1056 1057
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
1058 1059 1060 1061 1062 1063 1064 1065
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1066
	if (obj_priv->phys_obj)
1067
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1068
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1069
		 obj_priv->gtt_space &&
1070
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1071
		ret = i915_gem_object_pin(obj, 0, true, false);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1085
	} else {
1086 1087
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1088
			goto out;
1089

1090 1091 1092 1093 1094 1095
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1096

1097
out:
1098
	drm_gem_object_unreference(obj);
1099
unlock:
1100
	mutex_unlock(&dev->struct_mutex);
1101 1102 1103 1104
	return ret;
}

/**
1105 1106
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1107 1108 1109 1110 1111
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1112
	struct drm_i915_private *dev_priv = dev->dev_private;
1113 1114
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1115
	struct drm_i915_gem_object *obj_priv;
1116 1117
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1118 1119 1120 1121 1122
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1123
	/* Only handle setting domains to types used by the CPU. */
1124
	if (write_domain & I915_GEM_GPU_DOMAINS)
1125 1126
		return -EINVAL;

1127
	if (read_domains & I915_GEM_GPU_DOMAINS)
1128 1129 1130 1131 1132 1133 1134 1135
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1136
	ret = i915_mutex_lock_interruptible(dev);
1137
	if (ret)
1138
		return ret;
1139

1140
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1141 1142 1143
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1144
	}
1145
	obj_priv = to_intel_bo(obj);
1146

1147 1148
	intel_mark_busy(dev, obj);

1149 1150
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1151

1152 1153 1154 1155
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1156 1157 1158
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1159 1160 1161
				       &dev_priv->mm.fence_list);
		}

1162 1163 1164 1165 1166 1167
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1168
	} else {
1169
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1170 1171
	}

1172 1173
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1174
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1175

1176
	drm_gem_object_unreference(obj);
1177
unlock:
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1196
	ret = i915_mutex_lock_interruptible(dev);
1197
	if (ret)
1198
		return ret;
1199

1200 1201
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1202 1203
		ret = -ENOENT;
		goto unlock;
1204 1205 1206
	}

	/* Pinned buffers may be scanout, so flush the cache */
1207
	if (to_intel_bo(obj)->pin_count)
1208 1209
		i915_gem_object_flush_cpu_write_domain(obj);

1210
	drm_gem_object_unreference(obj);
1211
unlock:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
1227
	struct drm_i915_private *dev_priv = dev->dev_private;
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1238
		return -ENOENT;
1239

1240 1241 1242 1243 1244
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1245 1246 1247 1248 1249 1250 1251
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1252
	drm_gem_object_unreference_unlocked(obj);
1253 1254 1255 1256 1257 1258 1259 1260
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1281
	drm_i915_private_t *dev_priv = dev->dev_private;
1282
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1283 1284 1285
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1286
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1287 1288 1289 1290 1291 1292 1293

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1294
	BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	if (obj_priv->gtt_space) {
		if (!obj_priv->mappable ||
		    (obj_priv->tiling_mode && !obj_priv->fenceable)) {
			ret = i915_gem_object_unbind(obj);
			if (ret)
				goto unlock;
		}
	}
1304

1305
	if (!obj_priv->gtt_space) {
1306 1307
		ret = i915_gem_object_bind_to_gtt(obj, 0,
						  true, obj_priv->tiling_mode);
1308 1309
		if (ret)
			goto unlock;
1310 1311
	}

1312 1313 1314 1315
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1316 1317
	if (!obj_priv->fault_mappable) {
		obj_priv->fault_mappable = true;
1318
		i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1319 1320
	}

1321
	/* Need a new fence register? */
1322
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1323
		ret = i915_gem_object_get_fence_reg(obj, true);
1324 1325
		if (ret)
			goto unlock;
1326
	}
1327

1328
	if (i915_gem_object_is_inactive(obj_priv))
1329
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1330

1331 1332 1333 1334 1335
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1336
unlock:
1337 1338 1339
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1340 1341 1342
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1343 1344 1345 1346
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1347
		return VM_FAULT_SIGBUS;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1368
	struct drm_local_map *map;
1369 1370 1371 1372
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1373
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1387
		ret = -ENOSPC;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1399 1400
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1401 1402 1403 1404 1405 1406 1407 1408 1409
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1410
	kfree(list->map);
C
Chris Wilson 已提交
1411
	list->map = NULL;
1412 1413 1414 1415

	return ret;
}

1416 1417 1418 1419
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1420
 * Preserve the reservation of the mmapping with the DRM core code, but
1421 1422 1423 1424 1425 1426 1427 1428 1429
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1430
void
1431 1432 1433
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1434
	struct drm_i915_private *dev_priv = dev->dev_private;
1435
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1436

C
Chris Wilson 已提交
1437
	if (unlikely(obj->map_list.map && dev->dev_mapping))
1438
		unmap_mapping_range(dev->dev_mapping,
C
Chris Wilson 已提交
1439 1440
				    (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
				    obj->size, 1);
1441 1442 1443

	if (obj_priv->fault_mappable) {
		obj_priv->fault_mappable = false;
1444
		i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1445
	}
1446 1447
}

1448 1449 1450 1451 1452
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
C
Chris Wilson 已提交
1453
	struct drm_map_list *list = &obj->map_list;
1454 1455

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1456 1457 1458
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
1469
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1470
{
1471
	struct drm_device *dev = obj_priv->base.dev;
1472 1473 1474 1475 1476

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1477 1478
	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj_priv->tiling_mode == I915_TILING_NONE)
1479 1480
		return 4096;

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	return i915_gem_get_gtt_size(obj_priv);
}

static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
{
	struct drm_device *dev = obj_priv->base.dev;
	uint32_t size;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (INTEL_INFO(dev)->gen >= 4)
		return obj_priv->base.size;

1501 1502 1503 1504
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1505
	if (INTEL_INFO(dev)->gen == 3)
1506
		size = 1024*1024;
1507
	else
1508
		size = 512*1024;
1509

1510 1511
	while (size < obj_priv->base.size)
		size <<= 1;
1512

1513
	return size;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
1535
	struct drm_i915_private *dev_priv = dev->dev_private;
1536 1537 1538 1539 1540 1541 1542 1543
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1544
	ret = i915_mutex_lock_interruptible(dev);
1545
	if (ret)
1546
		return ret;
1547

1548 1549 1550 1551 1552
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1553
	obj_priv = to_intel_bo(obj);
1554

1555 1556 1557 1558 1559
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		ret = -E2BIG;
		goto unlock;
	}

1560 1561
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1562 1563
		ret = -EINVAL;
		goto out;
1564 1565
	}

C
Chris Wilson 已提交
1566
	if (!obj->map_list.map) {
1567
		ret = i915_gem_create_mmap_offset(obj);
1568 1569
		if (ret)
			goto out;
1570 1571
	}

C
Chris Wilson 已提交
1572
	args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1573

1574
out:
1575
	drm_gem_object_unreference(obj);
1576
unlock:
1577
	mutex_unlock(&dev->struct_mutex);
1578
	return ret;
1579 1580
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
			      gfp_t gfpmask)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
	BUG_ON(obj_priv->pages != NULL);
	obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj_priv->pages == NULL)
		return -ENOMEM;

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

		obj_priv->pages[i] = page;
	}

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	return PTR_ERR(page);
}

1628
static void
1629
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1630
{
1631
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1632 1633 1634
	int page_count = obj->size / PAGE_SIZE;
	int i;

C
Chris Wilson 已提交
1635
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1636

1637 1638 1639
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1640
	if (obj_priv->madv == I915_MADV_DONTNEED)
1641
		obj_priv->dirty = 0;
1642 1643 1644 1645 1646 1647

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1648
			mark_page_accessed(obj_priv->pages[i]);
1649 1650 1651

		page_cache_release(obj_priv->pages[i]);
	}
1652 1653
	obj_priv->dirty = 0;

1654
	drm_free_large(obj_priv->pages);
1655
	obj_priv->pages = NULL;
1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1668
static void
1669
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1670
			       struct intel_ring_buffer *ring)
1671 1672
{
	struct drm_device *dev = obj->dev;
1673
	struct drm_i915_private *dev_priv = dev->dev_private;
1674
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1675
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1676

1677 1678
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1679 1680 1681 1682 1683 1684

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1685

1686
	/* Move from whatever list we were on to the tail of execution. */
1687 1688
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1689
	obj_priv->last_rendering_seqno = seqno;
1690 1691
}

1692 1693 1694 1695 1696
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1697
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1698 1699

	BUG_ON(!obj_priv->active);
1700 1701
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1702 1703
	obj_priv->last_rendering_seqno = 0;
}
1704

1705 1706 1707 1708
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1709
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1710
	struct inode *inode;
1711

1712 1713 1714 1715 1716 1717
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1718
	inode = obj->filp->f_path.dentry->d_inode;
1719 1720 1721
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1722 1723

	obj_priv->madv = __I915_MADV_PURGED;
1724 1725 1726 1727 1728 1729 1730 1731
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1732 1733 1734 1735 1736
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1737
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1738 1739

	if (obj_priv->pin_count != 0)
1740
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1741
	else
1742 1743
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1744

1745 1746
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1747
	obj_priv->last_rendering_seqno = 0;
1748
	obj_priv->ring = NULL;
1749 1750 1751 1752
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1753
	WARN_ON(i915_verify_lists(dev));
1754 1755
}

1756 1757
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1758
			       uint32_t flush_domains,
1759
			       struct intel_ring_buffer *ring)
1760 1761 1762 1763 1764
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1765
				 &ring->gpu_write_list,
1766
				 gpu_write_list) {
1767
		struct drm_gem_object *obj = &obj_priv->base;
1768

1769
		if (obj->write_domain & flush_domains) {
1770 1771 1772 1773
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1774
			i915_gem_object_move_to_active(obj, ring);
1775 1776

			/* update the fence lru list */
1777 1778 1779 1780
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1781
						&dev_priv->mm.fence_list);
1782
			}
1783 1784 1785 1786 1787 1788 1789

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1790

1791
int
1792
i915_add_request(struct drm_device *dev,
1793
		 struct drm_file *file,
C
Chris Wilson 已提交
1794
		 struct drm_i915_gem_request *request,
1795
		 struct intel_ring_buffer *ring)
1796 1797
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1798
	struct drm_i915_file_private *file_priv = NULL;
1799 1800
	uint32_t seqno;
	int was_empty;
1801 1802 1803
	int ret;

	BUG_ON(request == NULL);
1804

1805 1806
	if (file != NULL)
		file_priv = file->driver_priv;
1807

1808 1809 1810
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1811

1812
	ring->outstanding_lazy_request = false;
1813 1814

	request->seqno = seqno;
1815
	request->ring = ring;
1816
	request->emitted_jiffies = jiffies;
1817 1818 1819
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1820
	if (file_priv) {
1821
		spin_lock(&file_priv->mm.lock);
1822
		request->file_priv = file_priv;
1823
		list_add_tail(&request->client_list,
1824
			      &file_priv->mm.request_list);
1825
		spin_unlock(&file_priv->mm.lock);
1826
	}
1827

B
Ben Gamari 已提交
1828
	if (!dev_priv->mm.suspended) {
1829 1830
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1831
		if (was_empty)
1832 1833
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1834
	}
1835
	return 0;
1836 1837 1838 1839 1840 1841 1842 1843
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1844
static void
1845
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1846 1847 1848 1849
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1850
	if (INTEL_INFO(dev)->gen >= 4)
1851
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1852

1853
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1854 1855
}

1856 1857
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1858
{
1859
	struct drm_i915_file_private *file_priv = request->file_priv;
1860

1861 1862
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1863

1864 1865 1866 1867
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1868 1869
}

1870 1871
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1872
{
1873 1874
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1875

1876 1877 1878
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1879

1880
		list_del(&request->list);
1881
		i915_gem_request_remove_from_client(request);
1882 1883
		kfree(request);
	}
1884

1885
	while (!list_empty(&ring->active_list)) {
1886 1887
		struct drm_i915_gem_object *obj_priv;

1888
		obj_priv = list_first_entry(&ring->active_list,
1889
					    struct drm_i915_gem_object,
1890
					    ring_list);
1891 1892

		obj_priv->base.write_domain = 0;
1893
		list_del_init(&obj_priv->gpu_write_list);
1894
		i915_gem_object_move_to_inactive(&obj_priv->base);
1895 1896 1897
	}
}

1898
void i915_gem_reset(struct drm_device *dev)
1899
{
1900 1901
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1902
	int i;
1903

1904
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1905
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1906
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1907 1908 1909 1910 1911 1912 1913 1914

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1915
					    mm_list);
1916 1917 1918 1919 1920 1921 1922 1923 1924

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1925 1926
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1927
			    mm_list)
1928 1929 1930
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1942 1943 1944 1945 1946
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1947 1948 1949
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1950 1951 1952 1953
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1954 1955
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1956 1957
		return;

1958
	WARN_ON(i915_verify_lists(dev));
1959

1960
	seqno = ring->get_seqno(ring);
1961
	while (!list_empty(&ring->request_list)) {
1962 1963
		struct drm_i915_gem_request *request;

1964
		request = list_first_entry(&ring->request_list,
1965 1966 1967
					   struct drm_i915_gem_request,
					   list);

1968
		if (!i915_seqno_passed(seqno, request->seqno))
1969 1970 1971 1972 1973
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1974
		i915_gem_request_remove_from_client(request);
1975 1976
		kfree(request);
	}
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
1987
					    ring_list);
1988

1989
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1990
			break;
1991 1992 1993 1994 1995 1996

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1997
	}
1998 1999 2000

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2001
		ring->user_irq_put(ring);
2002 2003
		dev_priv->trace_irq_seqno = 0;
	}
2004 2005

	WARN_ON(i915_verify_lists(dev));
2006 2007
}

2008 2009 2010 2011 2012
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
2023
				     mm_list)
2024 2025 2026
		    i915_gem_free_object_tail(&obj_priv->base);
	}

2027
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2028
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2029
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2030 2031
}

2032
static void
2033 2034 2035 2036 2037 2038 2039 2040 2041
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2042 2043 2044 2045 2046 2047
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2048
	i915_gem_retire_requests(dev);
2049

2050
	if (!dev_priv->mm.suspended &&
2051
		(!list_empty(&dev_priv->render_ring.request_list) ||
2052 2053
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
2054
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2055 2056 2057
	mutex_unlock(&dev->struct_mutex);
}

2058
int
2059
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2060
		     bool interruptible, struct intel_ring_buffer *ring)
2061 2062
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2063
	u32 ier;
2064 2065 2066 2067
	int ret = 0;

	BUG_ON(seqno == 0);

2068
	if (atomic_read(&dev_priv->mm.wedged))
2069 2070
		return -EAGAIN;

2071
	if (ring->outstanding_lazy_request) {
2072 2073 2074 2075
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2076
			return -ENOMEM;
2077 2078 2079 2080 2081 2082 2083 2084

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2085
	}
2086
	BUG_ON(seqno == dev_priv->next_seqno);
2087

2088
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2089
		if (HAS_PCH_SPLIT(dev))
2090 2091 2092
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2093 2094 2095 2096 2097 2098 2099
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2100 2101
		trace_i915_gem_request_wait_begin(dev, seqno);

2102
		ring->waiting_seqno = seqno;
2103
		ring->user_irq_get(ring);
2104
		if (interruptible)
2105
			ret = wait_event_interruptible(ring->irq_queue,
2106
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2107
				|| atomic_read(&dev_priv->mm.wedged));
2108
		else
2109
			wait_event(ring->irq_queue,
2110
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2111
				|| atomic_read(&dev_priv->mm.wedged));
2112

2113
		ring->user_irq_put(ring);
2114
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2115 2116

		trace_i915_gem_request_wait_end(dev, seqno);
2117
	}
2118
	if (atomic_read(&dev_priv->mm.wedged))
2119
		ret = -EAGAIN;
2120 2121

	if (ret && ret != -ERESTARTSYS)
2122
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2123
			  __func__, ret, seqno, ring->get_seqno(ring),
2124
			  dev_priv->next_seqno);
2125 2126 2127 2128 2129 2130 2131

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2132
		i915_gem_retire_requests_ring(dev, ring);
2133 2134 2135 2136

	return ret;
}

2137 2138 2139 2140 2141
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2142
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2143
		  struct intel_ring_buffer *ring)
2144
{
2145
	return i915_do_wait_request(dev, seqno, 1, ring);
2146 2147
}

2148
static void
2149
i915_gem_flush_ring(struct drm_device *dev,
2150
		    struct drm_file *file_priv,
2151 2152 2153 2154
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2155
	ring->flush(ring, invalidate_domains, flush_domains);
2156 2157 2158
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2159 2160
static void
i915_gem_flush(struct drm_device *dev,
2161
	       struct drm_file *file_priv,
2162
	       uint32_t invalidate_domains,
2163 2164
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2165 2166
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2167

2168 2169
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2170

2171 2172
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2173
			i915_gem_flush_ring(dev, file_priv,
2174 2175 2176
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2177
			i915_gem_flush_ring(dev, file_priv,
2178 2179
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2180 2181 2182 2183
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2184
	}
2185 2186
}

2187 2188 2189 2190 2191
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2192 2193
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2194 2195
{
	struct drm_device *dev = obj->dev;
2196
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2197 2198
	int ret;

2199 2200
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2201
	 */
2202
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2203 2204 2205 2206 2207

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2208 2209 2210 2211 2212
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2213 2214 2215 2216 2217 2218 2219 2220 2221
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2222
int
2223 2224 2225
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2226
	struct drm_i915_private *dev_priv = dev->dev_private;
2227
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2238 2239 2240
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2241 2242 2243 2244 2245 2246
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2247
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2248
	if (ret == -ERESTARTSYS)
2249
		return ret;
2250 2251 2252 2253
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2254 2255 2256 2257
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2258

2259 2260 2261 2262
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2263 2264
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2265

2266
	i915_gem_object_put_pages_gtt(obj);
2267

2268
	i915_gem_info_remove_gtt(dev_priv, obj_priv);
2269
	list_del_init(&obj_priv->mm_list);
2270 2271
	obj_priv->fenceable = true;
	obj_priv->mappable = true;
2272

2273 2274
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2275
	obj_priv->gtt_offset = 0;
2276

2277 2278 2279
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2280 2281
	trace_i915_gem_object_unbind(obj);

2282
	return ret;
2283 2284
}

2285 2286 2287
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2288 2289 2290
	if (list_empty(&ring->gpu_write_list))
		return 0;

2291 2292 2293 2294 2295 2296 2297
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2298
int
2299 2300 2301 2302
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2303
	int ret;
2304

2305 2306
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2307 2308
		       list_empty(&dev_priv->bsd_ring.active_list) &&
		       list_empty(&dev_priv->blt_ring.active_list));
2309 2310 2311 2312
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2313
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2314 2315
	if (ret)
		return ret;
2316

2317 2318 2319
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2320

2321 2322 2323
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2324

2325
	return 0;
2326 2327
}

2328
static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2329 2330 2331
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2332
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2333
	u32 size = i915_gem_get_gtt_size(obj_priv);
2334 2335 2336
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2337
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2350
static void i965_write_fence_reg(struct drm_gem_object *obj)
2351 2352 2353
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2354
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2355
	u32 size = i915_gem_get_gtt_size(obj_priv);
2356 2357 2358
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2359
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

2370
static void i915_write_fence_reg(struct drm_gem_object *obj)
2371 2372 2373
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2374
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2375 2376
	u32 size = i915_gem_get_gtt_size(obj_priv);
	uint32_t fence_reg, val, pitch_val;
2377
	int tile_width;
2378 2379

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2380 2381 2382 2383
	    (obj_priv->gtt_offset & (size - 1))) {
		WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
		     __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
		     obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2384 2385 2386
		return;
	}

2387 2388 2389
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2390
	else
2391 2392 2393 2394 2395
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2396

2397 2398 2399 2400 2401 2402
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2403 2404 2405
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2406
	val |= I915_FENCE_SIZE_BITS(size);
2407 2408 2409
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2410 2411 2412
	fence_reg = obj_priv->fence_reg;
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2413
	else
2414
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2415
	I915_WRITE(fence_reg, val);
2416 2417
}

2418
static void i830_write_fence_reg(struct drm_gem_object *obj)
2419 2420 2421
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2422
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2423
	u32 size = i915_gem_get_gtt_size(obj_priv);
2424 2425 2426
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2427
	uint32_t fence_size_bits;
2428

2429
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2430
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2431
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2432
		     __func__, obj_priv->gtt_offset);
2433 2434 2435
		return;
	}

2436 2437 2438 2439
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2440 2441 2442
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2443
	fence_size_bits = I830_FENCE_SIZE_BITS(size);
2444 2445
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2446 2447 2448 2449 2450 2451
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2452 2453
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2454 2455
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2456 2457
	struct drm_i915_fence_reg *reg;
	struct drm_i915_gem_object *obj_priv = NULL;
2458 2459 2460 2461 2462 2463 2464 2465 2466
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2467
		obj_priv = to_intel_bo(reg->obj);
2468 2469 2470 2471 2472 2473 2474 2475
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
2476
	avail = I915_FENCE_REG_NONE;
2477 2478
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
2479
		obj_priv = to_intel_bo(reg->obj);
2480 2481 2482 2483
		if (obj_priv->pin_count)
			continue;

		/* found one! */
2484
		avail = obj_priv->fence_reg;
2485 2486 2487
		break;
	}

2488
	BUG_ON(avail == I915_FENCE_REG_NONE);
2489 2490 2491 2492 2493

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
2494 2495 2496
	drm_gem_object_reference(&obj_priv->base);
	ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
	drm_gem_object_unreference(&obj_priv->base);
2497 2498 2499
	if (ret != 0)
		return ret;

2500
	return avail;
2501 2502
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2516
int
2517 2518
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2519 2520
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2521
	struct drm_i915_private *dev_priv = dev->dev_private;
2522
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2523
	struct drm_i915_fence_reg *reg = NULL;
2524
	int ret;
2525

2526 2527
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2528 2529
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2530 2531 2532
		return 0;
	}

2533 2534 2535 2536 2537
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2538 2539 2540 2541 2542
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2543 2544
		break;
	case I915_TILING_Y:
2545 2546 2547 2548 2549
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2550 2551 2552
		break;
	}

2553
	ret = i915_find_fence_reg(dev, interruptible);
2554 2555
	if (ret < 0)
		return ret;
2556

2557 2558
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2559
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2560

2561 2562
	reg->obj = obj;

2563 2564
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2565
		sandybridge_write_fence_reg(obj);
2566 2567 2568
		break;
	case 5:
	case 4:
2569
		i965_write_fence_reg(obj);
2570 2571
		break;
	case 3:
2572
		i915_write_fence_reg(obj);
2573 2574
		break;
	case 2:
2575
		i830_write_fence_reg(obj);
2576 2577
		break;
	}
2578

2579 2580 2581
	trace_i915_gem_object_get_fence(obj,
					obj_priv->fence_reg,
					obj_priv->tiling_mode);
C
Chris Wilson 已提交
2582

2583
	return 0;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2597
	drm_i915_private_t *dev_priv = dev->dev_private;
2598
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2599 2600
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2601
	uint32_t fence_reg;
2602

2603 2604
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2605 2606
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2607 2608 2609
		break;
	case 5:
	case 4:
2610
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2611 2612
		break;
	case 3:
2613
		if (obj_priv->fence_reg >= 8)
2614
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2615
		else
2616 2617
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2618 2619

		I915_WRITE(fence_reg, 0);
2620
		break;
2621
	}
2622

2623
	reg->obj = NULL;
2624
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2625
	list_del_init(&reg->lru_list);
2626 2627
}

2628 2629 2630 2631
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2632
 * @bool: whether the wait upon the fence is interruptible
2633 2634 2635 2636 2637
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2638 2639
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2640 2641
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2642
	struct drm_i915_private *dev_priv = dev->dev_private;
2643
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2644
	struct drm_i915_fence_reg *reg;
2645 2646 2647 2648

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2649 2650 2651 2652 2653 2654
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2655 2656 2657 2658
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2659 2660
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2661 2662
		int ret;

2663
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2664
		if (ret)
2665 2666
			return ret;

2667
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2668
		if (ret)
2669
			return ret;
C
Chris Wilson 已提交
2670 2671

		reg->gpu = false;
2672 2673
	}

2674
	i915_gem_object_flush_gtt_write_domain(obj);
2675
	i915_gem_clear_fence_reg(obj);
2676 2677 2678 2679

	return 0;
}

2680 2681 2682 2683
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2684 2685
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
			    unsigned alignment,
2686 2687
			    bool mappable,
			    bool need_fence)
2688 2689 2690
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2691
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2692
	struct drm_mm_node *free_space;
2693 2694
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
	u32 size, fence_size, fence_alignment;
2695
	int ret;
2696

C
Chris Wilson 已提交
2697
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2698 2699 2700 2701
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2702 2703 2704
	fence_size = i915_gem_get_gtt_size(obj_priv);
	fence_alignment = i915_gem_get_gtt_alignment(obj_priv);

2705
	if (alignment == 0)
2706 2707
		alignment = need_fence ? fence_alignment : 4096;
	if (need_fence && alignment & (fence_alignment - 1)) {
2708 2709 2710 2711
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2712 2713
	size = need_fence ? fence_size : obj->size;

2714 2715 2716
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2717 2718
	if (obj->size >
	    (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2719 2720 2721 2722
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2723
 search_free:
2724 2725 2726
	if (mappable)
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2727
						    size, alignment, 0,
2728 2729 2730 2731
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2732
						size, alignment, 0);
2733 2734 2735 2736 2737

	if (free_space != NULL) {
		if (mappable)
			obj_priv->gtt_space =
				drm_mm_get_block_range_generic(free_space,
2738
							       size, alignment, 0,
2739 2740 2741 2742
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
			obj_priv->gtt_space =
2743
				drm_mm_get_block(free_space, size, alignment);
2744
	}
2745 2746 2747 2748
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2749
		ret = i915_gem_evict_something(dev, size, alignment, mappable);
2750
		if (ret)
2751
			return ret;
2752

2753 2754 2755
		goto search_free;
	}

2756
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2757 2758 2759
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2760 2761 2762

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2763
			ret = i915_gem_evict_something(dev, size,
2764
						       alignment, mappable);
2765 2766
			if (ret) {
				/* now try to shrink everyone else */
2767 2768 2769
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2770 2771 2772 2773 2774 2775 2776 2777
				}

				return ret;
			}

			goto search_free;
		}

2778 2779 2780 2781 2782 2783 2784
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2785
					       obj_priv->pages,
2786
					       obj->size >> PAGE_SHIFT,
2787
					       obj_priv->gtt_space->start,
2788
					       obj_priv->agp_type);
2789
	if (obj_priv->agp_mem == NULL) {
2790
		i915_gem_object_put_pages_gtt(obj);
2791 2792
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2793

2794 2795
		ret = i915_gem_evict_something(dev, size,
					       alignment, mappable);
2796
		if (ret)
2797 2798 2799
			return ret;

		goto search_free;
2800 2801
	}

2802 2803
	obj_priv->gtt_offset = obj_priv->gtt_space->start;

2804
	/* keep track of bounds object by adding it to the inactive list */
2805
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2806
	i915_gem_info_add_gtt(dev_priv, obj_priv);
2807

2808 2809 2810 2811
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2812 2813
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2814

2815
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
C
Chris Wilson 已提交
2816

2817 2818 2819 2820 2821 2822 2823
	obj_priv->fenceable =
		obj_priv->gtt_space->size == fence_size &&
		(obj_priv->gtt_space->start & (fence_alignment -1)) == 0;

	obj_priv->mappable =
		obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;

2824 2825 2826 2827 2828 2829
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2830
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2831 2832 2833 2834 2835

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2836
	if (obj_priv->pages == NULL)
2837 2838
		return;

C
Chris Wilson 已提交
2839
	trace_i915_gem_object_clflush(obj);
2840

2841
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2842 2843
}

2844
/** Flushes any GPU write domain for the object if it's dirty. */
2845
static int
2846 2847
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2848 2849 2850 2851
{
	struct drm_device *dev = obj->dev;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2852
		return 0;
2853 2854

	/* Queue the GPU write cache flushing we need. */
2855
	i915_gem_flush_ring(dev, NULL,
2856 2857
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2858
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2859

2860 2861 2862
	if (pipelined)
		return 0;

2863
	return i915_gem_object_wait_rendering(obj, true);
2864 2865 2866 2867 2868 2869
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2870 2871
	uint32_t old_write_domain;

2872 2873 2874 2875 2876 2877 2878
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
2879 2880
	i915_gem_release_mmap(obj);

C
Chris Wilson 已提交
2881
	old_write_domain = obj->write_domain;
2882
	obj->write_domain = 0;
C
Chris Wilson 已提交
2883 2884 2885 2886

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2887 2888 2889 2890 2891 2892 2893
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2894
	uint32_t old_write_domain;
2895 2896 2897 2898 2899 2900

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2901
	old_write_domain = obj->write_domain;
2902
	obj->write_domain = 0;
C
Chris Wilson 已提交
2903 2904 2905 2906

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2907 2908
}

2909 2910 2911 2912 2913 2914
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2915
int
2916 2917
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2918
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2919
	uint32_t old_write_domain, old_read_domains;
2920
	int ret;
2921

2922 2923 2924 2925
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2926
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2927 2928 2929
	if (ret != 0)
		return ret;

2930
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2931

2932
	if (write) {
2933
		ret = i915_gem_object_wait_rendering(obj, true);
2934 2935 2936
		if (ret)
			return ret;
	}
2937

C
Chris Wilson 已提交
2938 2939 2940
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2941 2942 2943 2944 2945 2946
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2947
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2948 2949
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2950 2951
	}

C
Chris Wilson 已提交
2952 2953 2954 2955
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2956 2957 2958
	return 0;
}

2959 2960 2961 2962 2963
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2964 2965
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2966
{
2967
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2968
	uint32_t old_read_domains;
2969 2970 2971 2972 2973 2974
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2975
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2976 2977
	if (ret)
		return ret;
2978

2979 2980 2981 2982
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2983 2984 2985
			return ret;
	}

2986 2987
	i915_gem_object_flush_cpu_write_domain(obj);

2988
	old_read_domains = obj->read_domains;
2989
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2990 2991 2992

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2993
					    obj->write_domain);
2994 2995 2996 2997

	return 0;
}

2998 2999 3000 3001 3002 3003 3004 3005 3006
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
3007
	uint32_t old_write_domain, old_read_domains;
3008 3009
	int ret;

3010
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3011 3012
	if (ret != 0)
		return ret;
3013

3014
	i915_gem_object_flush_gtt_write_domain(obj);
3015

3016 3017
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3018
	 */
3019
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3020

3021
	if (write) {
3022
		ret = i915_gem_object_wait_rendering(obj, true);
3023 3024 3025 3026
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
3027 3028 3029
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

3030 3031
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3032 3033
		i915_gem_clflush_object(obj);

3034
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3035 3036 3037 3038 3039
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3040 3041 3042 3043 3044 3045
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3046
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3047 3048
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3049

C
Chris Wilson 已提交
3050 3051 3052 3053
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3054 3055 3056
	return 0;
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3168
static void
3169 3170
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
				  struct intel_ring_buffer *ring)
3171 3172
{
	struct drm_device		*dev = obj->dev;
3173
	struct drm_i915_private		*dev_priv = dev->dev_private;
3174
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3175 3176
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3177

3178 3179 3180 3181
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3182 3183
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3184 3185 3186 3187 3188 3189 3190

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3191 3192
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3193
		flush_domains |= obj->write_domain;
3194 3195
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3196 3197 3198 3199 3200
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3201
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3202
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3203 3204
		i915_gem_clflush_object(obj);

3205 3206 3207 3208
	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

3209 3210 3211 3212 3213 3214 3215 3216
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3217 3218 3219

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3220
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3221
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
3222 3223
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		dev_priv->mm.flush_rings |= ring->id;
3224 3225 3226
}

/**
3227
 * Moves the object from a partially CPU read to a full one.
3228
 *
3229 3230
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3231
 */
3232 3233
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3234
{
3235
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3236

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3248
			drm_clflush_pages(obj_priv->pages + i, 1);
3249 3250 3251 3252 3253 3254
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3255
	kfree(obj_priv->page_cpu_valid);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3275
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3276
	uint32_t old_read_domains;
3277
	int i, ret;
3278

3279 3280
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3281

3282
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3283
	if (ret != 0)
3284
		return ret;
3285 3286 3287 3288 3289 3290
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3291

3292 3293 3294
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3295
	if (obj_priv->page_cpu_valid == NULL) {
3296 3297
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3298 3299 3300 3301
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3302 3303 3304 3305

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3306 3307
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3308 3309 3310
		if (obj_priv->page_cpu_valid[i])
			continue;

3311
		drm_clflush_pages(obj_priv->pages + i, 1);
3312 3313 3314 3315

		obj_priv->page_cpu_valid[i] = 1;
	}

3316 3317 3318 3319 3320
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3321
	old_read_domains = obj->read_domains;
3322 3323
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3324 3325 3326 3327
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3328 3329 3330 3331 3332 3333 3334
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3335 3336 3337
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3338
{
3339
	struct drm_device *dev = obj->base.dev;
3340
	drm_i915_private_t *dev_priv = dev->dev_private;
3341
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3342 3343 3344
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
3345

3346
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3347
	for (i = 0; i < entry->relocation_count; i++) {
3348
		struct drm_i915_gem_relocation_entry reloc;
3349
		uint32_t target_offset;
3350

3351 3352 3353 3354 3355
		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
J
Jesse Barnes 已提交
3356 3357
		}

3358 3359
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);
3360

3361 3362 3363 3364 3365 3366 3367 3368
			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3369
		}
3370
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3371

3372 3373 3374 3375 3376 3377
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3378 3379 3380 3381
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3382
			 (int) target_offset,
3383 3384
			 (int) reloc.presumed_offset,
			 reloc.delta);
3385 3386
#endif

3387 3388 3389
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3390
		if (target_offset == 0) {
3391
			DRM_ERROR("No GTT space found for object %d\n",
3392
				  reloc.target_handle);
3393 3394
			ret = -EINVAL;
			break;
3395 3396
		}

3397
		/* Validate that the target is in a valid r/w GPU domain */
3398
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3399 3400 3401
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3402 3403 3404 3405
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3406 3407
			ret = -EINVAL;
			break;
3408
		}
3409 3410
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3411 3412 3413
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3414 3415 3416 3417
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3418 3419
			ret = -EINVAL;
			break;
3420
		}
3421 3422
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3423 3424 3425
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3426 3427 3428
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3429
				  target_obj->pending_write_domain);
3430 3431
			ret = -EINVAL;
			break;
3432 3433
		}

3434
		target_obj->pending_read_domains |= reloc.read_domains;
3435
		target_obj->pending_write_domain |= reloc.write_domain;
3436 3437 3438 3439

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3440
		if (target_offset == reloc.presumed_offset)
3441 3442
			continue;

3443
		/* Check that the relocation address is valid... */
3444
		if (reloc.offset > obj->base.size - 4) {
3445 3446
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3447
				  obj, reloc.target_handle,
3448 3449 3450
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3451
		}
3452
		if (reloc.offset & 3) {
3453 3454
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3455 3456
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3457 3458
			ret = -EINVAL;
			break;
3459 3460 3461
		}

		/* and points to somewhere within the target object. */
3462
		if (reloc.delta >= target_obj->size) {
3463 3464
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3465 3466
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3467 3468
			ret = -EINVAL;
			break;
3469 3470
		}

3471 3472
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3473 3474
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3475

3476
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3477
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
3478
			kunmap_atomic(vaddr);
3479 3480 3481
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
3482

3483 3484 3485
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3486

3487
			/* Map the page containing the relocation we're going to perform.  */
3488
			reloc.offset += obj->gtt_offset;
3489
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3490
							      reloc.offset & PAGE_MASK);
3491 3492 3493
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
3494
			io_mapping_unmap_atomic(reloc_page);
3495
		}
3496

3497 3498 3499 3500 3501 3502 3503 3504
		/* and update the user's relocation entry */
		reloc.presumed_offset = target_offset;
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					      &reloc.presumed_offset,
					      sizeof(reloc.presumed_offset))) {
		    ret = -EFAULT;
		    break;
		}
3505 3506
	}

3507
	drm_gem_object_unreference(target_obj);
3508 3509 3510
	return ret;
}

3511
static int
3512 3513 3514 3515 3516
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
3517
{
3518 3519
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3520

3521 3522 3523 3524 3525
	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3526
			struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3527 3528 3529 3530
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

3531 3532 3533 3534
			/* g33/pnv can't fence buffers in the unmappable part */
			bool need_mappable =
				entry->relocation_count ? true : need_fence;

3535
			/* Check fence reg constraints and rebind if necessary */
3536 3537
			if ((need_fence && !obj->fenceable) ||
			    (need_mappable && !obj->mappable)) {
3538 3539 3540 3541
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3542

3543
			ret = i915_gem_object_pin(&obj->base,
3544
						  entry->alignment,
3545 3546
						  need_mappable,
						  need_fence);
3547 3548
			if (ret)
				break;
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3560

3561 3562
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3563

3564
			entry->offset = obj->gtt_offset;
3565 3566
		}

3567 3568 3569 3570 3571
		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3572

3573 3574 3575 3576 3577 3578
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3579 3580
	}

3581
	return 0;
3582 3583
}

3584 3585 3586
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3587 3588 3589 3590
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3591 3592 3593
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3594
static int
3595
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3596
{
3597 3598
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3599
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3600 3601 3602 3603
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3604

3605
	spin_lock(&file_priv->mm.lock);
3606
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3607 3608
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3609

3610 3611
		ring = request->ring;
		seqno = request->seqno;
3612
	}
3613
	spin_unlock(&file_priv->mm.lock);
3614

3615 3616
	if (seqno == 0)
		return 0;
3617

3618
	ret = 0;
3619
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3620 3621 3622 3623 3624
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3625
		ring->user_irq_get(ring);
3626
		ret = wait_event_interruptible(ring->irq_queue,
3627
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3628
					       || atomic_read(&dev_priv->mm.wedged));
3629
		ring->user_irq_put(ring);
3630

3631 3632
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3633 3634
	}

3635 3636
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3637 3638 3639 3640

	return ret;
}

3641
static int
3642 3643
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3659
static int
3660 3661
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3662
{
3663
	int i;
3664

3665 3666 3667
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3668

3669 3670
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3671

3672 3673 3674 3675
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3676 3677
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3678 3679
	}

3680
	return 0;
3681 3682
}

C
Chris Wilson 已提交
3683
static int
J
Jesse Barnes 已提交
3684
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3685
		       struct drm_file *file,
J
Jesse Barnes 已提交
3686 3687
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3688 3689 3690 3691
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3692
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3693
	struct drm_i915_gem_request *request = NULL;
3694
	int ret, i, flips;
3695 3696
	uint64_t exec_offset;

3697 3698
	struct intel_ring_buffer *ring = NULL;

3699 3700 3701 3702
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3703 3704 3705 3706
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3707 3708 3709 3710
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3711 3712 3713 3714 3715 3716
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3717
		if (!HAS_BSD(dev)) {
3718
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3719 3720 3721
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3734 3735
	}

3736 3737 3738 3739
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3740
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3741 3742
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3743 3744 3745 3746 3747
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3748
	if (args->num_cliprects != 0) {
3749 3750
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3751 3752
		if (cliprects == NULL) {
			ret = -ENOMEM;
3753
			goto pre_mutex_err;
3754
		}
3755 3756 3757 3758 3759 3760 3761 3762

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3763
			ret = -EFAULT;
3764 3765 3766 3767
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3768 3769 3770
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3771
		goto pre_mutex_err;
C
Chris Wilson 已提交
3772
	}
3773

3774 3775
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3776
		goto pre_mutex_err;
3777 3778 3779

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3780 3781
		ret = -EBUSY;
		goto pre_mutex_err;
3782 3783
	}

3784
	/* Look up object handles */
3785
	for (i = 0; i < args->buffer_count; i++) {
3786 3787
		struct drm_i915_gem_object *obj_priv;

3788
		object_list[i] = drm_gem_object_lookup(dev, file,
3789 3790 3791 3792
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3793 3794
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3795
			ret = -ENOENT;
3796 3797
			goto err;
		}
3798

3799
		obj_priv = to_intel_bo(object_list[i]);
3800 3801 3802
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3803 3804
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3805
			ret = -EINVAL;
3806 3807 3808
			goto err;
		}
		obj_priv->in_execbuffer = true;
3809
	}
3810

3811 3812 3813 3814 3815 3816
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3817

3818 3819 3820 3821 3822 3823 3824
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3825
			goto err;
3826 3827 3828 3829
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3830 3831 3832 3833 3834 3835
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3836

3837 3838 3839
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3840 3841 3842 3843 3844
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3845 3846 3847 3848 3849 3850
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3851
	dev_priv->mm.flush_rings = 0;
3852 3853
	for (i = 0; i < args->buffer_count; i++)
		i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3854

3855 3856 3857 3858 3859 3860 3861
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3862
		i915_gem_flush(dev, file,
3863
			       dev->invalidate_domains,
3864 3865
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3866
	}
3867 3868 3869 3870 3871 3872 3873 3874 3875

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3876
	i915_gem_dump_object(batch_obj,
3877 3878 3879 3880 3881
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

3903 3904 3905 3906
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

3907 3908 3909
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
3910 3911 3912
		}
	}

3913
	/* Exec the batchbuffer */
3914
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3915 3916 3917 3918 3919 3920 3921 3922
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3923 3924 3925
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

3926
		i915_gem_object_move_to_active(obj, ring);
3927 3928 3929 3930
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
3931
				       &ring->gpu_write_list);
3932 3933 3934 3935 3936 3937
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
3938 3939
	}

3940 3941 3942 3943 3944 3945
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

3946 3947 3948 3949
	if (i915_add_request(dev, file, request, ring))
		ring->outstanding_lazy_request = true;
	else
		request = NULL;
3950 3951

err:
3952
	for (i = 0; i < args->buffer_count; i++) {
3953 3954 3955 3956
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
3957
		drm_gem_object_unreference(object_list[i]);
3958
	}
3959 3960 3961

	mutex_unlock(&dev->struct_mutex);

3962
pre_mutex_err:
3963
	drm_free_large(object_list);
3964
	kfree(cliprects);
C
Chris Wilson 已提交
3965
	kfree(request);
3966 3967 3968 3969

	return ret;
}

J
Jesse Barnes 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
4022
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4036
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4115
int
4116
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4117
		    bool mappable, bool need_fence)
4118 4119
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4120
	struct drm_i915_private *dev_priv = dev->dev_private;
4121
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4122 4123
	int ret;

4124
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4125
	WARN_ON(i915_verify_lists(dev));
4126 4127

	if (obj_priv->gtt_space != NULL) {
4128 4129 4130
		if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
		    (need_fence && !obj_priv->fenceable) ||
		    (mappable && !obj_priv->mappable)) {
4131 4132
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
4133 4134 4135 4136
			     " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
			     obj_priv->gtt_offset, alignment,
			     need_fence, obj_priv->fenceable,
			     mappable, obj_priv->mappable);
4137 4138 4139 4140 4141 4142
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4143
	if (obj_priv->gtt_space == NULL) {
4144 4145
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
						  mappable, need_fence);
4146
		if (ret)
4147
			return ret;
4148
	}
J
Jesse Barnes 已提交
4149

4150
	if (obj_priv->pin_count++ == 0) {
4151
		i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
C
Chris Wilson 已提交
4152
		if (!obj_priv->active)
4153
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4154
				       &dev_priv->mm.pinned_list);
4155
	}
4156
	BUG_ON(!obj_priv->pin_mappable && mappable);
4157

4158
	WARN_ON(i915_verify_lists(dev));
4159 4160 4161 4162 4163 4164 4165 4166
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4167
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4168

4169
	WARN_ON(i915_verify_lists(dev));
4170
	BUG_ON(obj_priv->pin_count == 0);
4171 4172
	BUG_ON(obj_priv->gtt_space == NULL);

4173
	if (--obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4174
		if (!obj_priv->active)
4175
			list_move_tail(&obj_priv->mm_list,
4176
				       &dev_priv->mm.inactive_list);
4177
		i915_gem_info_remove_pin(dev_priv, obj_priv);
4178
	}
4179
	WARN_ON(i915_verify_lists(dev));
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4191 4192 4193
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4194 4195 4196

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4197 4198
		ret = -ENOENT;
		goto unlock;
4199
	}
4200
	obj_priv = to_intel_bo(obj);
4201

C
Chris Wilson 已提交
4202 4203
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4204 4205
		ret = -EINVAL;
		goto out;
4206 4207
	}

J
Jesse Barnes 已提交
4208 4209 4210
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4211 4212
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4213 4214 4215 4216 4217
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
4218 4219
		ret = i915_gem_object_pin(obj, args->alignment,
					  true, obj_priv->tiling_mode);
4220 4221
		if (ret)
			goto out;
4222 4223 4224 4225 4226
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4227
	i915_gem_object_flush_cpu_write_domain(obj);
4228
	args->offset = obj_priv->gtt_offset;
4229
out:
4230
	drm_gem_object_unreference(obj);
4231
unlock:
4232
	mutex_unlock(&dev->struct_mutex);
4233
	return ret;
4234 4235 4236 4237 4238 4239 4240 4241
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4242
	struct drm_i915_gem_object *obj_priv;
4243
	int ret;
4244

4245 4246 4247
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4248 4249 4250

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4251 4252
		ret = -ENOENT;
		goto unlock;
4253
	}
4254
	obj_priv = to_intel_bo(obj);
4255

J
Jesse Barnes 已提交
4256 4257 4258
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4259 4260
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4261 4262 4263 4264 4265 4266
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4267

4268
out:
4269
	drm_gem_object_unreference(obj);
4270
unlock:
4271
	mutex_unlock(&dev->struct_mutex);
4272
	return ret;
4273 4274 4275 4276 4277 4278 4279 4280 4281
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4282 4283
	int ret;

4284
	ret = i915_mutex_lock_interruptible(dev);
4285
	if (ret)
4286
		return ret;
4287 4288 4289

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4290 4291
		ret = -ENOENT;
		goto unlock;
4292
	}
4293
	obj_priv = to_intel_bo(obj);
4294

4295 4296 4297 4298
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4299
	 */
4300 4301 4302 4303 4304 4305 4306
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4307 4308
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4309 4310
					    obj_priv->ring,
					    0, obj->write_domain);
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4321 4322

	drm_gem_object_unreference(obj);
4323
unlock:
4324
	mutex_unlock(&dev->struct_mutex);
4325
	return ret;
4326 4327 4328 4329 4330 4331 4332 4333 4334
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4335 4336 4337 4338 4339 4340 4341
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4342
	int ret;
4343 4344 4345 4346 4347 4348 4349 4350 4351

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4352 4353 4354 4355
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4356 4357
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4358 4359
		ret = -ENOENT;
		goto unlock;
4360
	}
4361
	obj_priv = to_intel_bo(obj);
4362 4363

	if (obj_priv->pin_count) {
4364 4365
		ret = -EINVAL;
		goto out;
4366 4367
	}

C
Chris Wilson 已提交
4368 4369
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4370

4371 4372 4373 4374 4375
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4376 4377
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4378
out:
4379
	drm_gem_object_unreference(obj);
4380
unlock:
4381
	mutex_unlock(&dev->struct_mutex);
4382
	return ret;
4383 4384
}

4385 4386 4387
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4388
	struct drm_i915_private *dev_priv = dev->dev_private;
4389
	struct drm_i915_gem_object *obj;
4390

4391 4392 4393
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4394

4395 4396 4397 4398
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4399

4400 4401
	i915_gem_info_add_obj(dev_priv, size);

4402 4403
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4404

4405
	obj->agp_type = AGP_USER_MEMORY;
4406
	obj->base.driver_private = NULL;
4407
	obj->fence_reg = I915_FENCE_REG_NONE;
4408 4409
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4410 4411
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4412 4413
	obj->fenceable = true;
	obj->mappable = true;
4414

4415 4416 4417 4418 4419 4420
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4421

4422 4423 4424
	return 0;
}

4425
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4426
{
4427
	struct drm_device *dev = obj->dev;
4428
	drm_i915_private_t *dev_priv = dev->dev_private;
4429
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4430
	int ret;
4431

4432 4433
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4434
		list_move(&obj_priv->mm_list,
4435 4436 4437
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4438

C
Chris Wilson 已提交
4439
	if (obj->map_list.map)
4440
		i915_gem_free_mmap_offset(obj);
4441

4442
	drm_gem_object_release(obj);
4443
	i915_gem_info_remove_obj(dev_priv, obj->size);
4444

4445
	kfree(obj_priv->page_cpu_valid);
4446
	kfree(obj_priv->bit_17);
4447
	kfree(obj_priv);
4448 4449
}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4466 4467 4468 4469 4470
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4471

4472
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4473

4474
	if (dev_priv->mm.suspended) {
4475 4476
		mutex_unlock(&dev->struct_mutex);
		return 0;
4477 4478
	}

4479
	ret = i915_gpu_idle(dev);
4480 4481
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4482
		return ret;
4483
	}
4484

4485 4486
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4487
		ret = i915_gem_evict_inactive(dev);
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4499
	del_timer_sync(&dev_priv->hangcheck_timer);
4500 4501

	i915_kernel_lost_context(dev);
4502
	i915_gem_cleanup_ringbuffer(dev);
4503

4504 4505
	mutex_unlock(&dev->struct_mutex);

4506 4507 4508
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4509 4510 4511
	return 0;
}

4512 4513 4514 4515
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4516
static int
4517 4518 4519 4520 4521 4522 4523
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4524
	obj = i915_gem_alloc_object(dev, 4096);
4525 4526 4527 4528 4529 4530 4531 4532
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

4533
	ret = i915_gem_object_pin(obj, 4096, true, false);
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4555 4556

static void
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4571 4572
}

4573 4574 4575 4576 4577
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4578

4579 4580 4581 4582 4583
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4584

4585
	ret = intel_init_render_ring_buffer(dev);
4586 4587 4588 4589
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4590
		ret = intel_init_bsd_ring_buffer(dev);
4591 4592
		if (ret)
			goto cleanup_render_ring;
4593
	}
4594

4595 4596 4597 4598 4599 4600
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4601 4602
	dev_priv->next_seqno = 1;

4603 4604
	return 0;

4605
cleanup_bsd_ring:
4606
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4607
cleanup_render_ring:
4608
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4609 4610 4611
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4612 4613 4614 4615 4616 4617 4618 4619
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4620 4621 4622
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4623 4624 4625 4626
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4627 4628 4629 4630 4631 4632 4633
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4634 4635 4636
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4637
	if (atomic_read(&dev_priv->mm.wedged)) {
4638
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4639
		atomic_set(&dev_priv->mm.wedged, 0);
4640 4641 4642
	}

	mutex_lock(&dev->struct_mutex);
4643 4644 4645
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4646 4647
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4648
		return ret;
4649
	}
4650

4651
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4652
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4653
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4654
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4655 4656
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4657
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4658
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4659
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4660
	mutex_unlock(&dev->struct_mutex);
4661

4662 4663 4664
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4665

4666
	return 0;
4667 4668 4669 4670 4671 4672 4673 4674

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4675 4676 4677 4678 4679 4680
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4681 4682 4683
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4684
	drm_irq_uninstall(dev);
4685
	return i915_gem_idle(dev);
4686 4687 4688 4689 4690 4691 4692
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4693 4694 4695
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4696 4697 4698
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4699 4700
}

4701 4702 4703 4704 4705 4706 4707 4708
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4709 4710 4711
void
i915_gem_load(struct drm_device *dev)
{
4712
	int i;
4713 4714
	drm_i915_private_t *dev_priv = dev->dev_private;

4715
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4716 4717
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4718
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4719
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4720
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4721 4722 4723
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4724 4725
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4726 4727
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4728
	init_completion(&dev_priv->error_completion);
4729

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4740
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4741 4742
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4743

4744
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4745 4746 4747 4748
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4749
	/* Initialize fence registers to zero */
4750 4751 4752 4753 4754 4755 4756
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4757 4758
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4759 4760
		break;
	case 3:
4761 4762 4763
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4764 4765 4766 4767
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4768
	}
4769
	i915_gem_detect_bit_6_swizzle(dev);
4770
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4771 4772 4773 4774

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4775
}
4776 4777 4778 4779 4780

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4781 4782
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4783 4784 4785 4786 4787 4788 4789 4790
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4791
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4792 4793 4794 4795 4796
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4797
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4810
	kfree(phys_obj);
4811 4812 4813
	return ret;
}

4814
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4839
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4840 4841 4842 4843 4844 4845
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
4846 4847 4848
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	char *vaddr;
4849 4850 4851 4852 4853
	int i;
	int page_count;

	if (!obj_priv->phys_obj)
		return;
4854
	vaddr = obj_priv->phys_obj->handle->vaddr;
4855 4856 4857 4858

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4872 4873
	}
	drm_agp_chipset_flush(dev);
4874

4875 4876 4877 4878 4879 4880
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4881 4882 4883
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4884
{
4885
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4886 4887 4888 4889 4890 4891 4892 4893 4894
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4895
	obj_priv = to_intel_bo(obj);
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4906
						obj->size, align);
4907
		if (ret) {
4908
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4909
			return ret;
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4920 4921 4922 4923 4924 4925 4926
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4927

4928 4929
		src = kmap_atomic(obj_priv->pages[i]);
		dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4930
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4931
		kunmap_atomic(src);
4932

4933 4934 4935
		mark_page_accessed(page);
		page_cache_release(page);
	}
4936

4937 4938 4939 4940 4941 4942 4943 4944
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4945
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4946 4947 4948 4949 4950 4951 4952
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4953
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4954 4955 4956 4957 4958 4959 4960
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4961

4962
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4963
{
4964
	struct drm_i915_file_private *file_priv = file->driver_priv;
4965 4966 4967 4968 4969

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4970
	spin_lock(&file_priv->mm.lock);
4971 4972 4973 4974 4975 4976 4977 4978 4979
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4980
	spin_unlock(&file_priv->mm.lock);
4981
}
4982

4983 4984 4985 4986 4987 4988 4989
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4990
		      list_empty(&dev_priv->mm.active_list);
4991 4992 4993 4994

	return !lists_empty;
}

4995
static int
4996 4997 4998
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4999
{
5000 5001 5002 5003 5004 5005 5006 5007 5008
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
5009
		return 0;
5010 5011 5012

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
5013 5014 5015 5016 5017 5018 5019
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
5020 5021
	}

5022
rescan:
5023
	/* first scan for clean buffers */
5024
	i915_gem_retire_requests(dev);
5025

5026 5027 5028 5029 5030 5031 5032
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
			i915_gem_object_unbind(&obj->base);
			if (--nr_to_scan == 0)
				break;
5033 5034 5035 5036
		}
	}

	/* second pass, evict/count anything still on the inactive list */
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (nr_to_scan) {
			i915_gem_object_unbind(&obj->base);
			nr_to_scan--;
		} else
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
5049 5050 5051 5052 5053 5054
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
5055
		if (i915_gpu_idle(dev) == 0)
5056 5057
			goto rescan;
	}
5058 5059
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
5060
}