intel_engine_cs.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36
#include "intel_execlists_submission.h"
37 38
#include "intel_gt.h"
#include "intel_gt_requests.h"
39
#include "intel_gt_pm.h"
40
#include "intel_lrc_reg.h"
41
#include "intel_reset.h"
42
#include "intel_ring.h"
43
#include "uc/intel_guc_submission.h"
44

45 46 47 48 49 50 51 52 53
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

54
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 56
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
57
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
58
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
59 60 61

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

62
#define MAX_MMIO_BASES 3
63
struct engine_info {
64
	unsigned int hw_id;
65 66
	u8 class;
	u8 instance;
67 68 69 70 71
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
72 73 74
};

static const struct engine_info intel_engines[] = {
75 76
	[RCS0] = {
		.hw_id = RCS0_HW,
77 78
		.class = RENDER_CLASS,
		.instance = 0,
79 80 81
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
82
	},
83 84
	[BCS0] = {
		.hw_id = BCS0_HW,
85 86
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
87 88 89
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
90
	},
91 92
	[VCS0] = {
		.hw_id = VCS0_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
95 96 97 98 99
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
100
	},
101 102
	[VCS1] = {
		.hw_id = VCS1_HW,
103 104
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
105 106 107 108
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
109
	},
110 111
	[VCS2] = {
		.hw_id = VCS2_HW,
112 113
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
114 115 116
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
117
	},
118 119
	[VCS3] = {
		.hw_id = VCS3_HW,
120 121
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
125
	},
126 127
	[VECS0] = {
		.hw_id = VECS0_HW,
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130 131 132 133
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
134
	},
135 136
	[VECS1] = {
		.hw_id = VECS1_HW,
137 138
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
139 140 141
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
142
	},
143 144
};

145
/**
146
 * intel_engine_context_size() - return the size of the context for an engine
147
 * @gt: the gt
148 149 150 151 152 153 154 155 156 157 158
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
159
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
160
{
161
	struct intel_uncore *uncore = gt->uncore;
162 163 164 165 166 167
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
168
		switch (INTEL_GEN(gt->i915)) {
169
		default:
170
			MISSING_CASE(INTEL_GEN(gt->i915));
171
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
172
		case 12:
173 174
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
175
		case 10:
O
Oscar Mateo 已提交
176
			return GEN10_LR_CONTEXT_RENDER_SIZE;
177 178 179
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
180
			return GEN8_LR_CONTEXT_RENDER_SIZE;
181
		case 7:
182
			if (IS_HASWELL(gt->i915))
183 184
				return HSW_CXT_TOTAL_SIZE;

185
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
186 187 188
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
189
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
190 191 192
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
193
		case 4:
194 195 196 197 198 199 200 201 202 203
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
204
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
205 206 207 208
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
209
			return round_up(cxt_size * 64, PAGE_SIZE);
210 211 212 213 214 215 216 217 218
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
219
		fallthrough;
220 221 222
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
223
		if (INTEL_GEN(gt->i915) < 8)
224 225 226 227 228
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

244
static void __sprint_engine_name(struct intel_engine_cs *engine)
245
{
246 247 248 249 250 251 252 253
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
254 255
}

256 257 258 259 260 261
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
262
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
263 264
		return;

265 266
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
267
	else
268
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
269 270 271 272 273 274 275 276
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

277
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
278 279
{
	const struct engine_info *info = &intel_engines[id];
280
	struct drm_i915_private *i915 = gt->i915;
281 282
	struct intel_engine_cs *engine;

283 284 285
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

286 287 288
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
293 294
		return -EINVAL;

295
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
296 297
		return -EINVAL;

298 299 300
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
301

302 303
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

304
	engine->id = id;
305
	engine->legacy_idx = INVALID_ENGINE;
306
	engine->mask = BIT(id);
307
	engine->i915 = i915;
308 309
	engine->gt = gt;
	engine->uncore = gt->uncore;
310
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
311 312
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
313

314 315
	engine->class = info->class;
	engine->instance = info->instance;
316
	__sprint_engine_name(engine);
317

318 319
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
320 321
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
322 323
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
324 325
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
326 327
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
328

329 330 331 332
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

333 334
	engine->defaults = engine->props; /* never to change again */

335
	engine->context_size = intel_engine_context_size(gt, engine->class);
336 337
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
338
	if (engine->context_size)
339
		DRIVER_CAPS(i915)->has_logical_contexts = true;
340

341 342 343
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

344
	ewma__engine_latency_init(&engine->latency);
345
	seqcount_init(&engine->stats.lock);
346

347 348
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

349 350 351
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

352
	gt->engine_class[info->class][info->instance] = engine;
353
	gt->engine[id] = engine;
354

355
	return 0;
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
377 378
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
379 380 381 382 383 384 385 386 387 388
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

389
static void intel_setup_engine_capabilities(struct intel_gt *gt)
390 391 392 393
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

394
	for_each_engine(engine, gt, id)
395 396 397
		__setup_engine_capabilities(engine);
}

398
/**
399
 * intel_engines_release() - free the resources allocated for Command Streamers
400
 * @gt: pointer to struct intel_gt
401
 */
402
void intel_engines_release(struct intel_gt *gt)
403 404 405 406
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

407 408 409 410 411 412 413 414 415 416 417 418 419
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

420
	/* Decouple the backend; but keep the layout for late GPU resets */
421
	for_each_engine(engine, gt, id) {
422 423 424
		if (!engine->release)
			continue;

425 426 427
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

428 429 430 431
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
432 433 434
	}
}

435 436 437 438 439 440 441 442
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

443 444 445 446 447
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

448 449 450
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

451
	for_each_engine(engine, gt, id) {
452
		intel_engine_free_request_pool(engine);
453 454 455 456 457
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
471
	struct intel_gt_info *info = &gt->info;
472 473 474 475 476 477 478
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

479 480
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
508
			gt->info.vdbox_sfc_access |= BIT(i);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

532
/**
533
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
534
 * @gt: pointer to struct intel_gt
535 536 537
 *
 * Return: non-zero if the initialization failed.
 */
538
int intel_engines_init_mmio(struct intel_gt *gt)
539
{
540
	struct drm_i915_private *i915 = gt->i915;
541
	const unsigned int engine_mask = init_engine_mask(gt);
542
	unsigned int mask = 0;
543
	unsigned int i;
544
	int err;
545

546 547 548
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
549

550
	if (i915_inject_probe_failure(i915))
551 552
		return -ENODEV;

553
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
554
		if (!HAS_ENGINE(gt, i))
555 556
			continue;

557
		err = intel_engine_setup(gt, i);
558 559 560
		if (err)
			goto cleanup;

561
		mask |= BIT(i);
562 563 564 565 566 567 568
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
569
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
570
		gt->info.engine_mask = mask;
571

572
	gt->info.num_engines = hweight32(mask);
573

574
	intel_gt_check_and_clear_faults(gt);
575

576
	intel_setup_engine_capabilities(gt);
577

578 579
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

580 581 582
	return 0;

cleanup:
583
	intel_engines_free(gt);
584 585 586
	return err;
}

587
void intel_engine_init_execlists(struct intel_engine_cs *engine)
588 589 590
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

591
	execlists->port_mask = 1;
592
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
593 594
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

595 596 597 598
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

599
	execlists->queue_priority_hint = INT_MIN;
600
	execlists->queue = RB_ROOT_CACHED;
601 602
}

603
static void cleanup_status_page(struct intel_engine_cs *engine)
604
{
605 606
	struct i915_vma *vma;

607 608 609
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

610 611 612
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
613

614 615 616 617
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
618
	i915_gem_object_put(vma->obj);
619 620 621
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
622
				struct i915_gem_ww_ctx *ww,
623 624 625 626
				struct i915_vma *vma)
{
	unsigned int flags;

627
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
628 629 630 631 632 633 634 635 636 637 638
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
639
		flags = PIN_MAPPABLE;
640
	else
641
		flags = PIN_HIGH;
642

643
	return i915_ggtt_pin(vma, ww, 0, flags);
644 645 646 647 648
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
649
	struct i915_gem_ww_ctx ww;
650 651 652 653
	struct i915_vma *vma;
	void *vaddr;
	int ret;

654 655
	INIT_LIST_HEAD(&engine->status_page.timelines);

656 657 658 659 660 661 662
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
663 664
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
665 666
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
667 668 669
		return PTR_ERR(obj);
	}

670
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
671

672
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
673 674
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
675
		goto err_put;
676 677
	}

678 679 680 681 682 683 684 685
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

686 687 688
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
689
		goto err_unpin;
690 691
	}

692
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
693
	engine->status_page.vma = vma;
694

695
err_unpin:
696 697
	if (ret)
		i915_vma_unpin(vma);
698
err:
699 700 701 702 703 704 705 706 707
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
708 709 710
	return ret;
}

711
static int engine_setup_common(struct intel_engine_cs *engine)
712 713 714
{
	int err;

715 716
	init_llist_head(&engine->barrier_tasks);

717 718 719 720
	err = init_status_page(engine);
	if (err)
		return err;

721 722 723 724 725 726
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

727 728 729 730
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

731
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
732 733
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
734
	intel_engine_init_retire(engine);
735

736 737
	/* Use the whole device by default */
	engine->sseu =
738
		intel_sseu_from_device_info(&engine->gt->info.sseu);
739

740 741 742 743
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

744 745 746
	if (INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

747
	return 0;
748

749 750
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
751 752 753
err_status:
	cleanup_status_page(engine);
	return err;
754 755
}

756 757 758
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
759
	u32 cs[2048];
760 761
};

762
static int measure_breadcrumb_dw(struct intel_context *ce)
763
{
764
	struct intel_engine_cs *engine = ce->engine;
765
	struct measure_breadcrumb *frame;
766
	int dw;
767

768
	GEM_BUG_ON(!engine->gt->scratch);
769 770 771 772 773

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

774 775 776
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
777
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
778

779 780
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
781 782
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
783 784 785
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
786

787
	mutex_lock(&ce->timeline->mutex);
788
	spin_lock_irq(&engine->active.lock);
789

790
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
791

792
	spin_unlock_irq(&engine->active.lock);
793
	mutex_unlock(&ce->timeline->mutex);
794

795
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
796

797
	kfree(frame);
798 799 800
	return dw;
}

801 802 803 804
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
805
	INIT_LIST_HEAD(&engine->active.hold);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

823
static struct intel_context *
824 825 826 827
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
828 829 830 831
{
	struct intel_context *ce;
	int err;

832
	ce = intel_context_create(engine);
833 834 835
	if (IS_ERR(ce))
		return ce;

836
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
837
	ce->timeline = page_pack_bits(NULL, hwsp);
838

839
	err = intel_context_pin(ce); /* perma-pin so it is always available */
840 841 842 843 844
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

845 846 847 848 849 850
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
851
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
852

853 854 855
	return ce;
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

871 872 873 874 875 876 877 878 879
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

880 881 882 883 884 885 886 887 888 889 890
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
891
static int engine_init_common(struct intel_engine_cs *engine)
892
{
893
	struct intel_context *ce;
894 895
	int ret;

896 897
	engine->set_default_submission(engine);

898 899
	/*
	 * We may need to do things with the shrinker which
900 901 902 903 904 905
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
906 907 908 909
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

910 911 912 913 914
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
915
	engine->kernel_context = ce;
916

917
	return 0;
918 919 920 921

err_context:
	intel_context_put(ce);
	return ret;
922
}
923

924 925 926 927 928 929 930
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

931 932 933
	if (intel_uc_uses_guc_submission(&gt->uc))
		setup = intel_guc_submission_setup;
	else if (HAS_EXECLISTS(gt->i915))
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

957 958 959 960 961 962 963 964 965
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
966
	GEM_BUG_ON(!list_empty(&engine->active.requests));
967
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
968

969
	intel_breadcrumbs_free(engine->breadcrumbs);
970

971
	intel_engine_fini_retire(engine);
972
	intel_engine_cleanup_cmd_parser(engine);
973

974
	if (engine->default_state)
975
		fput(engine->default_state);
976

977 978 979
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

980
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
981
	cleanup_status_page(engine);
982

983
	intel_wa_list_free(&engine->ctx_wa_list);
984
	intel_wa_list_free(&engine->wa_list);
985
	intel_wa_list_free(&engine->whitelist);
986
}
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1002
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1003
{
1004 1005
	struct drm_i915_private *i915 = engine->i915;

1006 1007
	u64 acthd;

1008 1009 1010 1011
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
1012
	else
1013
		acthd = ENGINE_READ(engine, ACTHD);
1014 1015 1016 1017

	return acthd;
}

1018
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1019 1020 1021
{
	u64 bbaddr;

1022 1023
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1024
	else
1025
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1026 1027 1028

	return bbaddr;
}
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1045 1046 1047
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1048
{
1049
	struct intel_uncore *uncore = engine->uncore;
1050
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1051 1052
	int err;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1069
	if (INTEL_GEN(engine->i915) < 3)
1070 1071
		return -ENODEV;

1072
	ENGINE_TRACE(engine, "\n");
1073
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1087 1088 1089 1090 1091
	}

	return err;
}

1092 1093
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1094
	ENGINE_TRACE(engine, "\n");
1095

1096
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1097 1098
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1110
static u32
1111 1112
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1113
{
1114 1115
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1116
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1117 1118
	enum forcewake_domains fw_domains;

1119
	if (INTEL_GEN(i915) >= 11) {
1120 1121
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1122
	} else {
1123 1124
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1125 1126
	}

1127
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1128
						    FW_REG_READ);
1129
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1130 1131 1132
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1133 1134
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1135

1136
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1137

1138 1139
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1140
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1141

1142
	val = intel_uncore_read_fw(uncore, reg);
1143

1144 1145
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1146

1147
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1148

1149 1150
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1151

1152
	return val;
1153 1154 1155
}

/* NB: please notice the memset */
1156
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1157 1158
			       struct intel_instdone *instdone)
{
1159
	struct drm_i915_private *i915 = engine->i915;
1160
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1161
	struct intel_uncore *uncore = engine->uncore;
1162 1163 1164 1165 1166 1167
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1168
	switch (INTEL_GEN(i915)) {
1169
	default:
1170 1171
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1172

1173
		if (engine->id != RCS0)
1174 1175
			break;

1176 1177
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1178 1179 1180 1181 1182 1183
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1184
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1185
			instdone->sampler[slice][subslice] =
1186
				read_subslice_reg(engine, slice, subslice,
1187 1188
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1189
				read_subslice_reg(engine, slice, subslice,
1190 1191 1192 1193
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1194 1195
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1196

1197
		if (engine->id != RCS0)
1198 1199
			break;

1200 1201 1202 1203 1204 1205
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1206 1207 1208 1209 1210

		break;
	case 6:
	case 5:
	case 4:
1211 1212
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1213
		if (engine->id == RCS0)
1214
			/* HACK: Using the wrong struct member */
1215 1216
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1217 1218 1219
		break;
	case 3:
	case 2:
1220
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1221 1222 1223
		break;
	}
}
1224

1225 1226 1227 1228
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1229 1230 1231
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1232
	if (!intel_engine_pm_get_if_awake(engine))
1233
		return true;
1234

1235
	/* First check that no commands are left in the ring */
1236 1237
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1238
		idle = false;
1239

1240
	/* No bit for gen2, so assume the CS parser is idle */
1241
	if (INTEL_GEN(engine->i915) > 2 &&
1242
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1243 1244
		idle = false;

1245
	intel_engine_pm_put(engine);
1246 1247 1248 1249

	return idle;
}

1250
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1251 1252 1253
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1254 1255 1256
	if (!t->func)
		return;

1257 1258 1259 1260 1261 1262
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1263
	}
1264
	local_bh_enable();
1265 1266 1267 1268

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1280
	/* More white lies, if wedged, hw state is inconsistent */
1281
	if (intel_gt_is_wedged(engine->gt))
1282 1283
		return true;

1284
	if (!intel_engine_pm_is_awake(engine))
1285 1286
		return true;

1287
	/* Waiting to drain ELSP? */
1288
	if (execlists_active(&engine->execlists)) {
1289
		synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
1290

1291
		intel_engine_flush_submission(engine);
1292

1293
		if (execlists_active(&engine->execlists))
1294 1295
			return false;
	}
1296

1297
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1298
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1299 1300
		return false;

1301
	/* Ring stopped? */
1302
	return ring_is_idle(engine);
1303 1304
}

1305
bool intel_engines_are_idle(struct intel_gt *gt)
1306 1307 1308 1309
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1310 1311
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1312 1313
	 * report that it is still busy, even though we have stopped using it.
	 */
1314
	if (intel_gt_is_wedged(gt))
1315 1316
		return true;

1317
	/* Already parked (and passed an idleness test); must still be idle */
1318
	if (!READ_ONCE(gt->awake))
1319 1320
		return true;

1321
	for_each_engine(engine, gt, id) {
1322 1323 1324 1325 1326 1327 1328
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1329
void intel_engines_reset_default_submission(struct intel_gt *gt)
1330 1331 1332 1333
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1334 1335 1336 1337
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1338
		engine->set_default_submission(engine);
1339
	}
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1350 1351
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1352 1353 1354 1355 1356 1357 1358
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1424
		drm_printf(m, "[%04zx] %s\n", pos, line);
1425 1426 1427 1428 1429 1430

		prev = buf + pos;
		skip = false;
	}
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1442
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1443
					 struct drm_printer *m)
1444 1445
{
	struct drm_i915_private *dev_priv = engine->i915;
1446
	struct intel_engine_execlists * const execlists = &engine->execlists;
1447 1448
	u64 addr;

1449
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1450
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1451 1452 1453 1454 1455 1456
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1457
	drm_printf(m, "\tRING_START: 0x%08x\n",
1458
		   ENGINE_READ(engine, RING_START));
1459
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1460
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1461
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1462
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1463
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1464 1465
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1466 1467
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1468 1469
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1470
	}
1471 1472

	if (INTEL_GEN(dev_priv) >= 6) {
1473
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1474
			   ENGINE_READ(engine, RING_IMR));
1475 1476 1477 1478 1479 1480
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1481 1482
	}

1483 1484 1485 1486 1487 1488
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1489
	if (INTEL_GEN(dev_priv) >= 8)
1490
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1491
	else if (INTEL_GEN(dev_priv) >= 4)
1492
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1493
	else
1494
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1495 1496 1497 1498
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1499
			   ENGINE_READ(engine, RING_IPEIR));
1500
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1501
			   ENGINE_READ(engine, RING_IPEHR));
1502
	} else {
1503 1504
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1505
	}
1506

1507 1508 1509
	if (intel_engine_in_guc_submission_mode(engine)) {
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1510
		struct i915_request * const *port, *rq;
1511 1512
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1513
		const u8 num_entries = execlists->csb_size;
1514
		unsigned int idx;
1515
		u8 read, write;
1516

1517
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1518 1519 1520
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1521
			   repr_timer(&engine->execlists.preempt),
1522
			   repr_timer(&engine->execlists.timer));
1523

1524 1525 1526
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1527 1528 1529 1530 1531
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1532
		if (read >= num_entries)
1533
			read = 0;
1534
		if (write >= num_entries)
1535 1536
			write = 0;
		if (read > write)
1537
			write += num_entries;
1538
		while (read < write) {
1539 1540 1541
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1542 1543
		}

1544
		execlists_active_lock_bh(execlists);
1545
		rcu_read_lock();
1546
		for (port = execlists->active; (rq = *port); port++) {
1547
			char hdr[160];
1548 1549
			int len;

1550
			len = scnprintf(hdr, sizeof(hdr),
1551
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1552
					(int)(port - execlists->active),
1553 1554 1555
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1556
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1557
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1558
			i915_request_show(m, rq, hdr, 0);
1559 1560
		}
		for (port = execlists->pending; (rq = *port); port++) {
1561 1562
			char hdr[160];
			int len;
1563

1564
			len = scnprintf(hdr, sizeof(hdr),
1565
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1566
					(int)(port - execlists->pending),
1567 1568 1569
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1570 1571
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1572
			i915_request_show(m, rq, hdr, 0);
1573
		}
1574
		rcu_read_unlock();
1575
		execlists_active_unlock_bh(execlists);
1576 1577
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1578
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1579
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1580
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1581
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1582
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1583
	}
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1665 1666 1667 1668 1669
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1670
	struct i915_request *rq;
1671
	intel_wakeref_t wakeref;
1672
	unsigned long flags;
1673
	ktime_t dummy;
1674 1675 1676 1677 1678 1679 1680 1681 1682

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1683
	if (intel_gt_is_wedged(engine->gt))
1684 1685
		drm_printf(m, "*** WEDGED ***\n");

1686
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1687 1688
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1689 1690
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1691 1692 1693 1694
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1695
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1696
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1697 1698 1699 1700 1701 1702 1703

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1704 1705 1706
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1707
	print_properties(engine, m);
1708 1709 1710

	drm_printf(m, "\tRequests:\n");

1711
	spin_lock_irqsave(&engine->active.lock, flags);
1712
	rq = intel_engine_find_active_request(engine);
1713
	if (rq) {
1714 1715
		struct intel_timeline *tl = get_timeline(rq);

1716
		i915_request_show(m, rq, "\t\tactive ", 0);
1717

1718
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1719
			   i915_ggtt_offset(rq->ring->vma));
1720
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1721
			   rq->ring->head);
1722
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1723
			   rq->ring->tail);
1724 1725 1726 1727
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1728 1729 1730 1731 1732 1733

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1734 1735

		print_request_ring(m, rq);
1736

1737
		if (rq->context->lrc_reg_state) {
1738
			drm_printf(m, "Logical Ring Context:\n");
1739
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1740
		}
1741
	}
1742
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1743
	spin_unlock_irqrestore(&engine->active.lock, flags);
1744

1745
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1746
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1747
	if (wakeref) {
1748
		intel_engine_print_registers(engine, m);
1749
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1750 1751 1752
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1753

C
Chris Wilson 已提交
1754
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1755

1756
	drm_printf(m, "HWSP:\n");
1757
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1758

1759
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1760 1761

	intel_engine_print_breadcrumbs(engine, m);
1762 1763
}

1764 1765
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1766 1767 1768 1769 1770 1771 1772
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1773
	*now = ktime_get();
1774
	if (READ_ONCE(engine->stats.active))
1775
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1776 1777 1778 1779 1780 1781 1782

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1783
 * @now: monotonic timestamp of sampling
1784 1785 1786
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1787
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1788
{
1789
	unsigned int seq;
1790 1791
	ktime_t total;

1792
	do {
1793
		seq = read_seqcount_begin(&engine->stats.lock);
1794
		total = __intel_engine_get_busy_time(engine, now);
1795
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1796 1797 1798 1799

	return total;
}

1800 1801
static bool match_ring(struct i915_request *rq)
{
1802
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1823
	lockdep_assert_held(&engine->active.lock);
1824 1825 1826 1827 1828 1829 1830

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1831
			if (__i915_request_is_complete(request))
1832 1833 1834 1835 1836 1837 1838 1839 1840
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1841
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1842
		if (__i915_request_is_complete(request))
1843 1844
			continue;

1845
		if (!__i915_request_has_started(request))
1846
			continue;
1847 1848 1849

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1850
			continue;
1851 1852 1853 1854 1855 1856 1857 1858

		active = request;
		break;
	}

	return active;
}

1859
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1860
#include "mock_engine.c"
1861
#include "selftest_engine.c"
1862
#include "selftest_engine_cs.c"
1863
#endif