core.c 124.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111
static void _regulator_put(struct regulator *regulator);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

141 142 143 144 145 146 147 148
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
 * @subclass:		mutex subclass used for lockdep
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
static void regulator_lock_nested(struct regulator_dev *rdev,
				  unsigned int subclass)
{
	if (!mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current) {
			rdev->ref_cnt++;
			return;
		}
		mutex_lock_nested(&rdev->mutex, subclass);
	}

	rdev->ref_cnt = 1;
	rdev->mutex_owner = current;
}

static inline void regulator_lock(struct regulator_dev *rdev)
{
	regulator_lock_nested(rdev, 0);
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
static void regulator_unlock(struct regulator_dev *rdev)
{
	if (rdev->ref_cnt != 0) {
		rdev->ref_cnt--;

		if (!rdev->ref_cnt) {
			rdev->mutex_owner = NULL;
			mutex_unlock(&rdev->mutex);
		}
	}
}

199 200 201 202 203
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
204
{
205
	int i;
206

207 208
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
		regulator_lock_nested(rdev, i);
209 210 211
}

/**
212 213
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
214
 */
215
static void regulator_unlock_supply(struct regulator_dev *rdev)
216
{
217
	struct regulator *supply;
218

219 220 221
	while (1) {
		regulator_unlock(rdev);
		supply = rdev->supply;
222

223 224
		if (!rdev->supply)
			return;
225

226
		rdev = supply->rdev;
227 228 229
	}
}

230 231 232 233 234 235
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
236
 * returns the device node corresponding to the regulator if found, else
237 238 239 240 241 242 243 244 245 246 247 248 249
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
250 251
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
252 253 254 255 256
		return NULL;
	}
	return regnode;
}

257 258 259 260 261 262
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

263
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264
		rdev_err(rdev, "voltage operation not allowed\n");
265 266 267 268 269 270 271 272
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

273 274
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275
			 *min_uV, *max_uV);
276
		return -EINVAL;
277
	}
278 279 280 281

	return 0;
}

282 283 284 285 286 287
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

288 289 290 291
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
292 293
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
294 295
{
	struct regulator *regulator;
296
	struct regulator_voltage *voltage;
297 298

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
299
		voltage = &regulator->voltage[state];
300 301 302 303
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
304
		if (!voltage->min_uV && !voltage->max_uV)
305 306
			continue;

307 308 309 310
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
311 312
	}

313
	if (*min_uV > *max_uV) {
314 315
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
316
		return -EINVAL;
317
	}
318 319 320 321

	return 0;
}

322 323 324 325 326 327
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

328
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329
		rdev_err(rdev, "current operation not allowed\n");
330 331 332 333 334 335 336 337
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

338 339
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340
			 *min_uA, *max_uA);
341
		return -EINVAL;
342
	}
343 344 345 346 347

	return 0;
}

/* operating mode constraint check */
348 349
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
350
{
351
	switch (*mode) {
352 353 354 355 356 357
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
358
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 360 361
		return -EINVAL;
	}

362
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363
		rdev_err(rdev, "mode operation not allowed\n");
364 365
		return -EPERM;
	}
366 367 368 369 370 371 372 373

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
374
	}
375 376

	return -EINVAL;
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

397 398 399
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
400
	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 402
	ssize_t ret;

403
	regulator_lock(rdev);
404
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405
	regulator_unlock(rdev);
406 407 408

	return ret;
}
409
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410 411 412 413

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
414
	struct regulator_dev *rdev = dev_get_drvdata(dev);
415 416 417

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
418
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419

420 421
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
422 423 424
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

425
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
426
}
427
static DEVICE_ATTR_RO(name);
428

D
David Brownell 已提交
429
static ssize_t regulator_print_opmode(char *buf, int mode)
430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
444 445
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
446
{
447
	struct regulator_dev *rdev = dev_get_drvdata(dev);
448

D
David Brownell 已提交
449 450
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
451
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
452 453 454

static ssize_t regulator_print_state(char *buf, int state)
{
455 456 457 458 459 460 461 462
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
463 464 465 466
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 468
	ssize_t ret;

469
	regulator_lock(rdev);
470
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471
	regulator_unlock(rdev);
D
David Brownell 已提交
472

473
	return ret;
D
David Brownell 已提交
474
}
475
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
476

D
David Brownell 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
510 511 512
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
513 514 515
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
516 517 518 519 520 521 522 523
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

524 525 526
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 529 530 531 532 533

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
534
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535 536 537 538

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
539
	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 541 542 543 544 545

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
546
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547 548 549 550

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
551
	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 553 554 555 556 557

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
558
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559 560 561 562

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
563
	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 565 566 567 568 569

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
570
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571 572 573 574

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
575
	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 577 578
	struct regulator *regulator;
	int uA = 0;

579
	regulator_lock(rdev);
580
	list_for_each_entry(regulator, &rdev->consumer_list, list)
581
		uA += regulator->uA_load;
582
	regulator_unlock(rdev);
583 584
	return sprintf(buf, "%d\n", uA);
}
585
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586

587 588
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
589
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 592
	return sprintf(buf, "%d\n", rdev->use_count);
}
593
static DEVICE_ATTR_RO(num_users);
594

595 596
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
597
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 600 601 602 603 604 605 606 607

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
608
static DEVICE_ATTR_RO(type);
609 610 611 612

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
613
	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 615 616

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
617 618
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
619 620 621 622

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
623
	struct regulator_dev *rdev = dev_get_drvdata(dev);
624 625 626

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
627 628
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
629 630 631 632

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
633
	struct regulator_dev *rdev = dev_get_drvdata(dev);
634 635 636

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
637 638
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
639 640 641 642

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
643
	struct regulator_dev *rdev = dev_get_drvdata(dev);
644

D
David Brownell 已提交
645 646
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
647
}
648 649
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
650 651 652 653

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
654
	struct regulator_dev *rdev = dev_get_drvdata(dev);
655

D
David Brownell 已提交
656 657
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
658
}
659 660
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
661 662 663 664

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
665
	struct regulator_dev *rdev = dev_get_drvdata(dev);
666

D
David Brownell 已提交
667 668
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
669
}
670 671
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
672 673 674 675

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
676
	struct regulator_dev *rdev = dev_get_drvdata(dev);
677

D
David Brownell 已提交
678 679
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
680
}
681 682
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
683 684 685 686

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
687
	struct regulator_dev *rdev = dev_get_drvdata(dev);
688

D
David Brownell 已提交
689 690
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
691
}
692 693
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
694 695 696 697

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
698
	struct regulator_dev *rdev = dev_get_drvdata(dev);
699

D
David Brownell 已提交
700 701
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
702
}
703 704 705
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
727

728 729
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
730
static int drms_uA_update(struct regulator_dev *rdev)
731 732 733 734 735
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

736 737
	lockdep_assert_held_once(&rdev->mutex);

738 739 740 741
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
742
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 744
		return 0;

745 746
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
747 748
		return 0;

749 750
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
751
		return -EINVAL;
752 753 754

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
755
		current_uA += sibling->uA_load;
756

757 758
	current_uA += rdev->constraints->system_load;

759 760 761 762 763 764
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

783 784 785 786 787 788 789 790 791 792 793
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
794

795 796 797
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798 799 800
	}

	return err;
801 802 803
}

static int suspend_set_state(struct regulator_dev *rdev,
804
				    suspend_state_t state)
805 806
{
	int ret = 0;
807 808 809 810
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
811
		return 0;
812 813

	/* If we have no suspend mode configration don't set anything;
814 815
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
816
	 */
817 818
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
819 820
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
821
			rdev_warn(rdev, "No configuration\n");
822 823 824
		return 0;
	}

825 826
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
827
		ret = rdev->desc->ops->set_suspend_enable(rdev);
828 829
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
830
		ret = rdev->desc->ops->set_suspend_disable(rdev);
831 832 833
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

834
	if (ret < 0) {
835
		rdev_err(rdev, "failed to enabled/disable\n");
836 837 838 839 840 841
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
842
			rdev_err(rdev, "failed to set voltage\n");
843 844 845 846 847 848 849
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
850
			rdev_err(rdev, "failed to set mode\n");
851 852 853 854
			return ret;
		}
	}

855
	return ret;
856 857 858 859 860
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
861
	char buf[160] = "";
862
	size_t len = sizeof(buf) - 1;
863 864
	int count = 0;
	int ret;
865

866
	if (constraints->min_uV && constraints->max_uV) {
867
		if (constraints->min_uV == constraints->max_uV)
868 869
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
870
		else
871 872 873 874
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
875 876 877 878 879 880
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
881 882
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
883 884
	}

885
	if (constraints->uV_offset)
886 887
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
888

889
	if (constraints->min_uA && constraints->max_uA) {
890
		if (constraints->min_uA == constraints->max_uA)
891 892
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
893
		else
894 895 896 897
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
898 899 900 901 902 903
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
904 905
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
906
	}
907

908
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909
		count += scnprintf(buf + count, len - count, "fast ");
910
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911
		count += scnprintf(buf + count, len - count, "normal ");
912
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913
		count += scnprintf(buf + count, len - count, "idle ");
914
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915
		count += scnprintf(buf + count, len - count, "standby");
916

917
	if (!count)
918
		scnprintf(buf, len, "no parameters");
919

920
	rdev_dbg(rdev, "%s\n", buf);
921 922

	if ((constraints->min_uV != constraints->max_uV) &&
923
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 925
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 927
}

928
static int machine_constraints_voltage(struct regulator_dev *rdev,
929
	struct regulation_constraints *constraints)
930
{
931
	const struct regulator_ops *ops = rdev->desc->ops;
932 933 934 935
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
936 937
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
938
		int current_uV = _regulator_get_voltage(rdev);
939 940 941 942 943 944 945 946 947 948 949 950

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

951
		if (current_uV < 0) {
952 953 954
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
955 956
			return current_uV;
		}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
977 978
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
979
			ret = _regulator_do_set_voltage(
980
				rdev, target_min, target_max);
981 982
			if (ret < 0) {
				rdev_err(rdev,
983 984
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
985 986
				return ret;
			}
987
		}
988
	}
989

990 991 992 993 994 995 996 997 998 999 1000
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1001 1002
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1003
		if (count == 1 && !cmin) {
1004
			cmin = 1;
1005
			cmax = INT_MAX;
1006 1007
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1008 1009
		}

1010 1011
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1012
			return 0;
1013

1014
		/* else require explicit machine-level constraints */
1015
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016
			rdev_err(rdev, "invalid voltage constraints\n");
1017
			return -EINVAL;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1037 1038 1039
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1040
			return -EINVAL;
1041 1042 1043 1044
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1045 1046
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1047 1048 1049
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1050 1051
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1052 1053 1054 1055
			constraints->max_uV = max_uV;
		}
	}

1056 1057 1058
	return 0;
}

1059 1060 1061
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1062
	const struct regulator_ops *ops = rdev->desc->ops;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1089 1090
static int _regulator_do_enable(struct regulator_dev *rdev);

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1103
	const struct regulation_constraints *constraints)
1104 1105
{
	int ret = 0;
1106
	const struct regulator_ops *ops = rdev->desc->ops;
1107

1108 1109 1110 1111 1112 1113
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1114 1115
	if (!rdev->constraints)
		return -ENOMEM;
1116

1117
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1118
	if (ret != 0)
1119
		return ret;
1120

1121
	ret = machine_constraints_current(rdev, rdev->constraints);
1122
	if (ret != 0)
1123
		return ret;
1124

1125 1126 1127 1128 1129
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1130
			return ret;
1131 1132 1133
		}
	}

1134
	/* do we need to setup our suspend state */
1135
	if (rdev->constraints->initial_state) {
1136
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137
		if (ret < 0) {
1138
			rdev_err(rdev, "failed to set suspend state\n");
1139
			return ret;
1140 1141
		}
	}
1142

1143
	if (rdev->constraints->initial_mode) {
1144
		if (!ops->set_mode) {
1145
			rdev_err(rdev, "no set_mode operation\n");
1146
			return -EINVAL;
1147 1148
		}

1149
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150
		if (ret < 0) {
1151
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152
			return ret;
1153 1154 1155
		}
	}

1156 1157 1158
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1159 1160 1161
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1162
			rdev_err(rdev, "failed to enable\n");
1163
			return ret;
1164 1165 1166
		}
	}

1167 1168
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1169 1170 1171
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1172
			return ret;
1173 1174 1175
		}
	}

S
Stephen Boyd 已提交
1176 1177 1178 1179
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1180
			return ret;
S
Stephen Boyd 已提交
1181 1182 1183
		}
	}

S
Stephen Boyd 已提交
1184 1185 1186 1187
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1188
			return ret;
S
Stephen Boyd 已提交
1189 1190 1191
		}
	}

1192 1193 1194 1195 1196
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1197
			return ret;
1198 1199 1200
		}
	}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1212
	print_constraints(rdev);
1213
	return 0;
1214 1215 1216 1217
}

/**
 * set_supply - set regulator supply regulator
1218 1219
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1220 1221 1222 1223 1224 1225
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1226
		      struct regulator_dev *supply_rdev)
1227 1228 1229
{
	int err;

1230 1231
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1232 1233 1234
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1235
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236 1237
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1238
		return err;
1239
	}
1240
	supply_rdev->open_count++;
1241 1242

	return 0;
1243 1244 1245
}

/**
1246
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247
 * @rdev:         regulator source
1248
 * @consumer_dev_name: dev_name() string for device supply applies to
1249
 * @supply:       symbolic name for supply
1250 1251 1252 1253 1254 1255 1256
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1257 1258
				      const char *consumer_dev_name,
				      const char *supply)
1259 1260
{
	struct regulator_map *node;
1261
	int has_dev;
1262 1263 1264 1265

	if (supply == NULL)
		return -EINVAL;

1266 1267 1268 1269 1270
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1271
	list_for_each_entry(node, &regulator_map_list, list) {
1272 1273 1274 1275
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1276
			continue;
1277 1278
		}

1279 1280 1281
		if (strcmp(node->supply, supply) != 0)
			continue;

1282 1283 1284 1285 1286 1287
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1288 1289 1290
		return -EBUSY;
	}

1291
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292 1293 1294 1295 1296 1297
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1298 1299 1300 1301 1302 1303
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1304 1305
	}

1306 1307 1308 1309
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1310 1311 1312 1313 1314 1315 1316
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1317
			kfree(node->dev_name);
1318 1319 1320 1321 1322
			kfree(node);
		}
	}
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1372
#define REG_STR_SIZE	64
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1386
	regulator_lock(rdev);
1387 1388 1389 1390
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1391 1392
		regulator->dev = dev;

1393
		/* Add a link to the device sysfs entry */
1394 1395
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1396
		if (size >= REG_STR_SIZE)
1397
			goto overflow_err;
1398 1399 1400

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1401
			goto overflow_err;
1402

1403
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404 1405
					buf);
		if (err) {
1406
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1407
				  dev->kobj.name, err);
1408
			/* non-fatal */
1409
		}
1410
	} else {
1411
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412
		if (regulator->supply_name == NULL)
1413
			goto overflow_err;
1414 1415 1416 1417
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1418
	if (!regulator->debugfs) {
1419
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420 1421 1422 1423
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427 1428 1429
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1430
	}
1431

1432 1433 1434 1435 1436
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1437
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438 1439 1440
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1441
	regulator_unlock(rdev);
1442 1443 1444 1445
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1446
	regulator_unlock(rdev);
1447 1448 1449
	return NULL;
}

1450 1451
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1452 1453
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1454
	if (!rdev->desc->ops->enable_time)
1455
		return rdev->desc->enable_time;
1456 1457 1458
	return rdev->desc->ops->enable_time(rdev);
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1507 1508 1509 1510 1511
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1512
 */
1513
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514
						  const char *supply)
1515
{
1516
	struct regulator_dev *r = NULL;
1517
	struct device_node *node;
1518 1519
	struct regulator_map *map;
	const char *devname = NULL;
1520

1521 1522
	regulator_supply_alias(&dev, &supply);

1523 1524 1525
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1526
		if (node) {
1527 1528 1529
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1530

1531
			/*
1532 1533
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1534
			 */
1535
			return ERR_PTR(-EPROBE_DEFER);
1536
		}
1537 1538 1539
	}

	/* if not found, try doing it non-dt way */
1540 1541 1542
	if (dev)
		devname = dev_name(dev);

1543
	mutex_lock(&regulator_list_mutex);
1544 1545 1546 1547 1548 1549
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1550 1551
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1552 1553
			r = map->regulator;
			break;
1554
		}
1555
	}
1556
	mutex_unlock(&regulator_list_mutex);
1557

1558 1559 1560 1561
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1562 1563 1564 1565
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1582 1583 1584 1585
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1586 1587 1588 1589
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1590 1591
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1592
			get_device(&r->dev);
1593 1594 1595 1596 1597
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1598 1599
	}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1613 1614
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1615 1616
	if (ret < 0) {
		put_device(&r->dev);
1617
		return ret;
1618
	}
1619 1620

	ret = set_supply(rdev, r);
1621 1622
	if (ret < 0) {
		put_device(&r->dev);
1623
		return ret;
1624
	}
1625 1626

	/* Cascade always-on state to supply */
1627
	if (_regulator_is_enabled(rdev)) {
1628
		ret = regulator_enable(rdev->supply);
1629
		if (ret < 0) {
1630
			_regulator_put(rdev->supply);
1631
			rdev->supply = NULL;
1632
			return ret;
1633
		}
1634 1635 1636 1637 1638
	}

	return 0;
}

1639
/* Internal regulator request function */
1640 1641
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1642 1643
{
	struct regulator_dev *rdev;
1644
	struct regulator *regulator;
1645
	const char *devname = dev ? dev_name(dev) : "deviceless";
1646
	int ret;
1647

1648 1649 1650 1651 1652
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1653
	if (id == NULL) {
1654
		pr_err("get() with no identifier\n");
1655
		return ERR_PTR(-EINVAL);
1656 1657
	}

1658
	rdev = regulator_dev_lookup(dev, id);
1659 1660
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1661

1662 1663 1664 1665 1666 1667
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1668

1669 1670 1671 1672 1673
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1688

1689 1690 1691 1692
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1693

1694 1695 1696
		default:
			return ERR_PTR(-ENODEV);
		}
1697 1698
	}

1699 1700
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1701 1702
		put_device(&rdev->dev);
		return regulator;
1703 1704
	}

1705
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706
		regulator = ERR_PTR(-EBUSY);
1707 1708
		put_device(&rdev->dev);
		return regulator;
1709 1710
	}

1711 1712 1713
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1714 1715
		put_device(&rdev->dev);
		return regulator;
1716 1717
	}

1718
	if (!try_module_get(rdev->owner)) {
1719
		regulator = ERR_PTR(-EPROBE_DEFER);
1720 1721 1722
		put_device(&rdev->dev);
		return regulator;
	}
1723

1724 1725 1726
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1727
		put_device(&rdev->dev);
1728
		module_put(rdev->owner);
1729
		return regulator;
1730 1731
	}

1732
	rdev->open_count++;
1733
	if (get_type == EXCLUSIVE_GET) {
1734 1735 1736 1737 1738 1739 1740 1741 1742
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1743 1744
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1745 1746
	return regulator;
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1763
	return _regulator_get(dev, id, NORMAL_GET);
1764
}
1765 1766
EXPORT_SYMBOL_GPL(regulator_get);

1767 1768 1769 1770 1771 1772 1773
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1774 1775 1776
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1790
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1791 1792 1793
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1794 1795 1796 1797 1798 1799
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1800
 * or IS_ERR() condition containing errno.
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1816
	return _regulator_get(dev, id, OPTIONAL_GET);
1817 1818 1819
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1820
/* regulator_list_mutex lock held by regulator_put() */
1821
static void _regulator_put(struct regulator *regulator)
1822 1823 1824
{
	struct regulator_dev *rdev;

1825
	if (IS_ERR_OR_NULL(regulator))
1826 1827
		return;

1828 1829
	lockdep_assert_held_once(&regulator_list_mutex);

1830 1831
	rdev = regulator->rdev;

1832 1833
	debugfs_remove_recursive(regulator->debugfs);

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
1846
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1847 1848
	}

1849
	regulator_lock(rdev);
1850 1851
	list_del(&regulator->list);

1852 1853
	rdev->open_count--;
	rdev->exclusive = 0;
1854
	put_device(&rdev->dev);
1855
	regulator_unlock(rdev);
1856

1857
	kfree_const(regulator->supply_name);
1858 1859
	kfree(regulator);

1860
	module_put(rdev->owner);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1875 1876 1877 1878
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1956 1957
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1958
					 struct device *alias_dev,
1959
					 const char *const *alias_id,
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1997
					    const char *const *id,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2008 2009 2010 2011 2012
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2013
	struct gpio_desc *gpiod;
2014 2015
	int ret;

2016 2017 2018 2019
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2020

2021
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2022
		if (pin->gpiod == gpiod) {
2023 2024 2025 2026 2027 2028
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2029 2030 2031 2032 2033 2034 2035
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2036 2037 2038

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2039 2040
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2041 2042 2043
		return -ENOMEM;
	}

2044
	pin->gpiod = gpiod;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2063
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2064 2065
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2066
				gpiod_put(pin->gpiod);
2067 2068
				list_del(&pin->list);
				kfree(pin);
2069 2070
				rdev->ena_pin = NULL;
				return;
2071 2072 2073 2074 2075 2076 2077
			} else {
				pin->request_count--;
			}
		}
	}
}

2078
/**
2079 2080 2081 2082
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2096 2097
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2108 2109
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2110 2111 2112 2113 2114 2115 2116
			pin->enable_count = 0;
		}
	}

	return 0;
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2196
	if (rdev->ena_pin) {
2197 2198 2199 2200 2201 2202
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2203
	} else if (rdev->desc->ops->enable) {
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2216
	_regulator_enable_delay(delay);
2217 2218 2219 2220 2221 2222

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2223 2224 2225
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2226
	int ret;
2227

2228 2229
	lockdep_assert_held_once(&rdev->mutex);

2230
	/* check voltage and requested load before enabling */
2231
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2232
		drms_uA_update(rdev);
2233

2234 2235 2236 2237
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2238 2239
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2240 2241
				return -EPERM;

2242
			ret = _regulator_do_enable(rdev);
2243 2244 2245
			if (ret < 0)
				return ret;

2246 2247
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2248
		} else if (ret < 0) {
2249
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2250 2251
			return ret;
		}
2252
		/* Fallthrough on positive return values - already enabled */
2253 2254
	}

2255 2256 2257
	rdev->use_count++;

	return 0;
2258 2259 2260 2261 2262 2263
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2264 2265 2266 2267
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2268
 * NOTE: the output value can be set by other drivers, boot loader or may be
2269
 * hardwired in the regulator.
2270 2271 2272
 */
int regulator_enable(struct regulator *regulator)
{
2273 2274
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2275

2276 2277 2278
	if (regulator->always_on)
		return 0;

2279 2280 2281 2282 2283 2284
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2285
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2286
	ret = _regulator_enable(rdev);
2287
	mutex_unlock(&rdev->mutex);
2288

2289
	if (ret != 0 && rdev->supply)
2290 2291
		regulator_disable(rdev->supply);

2292 2293 2294 2295
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2296 2297 2298 2299 2300 2301
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2302
	if (rdev->ena_pin) {
2303 2304 2305 2306 2307 2308
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2309 2310 2311 2312 2313 2314 2315

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2316 2317 2318 2319 2320 2321
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2322 2323 2324 2325 2326
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2327
/* locks held by regulator_disable() */
2328
static int _regulator_disable(struct regulator_dev *rdev)
2329 2330 2331
{
	int ret = 0;

2332 2333
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2334
	if (WARN(rdev->use_count <= 0,
2335
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2336 2337
		return -EIO;

2338
	/* are we the last user and permitted to disable ? */
2339 2340
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2341 2342

		/* we are last user */
2343
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2344 2345 2346 2347 2348 2349
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2350
			ret = _regulator_do_disable(rdev);
2351
			if (ret < 0) {
2352
				rdev_err(rdev, "failed to disable\n");
2353 2354 2355
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2356 2357
				return ret;
			}
2358 2359
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2360 2361 2362 2363
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2364
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2365 2366 2367 2368
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2369

2370 2371 2372 2373 2374 2375 2376
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2377 2378 2379
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2380
 *
2381
 * NOTE: this will only disable the regulator output if no other consumer
2382 2383
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2384 2385 2386
 */
int regulator_disable(struct regulator *regulator)
{
2387 2388
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2389

2390 2391 2392
	if (regulator->always_on)
		return 0;

2393
	mutex_lock(&rdev->mutex);
2394
	ret = _regulator_disable(rdev);
2395
	mutex_unlock(&rdev->mutex);
2396

2397 2398
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2399

2400 2401 2402 2403 2404
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2405
static int _regulator_force_disable(struct regulator_dev *rdev)
2406 2407 2408
{
	int ret = 0;

2409 2410
	lockdep_assert_held_once(&rdev->mutex);

2411 2412 2413 2414 2415
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2416 2417 2418
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2419 2420
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2421
		return ret;
2422 2423
	}

2424 2425 2426 2427
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2441
	struct regulator_dev *rdev = regulator->rdev;
2442 2443
	int ret;

2444
	mutex_lock(&rdev->mutex);
2445
	regulator->uA_load = 0;
2446
	ret = _regulator_force_disable(regulator->rdev);
2447
	mutex_unlock(&rdev->mutex);
2448

2449 2450 2451
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2452

2453 2454 2455 2456
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2457 2458 2459 2460 2461 2462
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

2463
	regulator_lock(rdev);
2464 2465 2466 2467 2468 2469

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2470 2471 2472 2473 2474 2475 2476 2477
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2478 2479 2480 2481 2482 2483
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2484
	regulator_unlock(rdev);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2513 2514 2515
	if (regulator->always_on)
		return 0;

2516 2517 2518
	if (!ms)
		return regulator_disable(regulator);

2519
	regulator_lock(rdev);
2520
	rdev->deferred_disables++;
2521 2522
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2523
	regulator_unlock(rdev);
2524

2525
	return 0;
2526 2527 2528
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2529 2530
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2531
	/* A GPIO control always takes precedence */
2532
	if (rdev->ena_pin)
2533 2534
		return rdev->ena_gpio_state;

2535
	/* If we don't know then assume that the regulator is always on */
2536
	if (!rdev->desc->ops->is_enabled)
2537
		return 1;
2538

2539
	return rdev->desc->ops->is_enabled(rdev);
2540 2541
}

2542 2543
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2555
			regulator_lock(rdev);
2556 2557
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2558
			regulator_unlock(rdev);
2559
	} else if (rdev->is_switch && rdev->supply) {
2560 2561
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2576 2577 2578 2579
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2580 2581 2582 2583 2584 2585 2586
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2587 2588 2589
 */
int regulator_is_enabled(struct regulator *regulator)
{
2590 2591
	int ret;

2592 2593 2594
	if (regulator->always_on)
		return 1;

2595
	mutex_lock(&regulator->rdev->mutex);
2596
	ret = _regulator_is_enabled(regulator->rdev);
2597
	mutex_unlock(&regulator->rdev->mutex);
2598 2599

	return ret;
2600 2601 2602
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2615 2616 2617
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2618
	if (!rdev->is_switch || !rdev->supply)
2619 2620 2621
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2632
 * zero if this selector code can't be used on this system, or a
2633 2634 2635 2636
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2637
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2638 2639 2640
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2673 2674
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2675 2676 2677 2678

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2679 2680
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2700 2701
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2739
	struct regulator_dev *rdev = regulator->rdev;
2740 2741
	int i, voltages, ret;

2742
	/* If we can't change voltage check the current voltage */
2743
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2744 2745
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2746
			return min_uV <= ret && ret <= max_uV;
2747 2748 2749 2750
		else
			return ret;
	}

2751 2752 2753 2754 2755
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2770
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2771

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2838 2839 2840 2841 2842 2843 2844 2845 2846
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2847 2848
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2849 2850 2851 2852 2853 2854
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2855 2856

	if (ramp_delay == 0) {
2857
		rdev_dbg(rdev, "ramp_delay not set\n");
2858 2859 2860 2861 2862 2863
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2864 2865 2866 2867
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2868
	int delay = 0;
2869
	int best_val = 0;
2870
	unsigned int selector;
2871
	int old_selector = -1;
2872
	const struct regulator_ops *ops = rdev->desc->ops;
2873
	int old_uV = _regulator_get_voltage(rdev);
2874 2875 2876

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2877 2878 2879
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2880 2881 2882 2883
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2884
	if (_regulator_is_enabled(rdev) &&
2885 2886
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2887 2888 2889 2890
		if (old_selector < 0)
			return old_selector;
	}

2891
	if (ops->set_voltage) {
2892 2893
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2894 2895

		if (ret >= 0) {
2896 2897 2898
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2899 2900 2901 2902
			else
				best_val = _regulator_get_voltage(rdev);
		}

2903
	} else if (ops->set_voltage_sel) {
2904
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2905
		if (ret >= 0) {
2906
			best_val = ops->list_voltage(rdev, ret);
2907 2908
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2909 2910 2911
				if (old_selector == selector)
					ret = 0;
				else
2912 2913
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2914 2915 2916
			} else {
				ret = -EINVAL;
			}
2917
		}
2918 2919 2920
	} else {
		ret = -EINVAL;
	}
2921

2922 2923
	if (ret)
		goto out;
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2942
		}
2943
	}
2944

2945 2946 2947
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2948 2949
	}

2950 2951 2952 2953 2954 2955
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2956 2957
	}

2958
	if (best_val >= 0) {
2959 2960
		unsigned long data = best_val;

2961
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2962 2963
				     (void *)data);
	}
2964

2965
out:
2966
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2967 2968 2969 2970

	return ret;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

2997
static int regulator_set_voltage_unlocked(struct regulator *regulator,
2998 2999
					  int min_uV, int max_uV,
					  suspend_state_t state)
3000 3001
{
	struct regulator_dev *rdev = regulator->rdev;
3002
	struct regulator_voltage *voltage = &regulator->voltage[state];
3003
	int ret = 0;
3004
	int old_min_uV, old_max_uV;
3005
	int current_uV;
3006 3007
	int best_supply_uV = 0;
	int supply_change_uV = 0;
3008

3009 3010 3011 3012
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3013
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3014 3015
		goto out;

3016
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3017
	 * return successfully even though the regulator does not support
3018 3019
	 * changing the voltage.
	 */
3020
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021 3022
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3023 3024
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3025 3026 3027 3028
			goto out;
		}
	}

3029
	/* sanity check */
3030 3031
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3032 3033 3034 3035 3036 3037 3038 3039
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3040

3041
	/* restore original values in case of error */
3042 3043 3044 3045
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3046

3047
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3048
	if (ret < 0)
3049
		goto out2;
3050

3051 3052 3053
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3054 3055
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3056 3057 3058 3059 3060 3061
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3062
			goto out2;
3063 3064
		}

M
Mark Brown 已提交
3065
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3066 3067
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3068
			goto out2;
3069 3070 3071 3072 3073 3074 3075
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3076
			goto out2;
3077 3078 3079 3080 3081 3082 3083
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3084
				best_supply_uV, INT_MAX, state);
3085 3086 3087
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3088
			goto out2;
3089 3090 3091
		}
	}

3092 3093 3094 3095 3096
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3097
	if (ret < 0)
3098
		goto out2;
3099

3100 3101
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3102
				best_supply_uV, INT_MAX, state);
3103 3104 3105 3106 3107 3108 3109
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3110
out:
3111
	return ret;
3112 3113 3114
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;
3115 3116 3117 3118

	return ret;
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3141
	regulator_lock_supply(regulator->rdev);
3142

3143 3144
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3145

3146
	regulator_unlock_supply(regulator->rdev);
3147

3148 3149 3150 3151
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3164
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3224
	regulator_lock_supply(regulator->rdev);
3225 3226 3227 3228

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3229
	regulator_unlock_supply(regulator->rdev);
3230 3231 3232 3233 3234

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3248 3249
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3250 3251 3252 3253 3254
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3255 3256 3257 3258 3259
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3260
	/* Currently requires operations to do this */
3261
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3284
/**
3285 3286
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3287 3288 3289 3290 3291 3292
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3293
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3294
 * set_voltage_time_sel() operation.
3295 3296 3297 3298 3299
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3300
	int old_volt, new_volt;
3301

3302 3303 3304
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3305

3306 3307 3308
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3309 3310 3311 3312 3313
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3314
}
3315
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3328
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3329 3330
	int ret, min_uV, max_uV;

3331
	regulator_lock(rdev);
3332 3333 3334 3335 3336 3337 3338 3339

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3340
	if (!voltage->min_uV && !voltage->max_uV) {
3341 3342 3343 3344
		ret = -EINVAL;
		goto out;
	}

3345 3346
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3347 3348 3349 3350 3351 3352

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3353
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3354 3355 3356 3357 3358 3359
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3360
	regulator_unlock(rdev);
3361 3362 3363 3364
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3365 3366
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3367
	int sel, ret;
3368 3369 3370 3371 3372 3373 3374 3375
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3376 3377 3378 3379 3380
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3381 3382 3383 3384

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3385 3386 3387 3388 3389

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3390
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3391
	} else if (rdev->desc->ops->get_voltage) {
3392
		ret = rdev->desc->ops->get_voltage(rdev);
3393 3394
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3395 3396
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3397
	} else if (rdev->supply) {
3398
		ret = _regulator_get_voltage(rdev->supply->rdev);
3399
	} else {
3400
		return -EINVAL;
3401
	}
3402

3403 3404
	if (ret < 0)
		return ret;
3405
	return ret - rdev->constraints->uV_offset;
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3421
	regulator_lock_supply(regulator->rdev);
3422 3423 3424

	ret = _regulator_get_voltage(regulator->rdev);

3425
	regulator_unlock_supply(regulator->rdev);
3426 3427 3428 3429 3430 3431 3432 3433

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3434
 * @min_uA: Minimum supported current in uA
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3453
	regulator_lock(rdev);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3468
	regulator_unlock(rdev);
3469 3470 3471 3472 3473 3474 3475 3476
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3477
	regulator_lock(rdev);
3478 3479 3480 3481 3482 3483 3484 3485 3486

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
3487
	regulator_unlock(rdev);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3521
	int regulator_curr_mode;
3522

3523
	regulator_lock(rdev);
3524 3525 3526 3527 3528 3529 3530

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3531 3532 3533 3534 3535 3536 3537 3538 3539
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3540
	/* constraints check */
3541
	ret = regulator_mode_constrain(rdev, &mode);
3542 3543 3544 3545 3546
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
3547
	regulator_unlock(rdev);
3548 3549 3550 3551 3552 3553 3554 3555
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

3556
	regulator_lock(rdev);
3557 3558 3559 3560 3561 3562 3563 3564 3565

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
3566
	regulator_unlock(rdev);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3582 3583 3584 3585 3586
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

3587
	regulator_lock(rdev);
3588 3589 3590 3591 3592 3593 3594 3595 3596

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
3597
	regulator_unlock(rdev);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3615
/**
3616
 * regulator_set_load - set regulator load
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3639
 * On error a negative errno is returned.
3640
 */
3641
int regulator_set_load(struct regulator *regulator, int uA_load)
3642 3643
{
	struct regulator_dev *rdev = regulator->rdev;
3644
	int ret;
3645

3646
	regulator_lock(rdev);
3647
	regulator->uA_load = uA_load;
3648
	ret = drms_uA_update(rdev);
3649
	regulator_unlock(rdev);
3650

3651 3652
	return ret;
}
3653
EXPORT_SYMBOL_GPL(regulator_set_load);
3654

3655 3656 3657 3658
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3659
 * @enable: enable or disable bypass mode
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3674
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3675 3676
		return 0;

3677
	regulator_lock(rdev);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

3701
	regulator_unlock(rdev);
3702 3703 3704 3705 3706

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3707 3708 3709
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3710
 * @nb: notifier block
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3725
 * @nb: notifier block
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3737 3738 3739
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3740
static int _notifier_call_chain(struct regulator_dev *rdev,
3741 3742 3743
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3744
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3771 3772
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3773 3774
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3775 3776
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3777 3778 3779 3780 3781 3782 3783 3784
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3785
	while (--i >= 0)
3786 3787 3788 3789 3790 3791
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3792 3793 3794 3795 3796 3797 3798
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3814
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3815
	int i;
3816
	int ret = 0;
3817

3818 3819 3820 3821 3822 3823 3824
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3825 3826 3827 3828

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3829
	for (i = 0; i < num_consumers; i++) {
3830 3831
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3832
			goto err;
3833
		}
3834 3835 3836 3837 3838
	}

	return 0;

err:
3839 3840 3841 3842 3843 3844 3845
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3859 3860
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3861 3862 3863 3864 3865 3866
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3867
	int ret, r;
3868

3869
	for (i = num_consumers - 1; i >= 0; --i) {
3870 3871 3872 3873 3874 3875 3876 3877
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3878
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3879 3880 3881
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
3882
			pr_err("Failed to re-enable %s: %d\n",
3883 3884
			       consumers[i].supply, r);
	}
3885 3886 3887 3888 3889

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3908
	int ret = 0;
3909

3910
	for (i = 0; i < num_consumers; i++) {
3911 3912 3913
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

3914 3915
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
3916 3917 3918 3919 3920 3921 3922
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3946
 * @rdev: regulator source
3947
 * @event: notifier block
3948
 * @data: callback-specific data.
3949 3950 3951
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3952
 * Note lock must be held by caller.
3953 3954 3955 3956
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3957 3958
	lockdep_assert_held_once(&rdev->mutex);

3959 3960 3961 3962 3963 3964
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3981
	case REGULATOR_MODE_STANDBY:
3982 3983
		return REGULATOR_STATUS_STANDBY;
	default:
3984
		return REGULATOR_STATUS_UNDEFINED;
3985 3986 3987 3988
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4016 4017 4018 4019
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4020 4021
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4022
{
4023
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4024
	struct regulator_dev *rdev = dev_to_rdev(dev);
4025
	const struct regulator_ops *ops = rdev->desc->ops;
4026 4027 4028 4029 4030 4031 4032
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4033 4034

	/* some attributes need specific methods to be displayed */
4035 4036 4037 4038 4039 4040 4041
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4042
	}
4043

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4059
	/* some attributes are type-specific */
4060 4061
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4062 4063

	/* constraints need specific supporting methods */
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4099

4100 4101 4102
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4103 4104 4105

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4106
	kfree(rdev);
4107 4108
}

4109 4110
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4123
	if (!rdev->debugfs) {
4124 4125 4126 4127 4128 4129 4130 4131
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4132 4133
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4134 4135
}

4136 4137
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4138 4139 4140 4141 4142 4143
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4144 4145
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
static int regulator_fill_coupling_array(struct regulator_dev *rdev)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

		if (c_rdev) {
			c_desc->coupled_rdevs[i] = c_rdev;
			c_desc->n_resolved++;
		}
	}

	if (rdev->coupling_desc.n_resolved < n_coupled)
		return -1;
	else
		return 0;
}

static int regulator_register_fill_coupling_array(struct device *dev,
						  void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (!IS_ENABLED(CONFIG_OF))
		return 0;

	if (regulator_fill_coupling_array(rdev))
		rdev_dbg(rdev, "unable to resolve coupling\n");

	return 0;
}

static int regulator_resolve_coupling(struct regulator_dev *rdev)
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	/*
	 * After everything has been checked, try to fill rdevs array
	 * with pointers to regulators parsed from device tree. If some
	 * regulators are not registered yet, retry in late init call
	 */
	regulator_fill_coupling_array(rdev);

	return 0;
}

4236 4237
/**
 * regulator_register - register regulator
4238
 * @regulator_desc: regulator to register
4239
 * @cfg: runtime configuration for regulator
4240 4241
 *
 * Called by regulator drivers to register a regulator.
4242 4243
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4244
 */
4245 4246
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4247
		   const struct regulator_config *cfg)
4248
{
4249
	const struct regulation_constraints *constraints = NULL;
4250
	const struct regulator_init_data *init_data;
4251
	struct regulator_config *config = NULL;
4252
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4253
	struct regulator_dev *rdev;
4254
	struct device *dev;
4255
	int ret, i;
4256

4257
	if (regulator_desc == NULL || cfg == NULL)
4258 4259
		return ERR_PTR(-EINVAL);

4260
	dev = cfg->dev;
4261
	WARN_ON(!dev);
4262

4263 4264 4265
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4266 4267
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4268 4269
		return ERR_PTR(-EINVAL);

4270 4271 4272
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4273 4274
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4275 4276 4277 4278 4279 4280

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4281 4282 4283 4284
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4285

4286 4287 4288 4289
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4300
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4301 4302 4303 4304 4305 4306
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4307
	mutex_init(&rdev->mutex);
4308
	rdev->reg_data = config->driver_data;
4309 4310
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4311 4312
	if (config->regmap)
		rdev->regmap = config->regmap;
4313
	else if (dev_get_regmap(dev, NULL))
4314
		rdev->regmap = dev_get_regmap(dev, NULL);
4315 4316
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4317 4318 4319
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4320
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4321

4322
	/* preform any regulator specific init */
4323
	if (init_data && init_data->regulator_init) {
4324
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4325 4326
		if (ret < 0)
			goto clean;
4327 4328
	}

4329 4330 4331
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4332
		mutex_lock(&regulator_list_mutex);
4333
		ret = regulator_ena_gpio_request(rdev, config);
4334
		mutex_unlock(&regulator_list_mutex);
4335 4336 4337
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4338
			goto clean;
4339 4340 4341
		}
	}

4342
	/* register with sysfs */
4343
	rdev->dev.class = &regulator_class;
4344
	rdev->dev.parent = dev;
4345
	dev_set_name(&rdev->dev, "regulator.%lu",
4346
		    (unsigned long) atomic_inc_return(&regulator_no));
4347

4348
	/* set regulator constraints */
4349 4350 4351 4352
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4353
		rdev->supply_name = init_data->supply_regulator;
4354
	else if (regulator_desc->supply_name)
4355
		rdev->supply_name = regulator_desc->supply_name;
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4369 4370 4371 4372 4373 4374 4375
	mutex_lock(&regulator_list_mutex);
	ret = regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0)
		goto wash;

4376
	/* add consumers devices */
4377
	if (init_data) {
4378
		mutex_lock(&regulator_list_mutex);
4379 4380 4381
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4382
				init_data->consumer_supplies[i].supply);
4383
			if (ret < 0) {
4384
				mutex_unlock(&regulator_list_mutex);
4385 4386 4387 4388
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4389
		}
4390
		mutex_unlock(&regulator_list_mutex);
4391
	}
4392

4393 4394 4395 4396 4397
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4398 4399 4400 4401 4402 4403 4404
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4405
	rdev_init_debugfs(rdev);
4406 4407 4408 4409

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4410
	kfree(config);
4411
	return rdev;
D
David Brownell 已提交
4412

4413
unset_supplies:
4414
	mutex_lock(&regulator_list_mutex);
4415
	unset_regulator_supplies(rdev);
4416
	mutex_unlock(&regulator_list_mutex);
4417
wash:
4418
	kfree(rdev->constraints);
4419
	mutex_lock(&regulator_list_mutex);
4420
	regulator_ena_gpio_free(rdev);
4421
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4422 4423
clean:
	kfree(rdev);
4424 4425
	kfree(config);
	return ERR_PTR(ret);
4426 4427 4428 4429 4430
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4431
 * @rdev: regulator to unregister
4432 4433 4434 4435 4436 4437 4438 4439
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4440 4441 4442
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4443
		regulator_put(rdev->supply);
4444
	}
4445
	mutex_lock(&regulator_list_mutex);
4446
	debugfs_remove_recursive(rdev->debugfs);
4447
	flush_work(&rdev->disable_work.work);
4448
	WARN_ON(rdev->open_count);
4449
	unset_regulator_supplies(rdev);
4450
	list_del(&rdev->list);
4451
	regulator_ena_gpio_free(rdev);
4452
	mutex_unlock(&regulator_list_mutex);
4453
	device_unregister(&rdev->dev);
4454 4455 4456
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4457
#ifdef CONFIG_SUSPEND
4458
static int _regulator_suspend(struct device *dev, void *data)
4459 4460
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
4461
	suspend_state_t *state = data;
4462 4463
	int ret;

4464
	regulator_lock(rdev);
4465
	ret = suspend_set_state(rdev, *state);
4466
	regulator_unlock(rdev);
4467 4468 4469 4470

	return ret;
}

4471
/**
4472
 * regulator_suspend - prepare regulators for system wide suspend
4473 4474 4475 4476
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4477
static int regulator_suspend(struct device *dev)
4478
{
4479
	suspend_state_t state = pm_suspend_target_state;
4480

4481
	return class_for_each_device(&regulator_class, NULL, &state,
4482
				     _regulator_suspend);
4483
}
4484

4485
static int _regulator_resume(struct device *dev, void *data)
4486
{
4487
	int ret = 0;
4488
	struct regulator_dev *rdev = dev_to_rdev(dev);
4489 4490 4491 4492 4493
	suspend_state_t *state = data;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, *state);
	if (rstate == NULL)
4494
		return 0;
4495

4496
	regulator_lock(rdev);
4497

4498
	if (rdev->desc->ops->resume &&
4499 4500
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
4501
		ret = rdev->desc->ops->resume(rdev);
4502

4503
	regulator_unlock(rdev);
4504

4505
	return ret;
4506 4507
}

4508
static int regulator_resume(struct device *dev)
4509
{
4510 4511 4512
	suspend_state_t state = pm_suspend_target_state;

	return class_for_each_device(&regulator_class, NULL, &state,
4513
				     _regulator_resume);
4514 4515
}

4516 4517
#else /* !CONFIG_SUSPEND */

4518 4519
#define regulator_suspend	NULL
#define regulator_resume	NULL
4520 4521 4522 4523 4524

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4525 4526
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
4527 4528 4529
};
#endif

M
Mark Brown 已提交
4530
struct class regulator_class = {
4531 4532 4533 4534 4535 4536 4537
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4555 4556
/**
 * rdev_get_drvdata - get rdev regulator driver data
4557
 * @rdev: regulator
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4594
 * @rdev: regulator
4595 4596 4597 4598 4599 4600 4601
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4614
#ifdef CONFIG_DEBUG_FS
4615
static int supply_map_show(struct seq_file *sf, void *data)
4616 4617 4618 4619
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4620 4621 4622
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4623 4624
	}

4625 4626
	return 0;
}
4627

4628 4629 4630
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4631
}
4632
#endif
4633 4634

static const struct file_operations supply_map_fops = {
4635
#ifdef CONFIG_DEBUG_FS
4636 4637 4638 4639
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4640
#endif
4641
};
4642

4643
#ifdef CONFIG_DEBUG_FS
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4666 4667 4668 4669 4670 4671
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4672
	struct summary_data summary_data;
4673 4674 4675 4676 4677 4678 4679 4680 4681

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4682 4683
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4702
		if (consumer->dev && consumer->dev->class == &regulator_class)
4703 4704 4705 4706
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4707 4708
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4709 4710 4711

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4712
			seq_printf(s, "%37dmV %5dmV",
4713 4714
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4715 4716 4717 4718 4719 4720 4721 4722
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4723 4724 4725
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4726

4727 4728
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4729 4730
}

4731
static int regulator_summary_show_roots(struct device *dev, void *data)
4732
{
4733 4734
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4735

4736 4737
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4738

4739 4740
	return 0;
}
4741

4742 4743 4744 4745
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4746

4747 4748
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4768 4769
static int __init regulator_init(void)
{
4770 4771 4772 4773
	int ret;

	ret = class_register(&regulator_class);

4774
	debugfs_root = debugfs_create_dir("regulator", NULL);
4775
	if (!debugfs_root)
4776
		pr_warn("regulator: Failed to create debugfs directory\n");
4777

4778 4779
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4780

4781
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4782
			    NULL, &regulator_summary_fops);
4783

4784 4785 4786
	regulator_dummy_init();

	return ret;
4787 4788 4789 4790
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4791

4792
static int __init regulator_late_cleanup(struct device *dev, void *data)
4793
{
4794 4795 4796
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4797 4798
	int enabled, ret;

4799 4800 4801
	if (c && c->always_on)
		return 0;

4802
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4803 4804
		return 0;

4805
	regulator_lock(rdev);
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
4836
	regulator_unlock(rdev);
4837 4838 4839 4840 4841 4842

	return 0;
}

static int __init regulator_init_complete(void)
{
4843 4844 4845 4846 4847 4848 4849 4850 4851
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

4862
	/* If we have a full configuration then disable any regulators
4863 4864 4865
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4866
	 */
4867 4868
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4869

4870 4871 4872
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_fill_coupling_array);

4873 4874
	return 0;
}
4875
late_initcall_sync(regulator_init_complete);