core.c 147.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void _regulator_put(struct regulator *regulator);
109

110
const char *rdev_get_name(struct regulator_dev *rdev)
111 112 113 114 115 116 117 118 119
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

120 121
static bool have_full_constraints(void)
{
122
	return has_full_constraints || of_have_populated_dt();
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

138 139 140
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
141
 * @ww_ctx:		w/w mutex acquire context
142 143 144 145 146 147 148
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
149 150
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
151
{
152 153 154 155 156 157 158
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
159
			rdev->ref_cnt++;
160 161 162 163 164 165 166
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
167
		}
168 169
	} else {
		lock = true;
170 171
	}

172 173 174 175 176 177 178 179
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
180 181
}

182 183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
193
{
194
	regulator_lock_nested(rdev, NULL);
195
}
196
EXPORT_SYMBOL_GPL(regulator_lock);
197 198 199 200 201 202 203 204

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217
}
218
EXPORT_SYMBOL_GPL(regulator_unlock);
219

220
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221
{
222 223 224 225 226
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227

228 229 230 231 232 233 234
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

235 236
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
237
{
238
	struct regulator_dev *c_rdev;
239
	int i;
240

241 242
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 244 245 246

		if (!c_rdev)
			continue;

247
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 249 250
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
251

252 253
		regulator_unlock(c_rdev);
	}
254 255
}

256 257 258 259
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
260
{
261
	struct regulator_dev *c_rdev;
262
	int i, err;
263

264 265
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266

267 268
		if (!c_rdev)
			continue;
269

270 271 272 273 274 275 276
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
277

278 279 280 281 282 283 284
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

285
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 287 288 289 290 291 292 293
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
294 295
		}
	}
296 297 298 299 300 301 302

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
303 304
}

305
/**
306 307 308 309 310
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
311
 * Unlock all regulators related with rdev by coupling or supplying.
312
 */
313 314
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
315
{
316 317
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
318 319 320
}

/**
321 322
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
323
 * @ww_ctx:			w/w mutex acquire context
324 325
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
326
 * all regulators related with rdev by coupling or supplying.
327
 */
328 329
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
330
{
331 332 333
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
334

335
	mutex_lock(&regulator_list_mutex);
336

337
	ww_acquire_init(ww_ctx, &regulator_ww_class);
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
383 384
			if (regnode)
				goto err_node_put;
385
		} else {
386
			goto err_node_put;
387 388 389
		}
	}
	return NULL;
390 391 392 393

err_node_put:
	of_node_put(child);
	return regnode;
394 395
}

396 397 398 399 400 401
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
402
 * returns the device node corresponding to the regulator if found, else
403 404 405 406 407 408 409 410 411 412 413 414 415
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
416 417 418 419
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

420 421
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
422 423 424 425 426
		return NULL;
	}
	return regnode;
}

427
/* Platform voltage constraint check */
428 429
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
430 431 432
{
	BUG_ON(*min_uV > *max_uV);

433
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434
		rdev_err(rdev, "voltage operation not allowed\n");
435 436 437 438 439 440 441 442
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

443 444
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445
			 *min_uV, *max_uV);
446
		return -EINVAL;
447
	}
448 449 450 451

	return 0;
}

452 453 454 455 456 457
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

458 459 460
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
461 462 463
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
464 465
{
	struct regulator *regulator;
466
	struct regulator_voltage *voltage;
467 468

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469
		voltage = &regulator->voltage[state];
470 471 472 473
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
474
		if (!voltage->min_uV && !voltage->max_uV)
475 476
			continue;

477 478 479 480
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
481 482
	}

483
	if (*min_uV > *max_uV) {
484 485
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
486
		return -EINVAL;
487
	}
488 489 490 491

	return 0;
}

492 493 494 495 496 497
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

498
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499
		rdev_err(rdev, "current operation not allowed\n");
500 501 502 503 504 505 506 507
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

508 509
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510
			 *min_uA, *max_uA);
511
		return -EINVAL;
512
	}
513 514 515 516 517

	return 0;
}

/* operating mode constraint check */
518 519
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
520
{
521
	switch (*mode) {
522 523 524 525 526 527
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
528
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 530 531
		return -EINVAL;
	}

532
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533
		rdev_err(rdev, "mode operation not allowed\n");
534 535
		return -EPERM;
	}
536 537 538 539 540 541 542 543

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
544
	}
545 546

	return -EINVAL;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

567 568 569
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
	int uV;
572

573
	regulator_lock(rdev);
574
	uV = regulator_get_voltage_rdev(rdev);
575
	regulator_unlock(rdev);
576

577 578 579
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
580
}
581
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582 583 584 585

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 588 589

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
590
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591

592 593
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
594 595 596
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

597
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
598
}
599
static DEVICE_ATTR_RO(name);
600

601
static const char *regulator_opmode_to_str(int mode)
602 603 604
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
605
		return "fast";
606
	case REGULATOR_MODE_NORMAL:
607
		return "normal";
608
	case REGULATOR_MODE_IDLE:
609
		return "idle";
610
	case REGULATOR_MODE_STANDBY:
611
		return "standby";
612
	}
613 614 615 616 617 618
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 620
}

D
David Brownell 已提交
621 622
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
623
{
624
	struct regulator_dev *rdev = dev_get_drvdata(dev);
625

D
David Brownell 已提交
626 627
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
628
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
629 630 631

static ssize_t regulator_print_state(char *buf, int state)
{
632 633 634 635 636 637 638 639
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
640 641 642 643
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 645
	ssize_t ret;

646
	regulator_lock(rdev);
647
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648
	regulator_unlock(rdev);
D
David Brownell 已提交
649

650
	return ret;
D
David Brownell 已提交
651
}
652
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
653

D
David Brownell 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
687 688 689
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
690 691 692
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
693 694 695 696 697 698 699 700
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

701 702 703
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
704
	struct regulator_dev *rdev = dev_get_drvdata(dev);
705 706 707 708 709 710

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
711
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712 713 714 715

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
716
	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 718 719 720 721 722

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
723
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724 725 726 727

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
728
	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 730 731 732 733 734

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
735
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736 737 738 739

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
740
	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 742 743 744 745 746

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
747
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748 749 750 751

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
752
	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 754 755
	struct regulator *regulator;
	int uA = 0;

756
	regulator_lock(rdev);
757 758 759 760
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
761
	regulator_unlock(rdev);
762 763
	return sprintf(buf, "%d\n", uA);
}
764
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765

766 767
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
768
{
769
	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 771
	return sprintf(buf, "%d\n", rdev->use_count);
}
772
static DEVICE_ATTR_RO(num_users);
773

774 775
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
776
{
777
	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 779 780 781 782 783 784 785 786

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
787
static DEVICE_ATTR_RO(type);
788 789 790 791

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
792
	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 794 795

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
796 797
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
798 799 800 801

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
802
	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 804 805

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
806 807
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
808 809 810 811

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
812
	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 814 815

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
816 817
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
818 819 820 821

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
822
	struct regulator_dev *rdev = dev_get_drvdata(dev);
823

D
David Brownell 已提交
824 825
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
826
}
827 828
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
829 830 831 832

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
833
	struct regulator_dev *rdev = dev_get_drvdata(dev);
834

D
David Brownell 已提交
835 836
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
837
}
838 839
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
840 841 842 843

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
844
	struct regulator_dev *rdev = dev_get_drvdata(dev);
845

D
David Brownell 已提交
846 847
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
848
}
849 850
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
851 852 853 854

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
855
	struct regulator_dev *rdev = dev_get_drvdata(dev);
856

D
David Brownell 已提交
857 858
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
859
}
860 861
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
862 863 864 865

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
866
	struct regulator_dev *rdev = dev_get_drvdata(dev);
867

D
David Brownell 已提交
868 869
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
870
}
871 872
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
873 874 875 876

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
881
}
882 883 884
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
906

907 908
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
909
static int drms_uA_update(struct regulator_dev *rdev)
910 911 912 913 914
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

915 916 917 918
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
919 920
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
921
		return 0;
922
	}
923

924 925
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
926 927
		return 0;

928 929
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
930
		return -EINVAL;
931 932

	/* calc total requested load */
933 934 935 936
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
937

938 939
	current_uA += rdev->constraints->system_load;

940 941 942 943 944 945
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
946
		/* get output voltage */
947
		output_uV = regulator_get_voltage_rdev(rdev);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

964 965 966 967 968 969 970 971 972 973 974
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
975

976 977 978
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 980 981
	}

	return err;
982 983 984
}

static int suspend_set_state(struct regulator_dev *rdev,
985
				    suspend_state_t state)
986 987
{
	int ret = 0;
988 989 990 991
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
992
		return 0;
993

994
	/* If we have no suspend mode configuration don't set anything;
995 996
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
997
	 */
998 999
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000 1001
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1002
			rdev_warn(rdev, "No configuration\n");
1003 1004 1005
		return 0;
	}

1006 1007
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1008
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 1010
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1011
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 1013 1014
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1015
	if (ret < 0) {
1016
		rdev_err(rdev, "failed to enabled/disable\n");
1017 1018 1019 1020 1021 1022
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1023
			rdev_err(rdev, "failed to set voltage\n");
1024 1025 1026 1027 1028 1029 1030
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1031
			rdev_err(rdev, "failed to set mode\n");
1032 1033 1034 1035
			return ret;
		}
	}

1036
	return ret;
1037 1038 1039 1040 1041
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1042
	char buf[160] = "";
1043
	size_t len = sizeof(buf) - 1;
1044 1045
	int count = 0;
	int ret;
1046

1047
	if (constraints->min_uV && constraints->max_uV) {
1048
		if (constraints->min_uV == constraints->max_uV)
1049 1050
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1051
		else
1052 1053 1054 1055
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1056 1057 1058 1059
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1060
		ret = regulator_get_voltage_rdev(rdev);
1061
		if (ret > 0)
1062 1063
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1064 1065
	}

1066
	if (constraints->uV_offset)
1067 1068
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1069

1070
	if (constraints->min_uA && constraints->max_uA) {
1071
		if (constraints->min_uA == constraints->max_uA)
1072 1073
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1074
		else
1075 1076 1077 1078
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1079 1080 1081 1082 1083 1084
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1085 1086
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1087
	}
1088

1089
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090
		count += scnprintf(buf + count, len - count, "fast ");
1091
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092
		count += scnprintf(buf + count, len - count, "normal ");
1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094
		count += scnprintf(buf + count, len - count, "idle ");
1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096
		count += scnprintf(buf + count, len - count, "standby");
1097

1098
	if (!count)
1099
		scnprintf(buf, len, "no parameters");
1100

1101
	rdev_dbg(rdev, "%s\n", buf);
1102 1103

	if ((constraints->min_uV != constraints->max_uV) &&
1104
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 1106
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 1108
}

1109
static int machine_constraints_voltage(struct regulator_dev *rdev,
1110
	struct regulation_constraints *constraints)
1111
{
1112
	const struct regulator_ops *ops = rdev->desc->ops;
1113 1114 1115 1116
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1117 1118
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1119
		int current_uV = regulator_get_voltage_rdev(rdev);
1120 1121

		if (current_uV == -ENOTRECOVERABLE) {
1122
			/* This regulator can't be read and must be initialized */
1123 1124 1125 1126 1127 1128
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1129
			current_uV = regulator_get_voltage_rdev(rdev);
1130 1131
		}

1132
		if (current_uV < 0) {
1133 1134 1135
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1136 1137
			return current_uV;
		}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1158 1159
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1160
			ret = _regulator_do_set_voltage(
1161
				rdev, target_min, target_max);
1162 1163
			if (ret < 0) {
				rdev_err(rdev,
1164 1165
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1166 1167
				return ret;
			}
1168
		}
1169
	}
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1182 1183
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1184
		if (count == 1 && !cmin) {
1185
			cmin = 1;
1186
			cmax = INT_MAX;
1187 1188
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1189 1190
		}

1191 1192
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1193
			return 0;
1194

1195
		/* else require explicit machine-level constraints */
1196
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197
			rdev_err(rdev, "invalid voltage constraints\n");
1198
			return -EINVAL;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1218 1219 1220
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1221
			return -EINVAL;
1222 1223 1224 1225
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1226 1227
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1228 1229 1230
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1231 1232
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1233 1234 1235 1236
			constraints->max_uV = max_uV;
		}
	}

1237 1238 1239
	return 0;
}

1240 1241 1242
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1243
	const struct regulator_ops *ops = rdev->desc->ops;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1270 1271
static int _regulator_do_enable(struct regulator_dev *rdev);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1284
	const struct regulation_constraints *constraints)
1285 1286
{
	int ret = 0;
1287
	const struct regulator_ops *ops = rdev->desc->ops;
1288

1289 1290 1291 1292 1293 1294
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1295 1296
	if (!rdev->constraints)
		return -ENOMEM;
1297

1298
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299
	if (ret != 0)
1300
		return ret;
1301

1302
	ret = machine_constraints_current(rdev, rdev->constraints);
1303
	if (ret != 0)
1304
		return ret;
1305

1306 1307 1308 1309 1310
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1311
			return ret;
1312 1313 1314
		}
	}

1315
	/* do we need to setup our suspend state */
1316
	if (rdev->constraints->initial_state) {
1317
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318
		if (ret < 0) {
1319
			rdev_err(rdev, "failed to set suspend state\n");
1320
			return ret;
1321 1322
		}
	}
1323

1324
	if (rdev->constraints->initial_mode) {
1325
		if (!ops->set_mode) {
1326
			rdev_err(rdev, "no set_mode operation\n");
1327
			return -EINVAL;
1328 1329
		}

1330
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331
		if (ret < 0) {
1332
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333
			return ret;
1334
		}
1335 1336 1337 1338 1339 1340
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1341 1342
	}

1343 1344
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1345 1346 1347
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1348
			return ret;
1349 1350 1351
		}
	}

S
Stephen Boyd 已提交
1352 1353 1354 1355
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1356
			return ret;
S
Stephen Boyd 已提交
1357 1358 1359
		}
	}

S
Stephen Boyd 已提交
1360 1361 1362 1363
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1364
			return ret;
S
Stephen Boyd 已提交
1365 1366 1367
		}
	}

1368 1369 1370 1371 1372
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1373
			return ret;
1374 1375 1376
		}
	}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1388 1389 1390 1391
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 1393 1394 1395 1396 1397 1398 1399 1400
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1401 1402 1403 1404 1405
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1406 1407 1408

		if (rdev->constraints->always_on)
			rdev->use_count++;
1409 1410
	}

1411
	print_constraints(rdev);
1412
	return 0;
1413 1414 1415 1416
}

/**
 * set_supply - set regulator supply regulator
1417 1418
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1419 1420 1421 1422 1423 1424
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1425
		      struct regulator_dev *supply_rdev)
1426 1427 1428
{
	int err;

1429 1430
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1431 1432 1433
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1434
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435 1436
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1437
		return err;
1438
	}
1439
	supply_rdev->open_count++;
1440 1441

	return 0;
1442 1443 1444
}

/**
1445
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446
 * @rdev:         regulator source
1447
 * @consumer_dev_name: dev_name() string for device supply applies to
1448
 * @supply:       symbolic name for supply
1449 1450 1451 1452 1453 1454 1455
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1456 1457
				      const char *consumer_dev_name,
				      const char *supply)
1458 1459
{
	struct regulator_map *node;
1460
	int has_dev;
1461 1462 1463 1464

	if (supply == NULL)
		return -EINVAL;

1465 1466 1467 1468 1469
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1470
	list_for_each_entry(node, &regulator_map_list, list) {
1471 1472 1473 1474
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1475
			continue;
1476 1477
		}

1478 1479 1480
		if (strcmp(node->supply, supply) != 0)
			continue;

1481 1482 1483 1484 1485 1486
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1487 1488 1489
		return -EBUSY;
	}

1490
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491 1492 1493 1494 1495 1496
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1497 1498 1499 1500 1501 1502
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1503 1504
	}

1505 1506 1507 1508
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1509 1510 1511 1512 1513 1514 1515
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1516
			kfree(node->dev_name);
1517 1518 1519 1520 1521
			kfree(node);
		}
	}
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1571
#define REG_STR_SIZE	64
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1585
	regulator_lock(rdev);
1586 1587 1588 1589
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1590 1591
		regulator->dev = dev;

1592
		/* Add a link to the device sysfs entry */
1593 1594
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1595
		if (size >= REG_STR_SIZE)
1596
			goto overflow_err;
1597 1598 1599

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1600
			goto overflow_err;
1601

1602
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603 1604
					buf);
		if (err) {
1605
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1606
				  dev->kobj.name, err);
1607
			/* non-fatal */
1608
		}
1609
	} else {
1610
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611
		if (regulator->supply_name == NULL)
1612
			goto overflow_err;
1613 1614 1615 1616
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1617
	if (!regulator->debugfs) {
1618
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619 1620 1621 1622
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626 1627 1628
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1629
	}
1630

1631 1632 1633 1634 1635
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1636
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637 1638 1639
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1640
	regulator_unlock(rdev);
1641 1642 1643 1644
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1645
	regulator_unlock(rdev);
1646 1647 1648
	return NULL;
}

1649 1650
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1651 1652
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1653 1654 1655
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1706 1707 1708 1709 1710
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1711
 */
1712
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713
						  const char *supply)
1714
{
1715
	struct regulator_dev *r = NULL;
1716
	struct device_node *node;
1717 1718
	struct regulator_map *map;
	const char *devname = NULL;
1719

1720 1721
	regulator_supply_alias(&dev, &supply);

1722 1723 1724
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1725
		if (node) {
1726 1727 1728
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1729

1730
			/*
1731 1732
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1733
			 */
1734
			return ERR_PTR(-EPROBE_DEFER);
1735
		}
1736 1737 1738
	}

	/* if not found, try doing it non-dt way */
1739 1740 1741
	if (dev)
		devname = dev_name(dev);

1742
	mutex_lock(&regulator_list_mutex);
1743 1744 1745 1746 1747 1748
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1749 1750
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1751 1752
			r = map->regulator;
			break;
1753
		}
1754
	}
1755
	mutex_unlock(&regulator_list_mutex);
1756

1757 1758 1759 1760
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1761 1762 1763 1764
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1765 1766
}

1767 1768 1769 1770 1771 1772
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1773
	/* No supply to resolve? */
1774 1775 1776 1777 1778 1779 1780
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1781 1782 1783 1784
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1785 1786 1787 1788
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1789 1790
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1791
			get_device(&r->dev);
1792 1793 1794 1795 1796
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1797 1798
	}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1812 1813
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1814 1815
	if (ret < 0) {
		put_device(&r->dev);
1816
		return ret;
1817
	}
1818 1819

	ret = set_supply(rdev, r);
1820 1821
	if (ret < 0) {
		put_device(&r->dev);
1822
		return ret;
1823
	}
1824

1825 1826 1827 1828 1829 1830
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1831
		ret = regulator_enable(rdev->supply);
1832
		if (ret < 0) {
1833
			_regulator_put(rdev->supply);
1834
			rdev->supply = NULL;
1835
			return ret;
1836
		}
1837 1838 1839 1840 1841
	}

	return 0;
}

1842
/* Internal regulator request function */
1843 1844
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1845 1846
{
	struct regulator_dev *rdev;
1847
	struct regulator *regulator;
1848
	const char *devname = dev ? dev_name(dev) : "deviceless";
1849
	int ret;
1850

1851 1852 1853 1854 1855
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1856
	if (id == NULL) {
1857
		pr_err("get() with no identifier\n");
1858
		return ERR_PTR(-EINVAL);
1859 1860
	}

1861
	rdev = regulator_dev_lookup(dev, id);
1862 1863
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1864

1865 1866 1867 1868 1869 1870
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1871

1872 1873 1874 1875 1876
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1891

1892 1893 1894 1895
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1896

1897 1898 1899
		default:
			return ERR_PTR(-ENODEV);
		}
1900 1901
	}

1902 1903
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1904 1905
		put_device(&rdev->dev);
		return regulator;
1906 1907
	}

1908
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1909
		regulator = ERR_PTR(-EBUSY);
1910 1911
		put_device(&rdev->dev);
		return regulator;
1912 1913
	}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1924 1925 1926
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1927 1928
		put_device(&rdev->dev);
		return regulator;
1929 1930
	}

1931
	if (!try_module_get(rdev->owner)) {
1932
		regulator = ERR_PTR(-EPROBE_DEFER);
1933 1934 1935
		put_device(&rdev->dev);
		return regulator;
	}
1936

1937 1938 1939 1940
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1941
		put_device(&rdev->dev);
1942
		return regulator;
1943 1944
	}

1945
	rdev->open_count++;
1946
	if (get_type == EXCLUSIVE_GET) {
1947 1948 1949 1950 1951 1952 1953 1954 1955
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1956 1957
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1958 1959
	return regulator;
}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1976
	return _regulator_get(dev, id, NORMAL_GET);
1977
}
1978 1979
EXPORT_SYMBOL_GPL(regulator_get);

1980 1981 1982 1983 1984 1985 1986
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1987 1988 1989
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2003
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2004 2005 2006
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2007 2008 2009 2010 2011 2012
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2013
 * or IS_ERR() condition containing errno.
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2029
	return _regulator_get(dev, id, OPTIONAL_GET);
2030 2031 2032
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2033
/* regulator_list_mutex lock held by regulator_put() */
2034
static void _regulator_put(struct regulator *regulator)
2035 2036 2037
{
	struct regulator_dev *rdev;

2038
	if (IS_ERR_OR_NULL(regulator))
2039 2040
		return;

2041 2042
	lockdep_assert_held_once(&regulator_list_mutex);

2043 2044 2045
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2046 2047
	rdev = regulator->rdev;

2048 2049
	debugfs_remove_recursive(regulator->debugfs);

2050
	if (regulator->dev) {
2051
		device_link_remove(regulator->dev, &rdev->dev);
2052 2053

		/* remove any sysfs entries */
2054
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055 2056
	}

2057
	regulator_lock(rdev);
2058 2059
	list_del(&regulator->list);

2060 2061
	rdev->open_count--;
	rdev->exclusive = 0;
2062
	regulator_unlock(rdev);
2063

2064
	kfree_const(regulator->supply_name);
2065 2066
	kfree(regulator);

2067
	module_put(rdev->owner);
W
Wen Yang 已提交
2068
	put_device(&rdev->dev);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2083 2084 2085 2086
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2164 2165
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2166
					 struct device *alias_dev,
2167
					 const char *const *alias_id,
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2205
					    const char *const *id,
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2216 2217 2218 2219 2220
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2221
	struct gpio_desc *gpiod;
2222

2223
	gpiod = config->ena_gpiod;
2224

2225
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2226
		if (pin->gpiod == gpiod) {
2227
			rdev_dbg(rdev, "GPIO is already used\n");
2228 2229 2230 2231 2232
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2233
	if (pin == NULL)
2234 2235
		return -ENOMEM;

2236
	pin->gpiod = gpiod;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2254
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2255 2256
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2257
				gpiod_put(pin->gpiod);
2258 2259
				list_del(&pin->list);
				kfree(pin);
2260 2261
				rdev->ena_pin = NULL;
				return;
2262 2263 2264 2265 2266 2267 2268
			} else {
				pin->request_count--;
			}
		}
	}
}

2269
/**
2270 2271 2272 2273
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2287
			gpiod_set_value_cansleep(pin->gpiod, 1);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2298
			gpiod_set_value_cansleep(pin->gpiod, 0);
2299 2300 2301 2302 2303 2304 2305
			pin->enable_count = 0;
		}
	}

	return 0;
}

2306 2307 2308 2309 2310 2311
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2312
 *     Documentation/timers/timers-howto.rst
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2375
			 * detected and we get a penalty of
2376 2377 2378 2379 2380 2381 2382 2383 2384
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2385
	if (rdev->ena_pin) {
2386 2387 2388 2389 2390 2391
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2392
	} else if (rdev->desc->ops->enable) {
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2405
	_regulator_enable_delay(delay);
2406 2407 2408 2409 2410 2411

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2471
/* locks held by regulator_enable() */
2472
static int _regulator_enable(struct regulator *regulator)
2473
{
2474
	struct regulator_dev *rdev = regulator->rdev;
2475
	int ret;
2476

2477 2478
	lockdep_assert_held_once(&rdev->mutex.base);

2479
	if (rdev->use_count == 0 && rdev->supply) {
2480
		ret = _regulator_enable(rdev->supply);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2491

2492 2493 2494
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2495

2496 2497 2498 2499
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2500
			if (!regulator_ops_is_valid(rdev,
2501 2502
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2503
				goto err_consumer_disable;
2504
			}
2505

2506
			ret = _regulator_do_enable(rdev);
2507
			if (ret < 0)
2508
				goto err_consumer_disable;
2509

2510 2511
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2512
		} else if (ret < 0) {
2513
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2514
			goto err_consumer_disable;
2515
		}
2516
		/* Fallthrough on positive return values - already enabled */
2517 2518
	}

2519 2520 2521
	rdev->use_count++;

	return 0;
2522

2523 2524 2525
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2526
err_disable_supply:
2527
	if (rdev->use_count == 0 && rdev->supply)
2528
		_regulator_disable(rdev->supply);
2529 2530

	return ret;
2531 2532 2533 2534 2535 2536
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2537 2538 2539 2540
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2541
 * NOTE: the output value can be set by other drivers, boot loader or may be
2542
 * hardwired in the regulator.
2543 2544 2545
 */
int regulator_enable(struct regulator *regulator)
{
2546
	struct regulator_dev *rdev = regulator->rdev;
2547
	struct ww_acquire_ctx ww_ctx;
2548
	int ret;
2549

2550
	regulator_lock_dependent(rdev, &ww_ctx);
2551
	ret = _regulator_enable(regulator);
2552
	regulator_unlock_dependent(rdev, &ww_ctx);
2553

2554 2555 2556 2557
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2558 2559 2560 2561 2562 2563
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2564
	if (rdev->ena_pin) {
2565 2566 2567 2568 2569 2570
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2571 2572 2573 2574 2575 2576 2577

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2578 2579 2580 2581 2582 2583
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2584 2585 2586 2587 2588
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2589
/* locks held by regulator_disable() */
2590
static int _regulator_disable(struct regulator *regulator)
2591
{
2592
	struct regulator_dev *rdev = regulator->rdev;
2593 2594
	int ret = 0;

2595
	lockdep_assert_held_once(&rdev->mutex.base);
2596

D
David Brownell 已提交
2597
	if (WARN(rdev->use_count <= 0,
2598
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2599 2600
		return -EIO;

2601
	/* are we the last user and permitted to disable ? */
2602 2603
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2604 2605

		/* we are last user */
2606
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2607 2608 2609 2610 2611 2612
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2613
			ret = _regulator_do_disable(rdev);
2614
			if (ret < 0) {
2615
				rdev_err(rdev, "failed to disable\n");
2616 2617 2618
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2619 2620
				return ret;
			}
2621 2622
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2623 2624 2625 2626 2627 2628
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2629

2630 2631 2632
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2633 2634 2635
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2636
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2637
		ret = _regulator_disable(rdev->supply);
2638

2639 2640 2641 2642 2643 2644 2645
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2646 2647 2648
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2649
 *
2650
 * NOTE: this will only disable the regulator output if no other consumer
2651 2652
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2653 2654 2655
 */
int regulator_disable(struct regulator *regulator)
{
2656
	struct regulator_dev *rdev = regulator->rdev;
2657
	struct ww_acquire_ctx ww_ctx;
2658
	int ret;
2659

2660
	regulator_lock_dependent(rdev, &ww_ctx);
2661
	ret = _regulator_disable(regulator);
2662
	regulator_unlock_dependent(rdev, &ww_ctx);
2663

2664 2665 2666 2667 2668
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2669
static int _regulator_force_disable(struct regulator_dev *rdev)
2670 2671 2672
{
	int ret = 0;

2673
	lockdep_assert_held_once(&rdev->mutex.base);
2674

2675 2676 2677 2678 2679
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2680 2681 2682
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2683 2684
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2685
		return ret;
2686 2687
	}

2688 2689 2690 2691
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2705
	struct regulator_dev *rdev = regulator->rdev;
2706
	struct ww_acquire_ctx ww_ctx;
2707 2708
	int ret;

2709
	regulator_lock_dependent(rdev, &ww_ctx);
2710

2711
	ret = _regulator_force_disable(regulator->rdev);
2712

2713 2714
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2715 2716 2717 2718 2719 2720

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2721 2722
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2723

2724
	regulator_unlock_dependent(rdev, &ww_ctx);
2725

2726 2727 2728 2729
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2730 2731 2732 2733
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2734
	struct ww_acquire_ctx ww_ctx;
2735
	int count, i, ret;
2736 2737
	struct regulator *regulator;
	int total_count = 0;
2738

2739
	regulator_lock_dependent(rdev, &ww_ctx);
2740

2741 2742 2743 2744 2745 2746 2747 2748
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2763
	}
2764
	WARN_ON(!total_count);
2765

2766 2767 2768 2769
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2770 2771 2772 2773 2774
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2775
 * @ms: milliseconds until the regulator is disabled
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2788 2789 2790
	if (!ms)
		return regulator_disable(regulator);

2791
	regulator_lock(rdev);
2792
	regulator->deferred_disables++;
2793 2794
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2795
	regulator_unlock(rdev);
2796

2797
	return 0;
2798 2799 2800
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2801 2802
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2803
	/* A GPIO control always takes precedence */
2804
	if (rdev->ena_pin)
2805 2806
		return rdev->ena_gpio_state;

2807
	/* If we don't know then assume that the regulator is always on */
2808
	if (!rdev->desc->ops->is_enabled)
2809
		return 1;
2810

2811
	return rdev->desc->ops->is_enabled(rdev);
2812 2813
}

2814 2815
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2827
			regulator_lock(rdev);
2828 2829
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2830
			regulator_unlock(rdev);
2831
	} else if (rdev->is_switch && rdev->supply) {
2832 2833
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2848 2849 2850 2851
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2852 2853 2854 2855 2856 2857 2858
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2859 2860 2861
 */
int regulator_is_enabled(struct regulator *regulator)
{
2862 2863
	int ret;

2864 2865 2866
	if (regulator->always_on)
		return 1;

2867
	regulator_lock(regulator->rdev);
2868
	ret = _regulator_is_enabled(regulator->rdev);
2869
	regulator_unlock(regulator->rdev);
2870 2871

	return ret;
2872 2873 2874
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2887 2888 2889
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2890
	if (!rdev->is_switch || !rdev->supply)
2891 2892 2893
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2904
 * zero if this selector code can't be used on this system, or a
2905 2906 2907 2908
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2909
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2910 2911 2912
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2945 2946
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2947 2948 2949 2950

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2951 2952
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2972 2973
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2999 3000 3001 3002 3003 3004 3005
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3006
 * Returns a boolean.
3007 3008 3009 3010
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3011
	struct regulator_dev *rdev = regulator->rdev;
3012 3013
	int i, voltages, ret;

3014
	/* If we can't change voltage check the current voltage */
3015
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3016 3017
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3018
			return min_uV <= ret && ret <= max_uV;
3019 3020 3021 3022
		else
			return ret;
	}

3023 3024 3025 3026 3027
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3028 3029
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3030
		return 0;
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3042
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3058 3059 3060 3061 3062
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3063 3064 3065
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3066 3067 3068 3069 3070 3071 3072
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3073
	data.old_uV = regulator_get_voltage_rdev(rdev);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3097
	data.old_uV = regulator_get_voltage_rdev(rdev);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3175 3176 3177 3178 3179 3180 3181 3182 3183
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3184 3185
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3186 3187 3188 3189 3190 3191
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3192 3193

	if (ramp_delay == 0) {
3194
		rdev_dbg(rdev, "ramp_delay not set\n");
3195 3196 3197 3198 3199 3200
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3201 3202 3203 3204
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3205
	int delay = 0;
3206
	int best_val = 0;
3207
	unsigned int selector;
3208
	int old_selector = -1;
3209
	const struct regulator_ops *ops = rdev->desc->ops;
3210
	int old_uV = regulator_get_voltage_rdev(rdev);
3211 3212 3213

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3214 3215 3216
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3217 3218 3219 3220
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3221
	if (_regulator_is_enabled(rdev) &&
3222 3223
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3224 3225 3226 3227
		if (old_selector < 0)
			return old_selector;
	}

3228
	if (ops->set_voltage) {
3229 3230
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3231 3232

		if (ret >= 0) {
3233 3234 3235
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3236
			else
3237
				best_val = regulator_get_voltage_rdev(rdev);
3238 3239
		}

3240
	} else if (ops->set_voltage_sel) {
3241
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3242
		if (ret >= 0) {
3243
			best_val = ops->list_voltage(rdev, ret);
3244 3245
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3246 3247
				if (old_selector == selector)
					ret = 0;
3248 3249 3250
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3251
				else
3252 3253
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3254 3255 3256
			} else {
				ret = -EINVAL;
			}
3257
		}
3258 3259 3260
	} else {
		ret = -EINVAL;
	}
3261

3262 3263
	if (ret)
		goto out;
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3282
		}
3283
	}
3284

3285 3286 3287
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3288 3289
	}

3290 3291 3292 3293 3294 3295
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3296 3297
	}

3298
	if (best_val >= 0) {
3299 3300
		unsigned long data = best_val;

3301
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3302 3303
				     (void *)data);
	}
3304

3305
out:
3306
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3307 3308 3309 3310

	return ret;
}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3337
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3338 3339
					  int min_uV, int max_uV,
					  suspend_state_t state)
3340 3341
{
	struct regulator_dev *rdev = regulator->rdev;
3342
	struct regulator_voltage *voltage = &regulator->voltage[state];
3343
	int ret = 0;
3344
	int old_min_uV, old_max_uV;
3345
	int current_uV;
3346

3347 3348 3349 3350
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3351
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3352 3353
		goto out;

3354
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3355
	 * return successfully even though the regulator does not support
3356 3357
	 * changing the voltage.
	 */
3358
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3359
		current_uV = regulator_get_voltage_rdev(rdev);
3360
		if (min_uV <= current_uV && current_uV <= max_uV) {
3361 3362
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3363 3364 3365 3366
			goto out;
		}
	}

3367
	/* sanity check */
3368 3369
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3370 3371 3372 3373 3374 3375 3376 3377
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3378

3379
	/* restore original values in case of error */
3380 3381 3382 3383
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3384

3385 3386
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3387 3388 3389 3390
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3391

3392 3393 3394 3395
out:
	return ret;
}

3396 3397
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3398 3399 3400 3401 3402
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3403 3404 3405
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3406 3407
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3408 3409 3410 3411 3412 3413
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3414
			goto out;
3415 3416
		}

M
Mark Brown 已提交
3417
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3418 3419
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3420
			goto out;
3421 3422 3423 3424
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3425
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3426 3427
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3428
			goto out;
3429 3430 3431 3432 3433 3434 3435
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3436
				best_supply_uV, INT_MAX, state);
3437 3438 3439
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3440
			goto out;
3441 3442 3443
		}
	}

3444 3445 3446 3447 3448
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3449
	if (ret < 0)
3450
		goto out;
3451

3452 3453
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3454
				best_supply_uV, INT_MAX, state);
3455 3456 3457 3458 3459 3460 3461
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3462
out:
3463
	return ret;
3464 3465
}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3476
		*current_uV = regulator_get_voltage_rdev(rdev);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3508
	int i, ret, max_spread;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3542
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3553

3554 3555 3556 3557 3558 3559 3560 3561
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3562 3563
	max_spread = constraints->max_spread[0];

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3581
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3619 3620 3621 3622
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3623
			ret = regulator_get_voltage_rdev(rdev);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3645
	struct regulator_coupler *coupler = c_desc->coupler;
3646 3647
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3648 3649
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3666 3667 3668
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3695
			if (test_bit(i, &c_rdev_done))
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3723

3724 3725
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3726

3727 3728 3729
		if (ret < 0)
			goto out;

3730 3731
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3732 3733 3734 3735

	} while (n_coupled > 1);

out:
3736 3737 3738
	return ret;
}

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3759 3760
	struct ww_acquire_ctx ww_ctx;
	int ret;
3761

3762
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3763

3764 3765
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3766

3767
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3768

3769 3770 3771 3772
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3785
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3839 3840
	struct ww_acquire_ctx ww_ctx;
	int ret;
3841 3842 3843 3844 3845

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3846
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3847 3848 3849 3850

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3851
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3852 3853 3854 3855 3856

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3870 3871
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3872 3873 3874 3875 3876
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3877 3878 3879 3880 3881
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3882
	/* Currently requires operations to do this */
3883
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3906
/**
3907 3908
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3909 3910 3911 3912 3913 3914
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3915
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3916
 * set_voltage_time_sel() operation.
3917 3918 3919 3920 3921
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3922
	int old_volt, new_volt;
3923

3924 3925 3926
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3927

3928 3929 3930
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3931 3932 3933 3934 3935
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3936
}
3937
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3938

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3950
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3951 3952
	int ret, min_uV, max_uV;

3953
	regulator_lock(rdev);
3954 3955 3956 3957 3958 3959 3960 3961

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3962
	if (!voltage->min_uV && !voltage->max_uV) {
3963 3964 3965 3966
		ret = -EINVAL;
		goto out;
	}

3967 3968
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3969 3970 3971 3972 3973 3974

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3975
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3976 3977 3978 3979 3980 3981
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3982
	regulator_unlock(rdev);
3983 3984 3985 3986
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3987
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3988
{
3989
	int sel, ret;
3990 3991 3992 3993 3994 3995 3996 3997
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3998 3999 4000 4001 4002
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4003

4004
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4005 4006
		}
	}
4007 4008 4009 4010 4011

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4012
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4013
	} else if (rdev->desc->ops->get_voltage) {
4014
		ret = rdev->desc->ops->get_voltage(rdev);
4015 4016
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4017 4018
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4019
	} else if (rdev->supply) {
4020
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4021
	} else {
4022
		return -EINVAL;
4023
	}
4024

4025 4026
	if (ret < 0)
		return ret;
4027
	return ret - rdev->constraints->uV_offset;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4041
	struct ww_acquire_ctx ww_ctx;
4042 4043
	int ret;

4044
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4045
	ret = regulator_get_voltage_rdev(regulator->rdev);
4046
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4047 4048 4049 4050 4051 4052 4053 4054

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4055
 * @min_uA: Minimum supported current in uA
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4074
	regulator_lock(rdev);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4089
	regulator_unlock(rdev);
4090 4091 4092 4093
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4094 4095 4096 4097 4098 4099 4100 4101 4102
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4103 4104 4105 4106
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4107
	regulator_lock(rdev);
4108
	ret = _regulator_get_current_limit_unlocked(rdev);
4109
	regulator_unlock(rdev);
4110

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4144
	int regulator_curr_mode;
4145

4146
	regulator_lock(rdev);
4147 4148 4149 4150 4151 4152 4153

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4154 4155 4156 4157 4158 4159 4160 4161 4162
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4163
	/* constraints check */
4164
	ret = regulator_mode_constrain(rdev, &mode);
4165 4166 4167 4168 4169
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4170
	regulator_unlock(rdev);
4171 4172 4173 4174
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4175 4176 4177 4178 4179 4180 4181 4182 4183
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4184 4185 4186 4187
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4188
	regulator_lock(rdev);
4189
	ret = _regulator_get_mode_unlocked(rdev);
4190
	regulator_unlock(rdev);
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4207 4208 4209 4210 4211
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4212
	regulator_lock(rdev);
4213 4214 4215 4216 4217 4218 4219 4220 4221

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4222
	regulator_unlock(rdev);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4240
/**
4241
 * regulator_set_load - set regulator load
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4264 4265 4266 4267 4268 4269 4270 4271
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4272
 * On error a negative errno is returned.
4273
 */
4274
int regulator_set_load(struct regulator *regulator, int uA_load)
4275 4276
{
	struct regulator_dev *rdev = regulator->rdev;
4277 4278
	int old_uA_load;
	int ret = 0;
4279

4280
	regulator_lock(rdev);
4281
	old_uA_load = regulator->uA_load;
4282
	regulator->uA_load = uA_load;
4283 4284 4285 4286 4287
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4288
	regulator_unlock(rdev);
4289

4290 4291
	return ret;
}
4292
EXPORT_SYMBOL_GPL(regulator_set_load);
4293

4294 4295 4296 4297
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4298
 * @enable: enable or disable bypass mode
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4313
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4314 4315
		return 0;

4316
	regulator_lock(rdev);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4340
	regulator_unlock(rdev);
4341 4342 4343 4344 4345

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4346 4347 4348
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4349
 * @nb: notifier block
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4364
 * @nb: notifier block
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4376 4377 4378
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4379
static int _notifier_call_chain(struct regulator_dev *rdev,
4380 4381 4382
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4383
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4410 4411
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4422 4423 4424 4425 4426 4427 4428
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4429
	while (--i >= 0)
4430 4431 4432 4433 4434 4435
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4436 4437 4438 4439 4440 4441 4442
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4458
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4459
	int i;
4460
	int ret = 0;
4461

4462
	for (i = 0; i < num_consumers; i++) {
4463 4464
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4465
	}
4466 4467 4468 4469

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4470
	for (i = 0; i < num_consumers; i++) {
4471 4472
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4473
			goto err;
4474
		}
4475 4476 4477 4478 4479
	}

	return 0;

err:
4480 4481 4482 4483 4484 4485 4486
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4500 4501
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4502 4503 4504 4505 4506 4507
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4508
	int ret, r;
4509

4510
	for (i = num_consumers - 1; i >= 0; --i) {
4511 4512 4513 4514 4515 4516 4517 4518
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4519
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4520 4521 4522
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4523
			pr_err("Failed to re-enable %s: %d\n",
4524 4525
			       consumers[i].supply, r);
	}
4526 4527 4528 4529 4530

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4549
	int ret = 0;
4550

4551
	for (i = 0; i < num_consumers; i++) {
4552 4553 4554
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4555 4556
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4557 4558 4559 4560 4561 4562 4563
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4587
 * @rdev: regulator source
4588
 * @event: notifier block
4589
 * @data: callback-specific data.
4590 4591 4592
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4593
 * Note lock must be held by caller.
4594 4595 4596 4597
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4598
	lockdep_assert_held_once(&rdev->mutex.base);
4599

4600 4601 4602 4603 4604 4605
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4622
	case REGULATOR_MODE_STANDBY:
4623 4624
		return REGULATOR_STATUS_STANDBY;
	default:
4625
		return REGULATOR_STATUS_UNDEFINED;
4626 4627 4628 4629
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4657 4658 4659 4660
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4661 4662
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4663
{
4664
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4665
	struct regulator_dev *rdev = dev_to_rdev(dev);
4666
	const struct regulator_ops *ops = rdev->desc->ops;
4667 4668 4669 4670 4671 4672 4673
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4674 4675

	/* some attributes need specific methods to be displayed */
4676 4677 4678 4679 4680 4681 4682
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4683
	}
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4700
	/* constraints need specific supporting methods */
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4736

4737 4738 4739
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4740 4741 4742

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4743
	kfree(rdev);
4744 4745
}

4746 4747
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4760
	if (!rdev->debugfs) {
4761 4762 4763 4764 4765 4766 4767 4768
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4769 4770
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4771 4772
}

4773 4774
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4775 4776 4777 4778 4779 4780
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4781 4782
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4834
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4835
{
4836
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4849 4850
		if (!c_rdev)
			continue;
4851

4852 4853 4854 4855 4856 4857
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4858
		regulator_lock(c_rdev);
4859

4860 4861
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4862

4863
		regulator_unlock(c_rdev);
4864

4865 4866
		regulator_resolve_coupling(c_rdev);
	}
4867 4868
}

4869
static void regulator_remove_coupling(struct regulator_dev *rdev)
4870
{
4871
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4872 4873 4874 4875
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4876
	int err;
4877

4878
	n_coupled = c_desc->n_coupled;
4879

4880 4881
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4882

4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4916 4917
}

4918
static int regulator_init_coupling(struct regulator_dev *rdev)
4919
{
4920 4921
	int err, n_phandles;
	size_t alloc_size;
4922 4923 4924 4925 4926 4927

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4928 4929 4930 4931 4932
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4946
	if (!of_check_coupling_data(rdev))
4947 4948
		return -EPERM;

4949 4950 4951 4952 4953
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4954 4955
	}

4956 4957 4958 4959 4960 4961 4962 4963 4964
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4965
		return -EPERM;
4966
	}
4967

4968 4969 4970 4971 4972 4973
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

4974 4975 4976
	return 0;
}

4977 4978 4979 4980
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4981 4982
/**
 * regulator_register - register regulator
4983
 * @regulator_desc: regulator to register
4984
 * @cfg: runtime configuration for regulator
4985 4986
 *
 * Called by regulator drivers to register a regulator.
4987 4988
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4989
 */
4990 4991
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4992
		   const struct regulator_config *cfg)
4993
{
4994
	const struct regulation_constraints *constraints = NULL;
4995
	const struct regulator_init_data *init_data;
4996
	struct regulator_config *config = NULL;
4997
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4998
	struct regulator_dev *rdev;
4999 5000
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5001
	struct device *dev;
5002
	int ret, i;
5003

5004
	if (cfg == NULL)
5005
		return ERR_PTR(-EINVAL);
5006 5007 5008 5009 5010 5011
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5012

5013
	dev = cfg->dev;
5014
	WARN_ON(!dev);
5015

5016 5017 5018 5019
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5020

5021
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5022 5023 5024 5025
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5026

5027 5028 5029
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5030 5031
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5032 5033 5034 5035

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5036 5037
		ret = -EINVAL;
		goto rinse;
5038
	}
5039 5040
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5041 5042
		ret = -EINVAL;
		goto rinse;
5043
	}
5044

5045
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5046 5047 5048 5049
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5050

5051 5052 5053 5054 5055 5056 5057
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5058 5059
		ret = -ENOMEM;
		goto rinse;
5060 5061
	}

5062
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5063
					       &rdev->dev.of_node);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		kfree(config);
		kfree(rdev);
		ret = -EPROBE_DEFER;
		goto rinse;
	}

5077 5078 5079 5080 5081
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5082
	 * a descriptor, we definitely got one from parsing the device
5083 5084 5085 5086
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5087 5088 5089 5090 5091
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5092
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5093
	rdev->reg_data = config->driver_data;
5094 5095
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5096 5097
	if (config->regmap)
		rdev->regmap = config->regmap;
5098
	else if (dev_get_regmap(dev, NULL))
5099
		rdev->regmap = dev_get_regmap(dev, NULL);
5100 5101
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5102 5103 5104
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5105
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5106

5107
	/* preform any regulator specific init */
5108
	if (init_data && init_data->regulator_init) {
5109
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5110 5111
		if (ret < 0)
			goto clean;
5112 5113
	}

5114
	if (config->ena_gpiod) {
5115
		mutex_lock(&regulator_list_mutex);
5116
		ret = regulator_ena_gpio_request(rdev, config);
5117
		mutex_unlock(&regulator_list_mutex);
5118
		if (ret != 0) {
5119 5120
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5121
			goto clean;
5122
		}
5123 5124 5125
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5126 5127
	}

5128
	/* register with sysfs */
5129
	rdev->dev.class = &regulator_class;
5130
	rdev->dev.parent = dev;
5131
	dev_set_name(&rdev->dev, "regulator.%lu",
5132
		    (unsigned long) atomic_inc_return(&regulator_no));
5133

5134
	/* set regulator constraints */
5135 5136 5137 5138
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5139
		rdev->supply_name = init_data->supply_regulator;
5140
	else if (regulator_desc->supply_name)
5141
		rdev->supply_name = regulator_desc->supply_name;
5142

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5155
	mutex_lock(&regulator_list_mutex);
5156
	ret = regulator_init_coupling(rdev);
5157
	mutex_unlock(&regulator_list_mutex);
5158
	if (ret < 0)
5159 5160
		goto wash;

5161
	/* add consumers devices */
5162
	if (init_data) {
5163
		mutex_lock(&regulator_list_mutex);
5164 5165 5166
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5167
				init_data->consumer_supplies[i].supply);
5168
			if (ret < 0) {
5169
				mutex_unlock(&regulator_list_mutex);
5170 5171 5172 5173
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5174
		}
5175
		mutex_unlock(&regulator_list_mutex);
5176
	}
5177

5178 5179 5180 5181 5182
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5183
	dev_set_drvdata(&rdev->dev, rdev);
5184 5185 5186 5187 5188 5189
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5190
	rdev_init_debugfs(rdev);
5191

5192 5193 5194 5195 5196
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5197 5198 5199
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5200
	kfree(config);
5201
	return rdev;
D
David Brownell 已提交
5202

5203
unset_supplies:
5204
	mutex_lock(&regulator_list_mutex);
5205
	unset_regulator_supplies(rdev);
5206
	regulator_remove_coupling(rdev);
5207
	mutex_unlock(&regulator_list_mutex);
5208
wash:
5209
	kfree(rdev->constraints);
5210
	mutex_lock(&regulator_list_mutex);
5211
	regulator_ena_gpio_free(rdev);
5212
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5213
clean:
5214 5215
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5216
	kfree(rdev);
5217
	kfree(config);
5218 5219 5220
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5221
	return ERR_PTR(ret);
5222 5223 5224 5225 5226
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5227
 * @rdev: regulator to unregister
5228 5229 5230 5231 5232 5233 5234 5235
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5236 5237 5238
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5239
		regulator_put(rdev->supply);
5240
	}
5241

5242 5243
	flush_work(&rdev->disable_work.work);

5244
	mutex_lock(&regulator_list_mutex);
5245

5246
	debugfs_remove_recursive(rdev->debugfs);
5247
	WARN_ON(rdev->open_count);
5248
	regulator_remove_coupling(rdev);
5249
	unset_regulator_supplies(rdev);
5250
	list_del(&rdev->list);
5251
	regulator_ena_gpio_free(rdev);
5252
	device_unregister(&rdev->dev);
5253 5254

	mutex_unlock(&regulator_list_mutex);
5255 5256 5257
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5258
#ifdef CONFIG_SUSPEND
5259
/**
5260
 * regulator_suspend - prepare regulators for system wide suspend
5261
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5262 5263 5264
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5265
static int regulator_suspend(struct device *dev)
5266
{
5267
	struct regulator_dev *rdev = dev_to_rdev(dev);
5268
	suspend_state_t state = pm_suspend_target_state;
5269 5270 5271 5272 5273
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5274

5275
	return ret;
5276
}
5277

5278
static int regulator_resume(struct device *dev)
5279
{
5280
	suspend_state_t state = pm_suspend_target_state;
5281
	struct regulator_dev *rdev = dev_to_rdev(dev);
5282
	struct regulator_state *rstate;
5283
	int ret = 0;
5284

5285
	rstate = regulator_get_suspend_state(rdev, state);
5286
	if (rstate == NULL)
5287
		return 0;
5288

5289
	regulator_lock(rdev);
5290

5291
	if (rdev->desc->ops->resume &&
5292 5293
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5294
		ret = rdev->desc->ops->resume(rdev);
5295

5296
	regulator_unlock(rdev);
5297

5298
	return ret;
5299
}
5300 5301
#else /* !CONFIG_SUSPEND */

5302 5303
#define regulator_suspend	NULL
#define regulator_resume	NULL
5304 5305 5306 5307 5308

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5309 5310
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5311 5312 5313
};
#endif

M
Mark Brown 已提交
5314
struct class regulator_class = {
5315 5316 5317 5318 5319 5320 5321
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5339 5340
/**
 * rdev_get_drvdata - get rdev regulator driver data
5341
 * @rdev: regulator
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5378
 * @rdev: regulator
5379 5380 5381 5382 5383 5384 5385
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5386 5387 5388 5389 5390 5391
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5392 5393 5394 5395 5396 5397
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5398 5399 5400 5401 5402 5403
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5404
#ifdef CONFIG_DEBUG_FS
5405
static int supply_map_show(struct seq_file *sf, void *data)
5406 5407 5408 5409
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5410 5411 5412
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5413 5414
	}

5415 5416
	return 0;
}
5417
DEFINE_SHOW_ATTRIBUTE(supply_map);
5418

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5441 5442 5443 5444 5445 5446
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5447
	struct summary_data summary_data;
5448
	unsigned int opmode;
5449 5450 5451 5452

	if (!rdev)
		return;

5453
	opmode = _regulator_get_mode_unlocked(rdev);
5454
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5455 5456
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5457
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5458
		   regulator_opmode_to_str(opmode));
5459

5460
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5461 5462
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5481
		if (consumer->dev && consumer->dev->class == &regulator_class)
5482 5483 5484 5485
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5486 5487
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5488 5489 5490

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5491 5492
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5493
				   consumer->uA_load / 1000,
5494 5495
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5496 5497
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5498 5499 5500 5501 5502 5503 5504 5505
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5506 5507 5508
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5509

5510 5511
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5549 5550

	regulator_unlock(rdev);
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5581 5582
	mutex_lock(&regulator_list_mutex);

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5609 5610

	mutex_unlock(&regulator_list_mutex);
5611 5612
}

5613
static int regulator_summary_show_roots(struct device *dev, void *data)
5614
{
5615 5616
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5617

5618 5619
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5620

5621 5622
	return 0;
}
5623

5624 5625
static int regulator_summary_show(struct seq_file *s, void *data)
{
5626 5627
	struct ww_acquire_ctx ww_ctx;

5628 5629
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5630

5631 5632
	regulator_summary_lock(&ww_ctx);

5633 5634
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5635

5636 5637
	regulator_summary_unlock(&ww_ctx);

5638 5639
	return 0;
}
5640 5641
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5642

5643 5644
static int __init regulator_init(void)
{
5645 5646 5647 5648
	int ret;

	ret = class_register(&regulator_class);

5649
	debugfs_root = debugfs_create_dir("regulator", NULL);
5650
	if (!debugfs_root)
5651
		pr_warn("regulator: Failed to create debugfs directory\n");
5652

5653
#ifdef CONFIG_DEBUG_FS
5654 5655
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5656

5657
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5658
			    NULL, &regulator_summary_fops);
5659
#endif
5660 5661
	regulator_dummy_init();

5662 5663
	regulator_coupler_register(&generic_regulator_coupler);

5664
	return ret;
5665 5666 5667 5668
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5669

5670
static int regulator_late_cleanup(struct device *dev, void *data)
5671
{
5672 5673 5674
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5675 5676
	int enabled, ret;

5677 5678 5679
	if (c && c->always_on)
		return 0;

5680
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5681 5682
		return 0;

5683
	regulator_lock(rdev);
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5714
	regulator_unlock(rdev);
5715 5716 5717 5718

	return 0;
}

5719
static void regulator_init_complete_work_function(struct work_struct *work)
5720
{
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5731
	/* If we have a full configuration then disable any regulators
5732 5733 5734
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5735
	 */
5736 5737
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
	 */
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5767 5768 5769

	return 0;
}
5770
late_initcall_sync(regulator_init_complete);