core.c 149.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192 193
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196
}
197
EXPORT_SYMBOL_GPL(regulator_lock);
198 199 200 201 202 203 204 205

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
206
void regulator_unlock(struct regulator_dev *rdev)
207
{
208
	mutex_lock(&regulator_nesting_mutex);
209

210 211 212
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
213
	}
214 215 216 217

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
218
}
219
EXPORT_SYMBOL_GPL(regulator_unlock);
220

221
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222
{
223 224 225 226 227
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228

229 230 231 232 233 234 235
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

236 237
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
238
{
239
	struct regulator_dev *c_rdev;
240
	int i;
241

242 243
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 245 246 247

		if (!c_rdev)
			continue;

248
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249 250 251
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
252

253 254
		regulator_unlock(c_rdev);
	}
255 256
}

257 258 259 260
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
261
{
262
	struct regulator_dev *c_rdev;
263
	int i, err;
264

265 266
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267

268 269
		if (!c_rdev)
			continue;
270

271 272 273 274 275 276 277
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
278

279 280 281 282 283 284 285
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

286
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287 288 289 290 291 292 293 294
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
295 296
		}
	}
297 298 299 300 301 302 303

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
304 305
}

306
/**
307 308 309 310 311
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
312
 * Unlock all regulators related with rdev by coupling or supplying.
313
 */
314 315
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
316
{
317 318
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
319 320 321
}

/**
322 323
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
324
 * @ww_ctx:			w/w mutex acquire context
325 326
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
327
 * all regulators related with rdev by coupling or supplying.
328
 */
329 330
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
331
{
332 333 334
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
335

336
	mutex_lock(&regulator_list_mutex);
337

338
	ww_acquire_init(ww_ctx, &regulator_ww_class);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
384 385
			if (regnode)
				goto err_node_put;
386
		} else {
387
			goto err_node_put;
388 389 390
		}
	}
	return NULL;
391 392 393 394

err_node_put:
	of_node_put(child);
	return regnode;
395 396
}

397 398 399 400 401 402
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
403
 * returns the device node corresponding to the regulator if found, else
404 405 406 407 408 409 410 411 412 413 414 415 416
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
417 418 419 420
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

421 422
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
423 424 425 426 427
		return NULL;
	}
	return regnode;
}

428
/* Platform voltage constraint check */
429 430
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
431 432 433
{
	BUG_ON(*min_uV > *max_uV);

434
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435
		rdev_err(rdev, "voltage operation not allowed\n");
436 437 438 439 440 441 442 443
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

444 445
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446
			 *min_uV, *max_uV);
447
		return -EINVAL;
448
	}
449 450 451 452

	return 0;
}

453 454 455 456 457 458
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

459 460 461
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
462 463 464
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
465 466
{
	struct regulator *regulator;
467
	struct regulator_voltage *voltage;
468 469

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
470
		voltage = &regulator->voltage[state];
471 472 473 474
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
475
		if (!voltage->min_uV && !voltage->max_uV)
476 477
			continue;

478 479 480 481
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
482 483
	}

484
	if (*min_uV > *max_uV) {
485 486
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
487
		return -EINVAL;
488
	}
489 490 491 492

	return 0;
}

493 494 495 496 497 498
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

499
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500
		rdev_err(rdev, "current operation not allowed\n");
501 502 503 504 505 506 507 508
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

509 510
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511
			 *min_uA, *max_uA);
512
		return -EINVAL;
513
	}
514 515 516 517 518

	return 0;
}

/* operating mode constraint check */
519 520
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
521
{
522
	switch (*mode) {
523 524 525 526 527 528
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
529
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
530 531 532
		return -EINVAL;
	}

533
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534
		rdev_err(rdev, "mode operation not allowed\n");
535 536
		return -EPERM;
	}
537 538 539 540 541 542 543 544

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
545
	}
546 547

	return -EINVAL;
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

568 569 570
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
571
	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
	int uV;
573

574
	regulator_lock(rdev);
575
	uV = regulator_get_voltage_rdev(rdev);
576
	regulator_unlock(rdev);
577

578 579 580
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
581
}
582
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 584 585 586

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 589 590

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
591
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592

593 594
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
595 596 597
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

598
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
599
}
600
static DEVICE_ATTR_RO(name);
601

602
static const char *regulator_opmode_to_str(int mode)
603 604 605
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
606
		return "fast";
607
	case REGULATOR_MODE_NORMAL:
608
		return "normal";
609
	case REGULATOR_MODE_IDLE:
610
		return "idle";
611
	case REGULATOR_MODE_STANDBY:
612
		return "standby";
613
	}
614 615 616 617 618 619
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
620 621
}

D
David Brownell 已提交
622 623
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
624
{
625
	struct regulator_dev *rdev = dev_get_drvdata(dev);
626

D
David Brownell 已提交
627 628
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
629
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
630 631 632

static ssize_t regulator_print_state(char *buf, int state)
{
633 634 635 636 637 638 639 640
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
641 642 643 644
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 646
	ssize_t ret;

647
	regulator_lock(rdev);
648
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
649
	regulator_unlock(rdev);
D
David Brownell 已提交
650

651
	return ret;
D
David Brownell 已提交
652
}
653
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
654

D
David Brownell 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
688 689 690
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
691 692 693
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
694 695 696 697 698 699 700 701
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

702 703 704
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
705
	struct regulator_dev *rdev = dev_get_drvdata(dev);
706 707 708 709 710 711

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
712
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 714 715 716

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
717
	struct regulator_dev *rdev = dev_get_drvdata(dev);
718 719 720 721 722 723

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
724
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 726 727 728

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
729
	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 731 732 733 734 735

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
736
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 738 739 740

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
741
	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 743 744 745 746 747

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
748
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 750 751 752

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
753
	struct regulator_dev *rdev = dev_get_drvdata(dev);
754 755 756
	struct regulator *regulator;
	int uA = 0;

757
	regulator_lock(rdev);
758 759 760 761
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
762
	regulator_unlock(rdev);
763 764
	return sprintf(buf, "%d\n", uA);
}
765
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766

767 768
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772
	return sprintf(buf, "%d\n", rdev->use_count);
}
773
static DEVICE_ATTR_RO(num_users);
774

775 776
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
777
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781 782 783 784 785 786 787

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
788
static DEVICE_ATTR_RO(type);
789 790 791 792

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
793
	struct regulator_dev *rdev = dev_get_drvdata(dev);
794 795 796

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
797 798
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
799 800 801 802

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
807 808
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
809 810 811 812

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
813
	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 815 816

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
817 818
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
819 820 821 822

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
823
	struct regulator_dev *rdev = dev_get_drvdata(dev);
824

D
David Brownell 已提交
825 826
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
827
}
828 829
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
830 831 832 833

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
834
	struct regulator_dev *rdev = dev_get_drvdata(dev);
835

D
David Brownell 已提交
836 837
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
838
}
839 840
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
849
}
850 851
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
860
}
861 862
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
871
}
872 873
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
882
}
883 884 885
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
907

908 909
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
910
static int drms_uA_update(struct regulator_dev *rdev)
911 912 913 914 915
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

916 917 918 919
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
920 921
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
922
		return 0;
923
	}
924

925 926
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
927 928
		return 0;

929 930
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
931
		return -EINVAL;
932 933

	/* calc total requested load */
934 935 936 937
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
938

939 940
	current_uA += rdev->constraints->system_load;

941 942 943 944 945 946
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
947
		/* get output voltage */
948
		output_uV = regulator_get_voltage_rdev(rdev);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

965 966 967 968 969 970 971 972 973 974 975
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
976

977 978 979
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
980 981 982
	}

	return err;
983 984 985
}

static int suspend_set_state(struct regulator_dev *rdev,
986
				    suspend_state_t state)
987 988
{
	int ret = 0;
989 990 991 992
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
993
		return 0;
994

995
	/* If we have no suspend mode configuration don't set anything;
996 997
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
998
	 */
999 1000
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1001 1002
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1003
			rdev_warn(rdev, "No configuration\n");
1004 1005 1006
		return 0;
	}

1007 1008
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1009
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1010 1011
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1012
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1013 1014 1015
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1016
	if (ret < 0) {
1017
		rdev_err(rdev, "failed to enabled/disable\n");
1018 1019 1020 1021 1022 1023
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1024
			rdev_err(rdev, "failed to set voltage\n");
1025 1026 1027 1028 1029 1030 1031
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1032
			rdev_err(rdev, "failed to set mode\n");
1033 1034 1035 1036
			return ret;
		}
	}

1037
	return ret;
1038 1039 1040 1041 1042
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1043
	char buf[160] = "";
1044
	size_t len = sizeof(buf) - 1;
1045 1046
	int count = 0;
	int ret;
1047

1048
	if (constraints->min_uV && constraints->max_uV) {
1049
		if (constraints->min_uV == constraints->max_uV)
1050 1051
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1052
		else
1053 1054 1055 1056
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1057 1058 1059 1060
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1061
		ret = regulator_get_voltage_rdev(rdev);
1062
		if (ret > 0)
1063 1064
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1065 1066
	}

1067
	if (constraints->uV_offset)
1068 1069
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1070

1071
	if (constraints->min_uA && constraints->max_uA) {
1072
		if (constraints->min_uA == constraints->max_uA)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1080 1081 1082 1083 1084 1085
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1088
	}
1089

1090
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1091
		count += scnprintf(buf + count, len - count, "fast ");
1092
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1093
		count += scnprintf(buf + count, len - count, "normal ");
1094
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1095
		count += scnprintf(buf + count, len - count, "idle ");
1096
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1097
		count += scnprintf(buf + count, len - count, "standby");
1098

1099
	if (!count)
1100
		scnprintf(buf, len, "no parameters");
1101

1102
	rdev_dbg(rdev, "%s\n", buf);
1103 1104

	if ((constraints->min_uV != constraints->max_uV) &&
1105
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106 1107
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1108 1109
}

1110
static int machine_constraints_voltage(struct regulator_dev *rdev,
1111
	struct regulation_constraints *constraints)
1112
{
1113
	const struct regulator_ops *ops = rdev->desc->ops;
1114 1115 1116 1117
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1118 1119
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1120
		int current_uV = regulator_get_voltage_rdev(rdev);
1121 1122

		if (current_uV == -ENOTRECOVERABLE) {
1123
			/* This regulator can't be read and must be initialized */
1124 1125 1126 1127 1128 1129
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1130
			current_uV = regulator_get_voltage_rdev(rdev);
1131 1132
		}

1133
		if (current_uV < 0) {
1134 1135 1136
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1137 1138
			return current_uV;
		}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1159 1160
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1161
			ret = _regulator_do_set_voltage(
1162
				rdev, target_min, target_max);
1163 1164
			if (ret < 0) {
				rdev_err(rdev,
1165 1166
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1167 1168
				return ret;
			}
1169
		}
1170
	}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1183 1184
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1185
		if (count == 1 && !cmin) {
1186
			cmin = 1;
1187
			cmax = INT_MAX;
1188 1189
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1190 1191
		}

1192 1193
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1194
			return 0;
1195

1196
		/* else require explicit machine-level constraints */
1197
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1198
			rdev_err(rdev, "invalid voltage constraints\n");
1199
			return -EINVAL;
1200 1201
		}

1202 1203 1204 1205
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1223 1224 1225
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1226
			return -EINVAL;
1227 1228 1229 1230
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1231 1232
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1233 1234 1235
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1236 1237
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1238 1239 1240 1241
			constraints->max_uV = max_uV;
		}
	}

1242 1243 1244
	return 0;
}

1245 1246 1247
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1248
	const struct regulator_ops *ops = rdev->desc->ops;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1275 1276
static int _regulator_do_enable(struct regulator_dev *rdev);

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1289
	const struct regulation_constraints *constraints)
1290 1291
{
	int ret = 0;
1292
	const struct regulator_ops *ops = rdev->desc->ops;
1293

1294 1295 1296 1297 1298 1299
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1300 1301
	if (!rdev->constraints)
		return -ENOMEM;
1302

1303
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1304
	if (ret != 0)
1305
		return ret;
1306

1307
	ret = machine_constraints_current(rdev, rdev->constraints);
1308
	if (ret != 0)
1309
		return ret;
1310

1311 1312 1313 1314 1315
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1316
			return ret;
1317 1318 1319
		}
	}

1320
	/* do we need to setup our suspend state */
1321
	if (rdev->constraints->initial_state) {
1322
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1323
		if (ret < 0) {
1324
			rdev_err(rdev, "failed to set suspend state\n");
1325
			return ret;
1326 1327
		}
	}
1328

1329
	if (rdev->constraints->initial_mode) {
1330
		if (!ops->set_mode) {
1331
			rdev_err(rdev, "no set_mode operation\n");
1332
			return -EINVAL;
1333 1334
		}

1335
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1336
		if (ret < 0) {
1337
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1338
			return ret;
1339
		}
1340 1341 1342 1343 1344 1345
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1346 1347
	}

1348 1349
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1350 1351 1352
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1353
			return ret;
1354 1355 1356
		}
	}

S
Stephen Boyd 已提交
1357 1358 1359 1360
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1361
			return ret;
S
Stephen Boyd 已提交
1362 1363 1364
		}
	}

S
Stephen Boyd 已提交
1365 1366 1367 1368
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1369
			return ret;
S
Stephen Boyd 已提交
1370 1371 1372
		}
	}

1373 1374 1375 1376 1377
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1378
			return ret;
1379 1380 1381
		}
	}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1393 1394 1395 1396
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1406 1407 1408 1409 1410
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1411 1412 1413

		if (rdev->constraints->always_on)
			rdev->use_count++;
1414 1415
	}

1416
	print_constraints(rdev);
1417
	return 0;
1418 1419 1420 1421
}

/**
 * set_supply - set regulator supply regulator
1422 1423
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1424 1425 1426 1427 1428 1429
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1430
		      struct regulator_dev *supply_rdev)
1431 1432 1433
{
	int err;

1434 1435
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1436 1437 1438
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1439
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1440 1441
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1442
		return err;
1443
	}
1444
	supply_rdev->open_count++;
1445 1446

	return 0;
1447 1448 1449
}

/**
1450
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1451
 * @rdev:         regulator source
1452
 * @consumer_dev_name: dev_name() string for device supply applies to
1453
 * @supply:       symbolic name for supply
1454 1455 1456 1457 1458 1459 1460
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1461 1462
				      const char *consumer_dev_name,
				      const char *supply)
1463 1464
{
	struct regulator_map *node;
1465
	int has_dev;
1466 1467 1468 1469

	if (supply == NULL)
		return -EINVAL;

1470 1471 1472 1473 1474
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1475
	list_for_each_entry(node, &regulator_map_list, list) {
1476 1477 1478 1479
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1480
			continue;
1481 1482
		}

1483 1484 1485
		if (strcmp(node->supply, supply) != 0)
			continue;

1486 1487 1488 1489 1490 1491
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1492 1493 1494
		return -EBUSY;
	}

1495
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1496 1497 1498 1499 1500 1501
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1502 1503 1504 1505 1506 1507
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1508 1509
	}

1510 1511 1512 1513
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1514 1515 1516 1517 1518 1519 1520
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1521
			kfree(node->dev_name);
1522 1523 1524 1525 1526
			kfree(node);
		}
	}
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1576
#define REG_STR_SIZE	64
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1590
	regulator_lock(rdev);
1591 1592 1593 1594
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1595 1596
		regulator->dev = dev;

1597
		/* Add a link to the device sysfs entry */
1598 1599
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1600
		if (size >= REG_STR_SIZE)
1601
			goto overflow_err;
1602 1603 1604

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1605
			goto overflow_err;
1606

1607
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1608 1609
					buf);
		if (err) {
1610
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1611
				  dev->kobj.name, err);
1612
			/* non-fatal */
1613
		}
1614
	} else {
1615
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1616
		if (regulator->supply_name == NULL)
1617
			goto overflow_err;
1618 1619 1620 1621
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1622
	if (!regulator->debugfs) {
1623
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1624 1625 1626 1627
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1628
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1629
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1630
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1631 1632 1633
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1634
	}
1635

1636 1637 1638 1639 1640
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1641
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1642 1643 1644
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1645
	regulator_unlock(rdev);
1646 1647 1648 1649
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1650
	regulator_unlock(rdev);
1651 1652 1653
	return NULL;
}

1654 1655
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1656 1657
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1658 1659 1660
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1711 1712 1713 1714 1715
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1716
 */
1717
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1718
						  const char *supply)
1719
{
1720
	struct regulator_dev *r = NULL;
1721
	struct device_node *node;
1722 1723
	struct regulator_map *map;
	const char *devname = NULL;
1724

1725 1726
	regulator_supply_alias(&dev, &supply);

1727 1728 1729
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1730
		if (node) {
1731 1732 1733
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1734

1735
			/*
1736 1737
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1738
			 */
1739
			return ERR_PTR(-EPROBE_DEFER);
1740
		}
1741 1742 1743
	}

	/* if not found, try doing it non-dt way */
1744 1745 1746
	if (dev)
		devname = dev_name(dev);

1747
	mutex_lock(&regulator_list_mutex);
1748 1749 1750 1751 1752 1753
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1754 1755
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1756 1757
			r = map->regulator;
			break;
1758
		}
1759
	}
1760
	mutex_unlock(&regulator_list_mutex);
1761

1762 1763 1764 1765
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1766 1767 1768 1769
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1770 1771
}

1772 1773 1774 1775 1776 1777
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1778
	/* No supply to resolve? */
1779 1780 1781 1782 1783 1784 1785
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1786 1787 1788 1789
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1790 1791 1792 1793
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1794 1795
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1796
			get_device(&r->dev);
1797 1798 1799 1800 1801
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1802 1803
	}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1817 1818
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1819 1820
	if (ret < 0) {
		put_device(&r->dev);
1821
		return ret;
1822
	}
1823 1824

	ret = set_supply(rdev, r);
1825 1826
	if (ret < 0) {
		put_device(&r->dev);
1827
		return ret;
1828
	}
1829

1830 1831 1832 1833 1834 1835
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1836
		ret = regulator_enable(rdev->supply);
1837
		if (ret < 0) {
1838
			_regulator_put(rdev->supply);
1839
			rdev->supply = NULL;
1840
			return ret;
1841
		}
1842 1843 1844 1845 1846
	}

	return 0;
}

1847
/* Internal regulator request function */
1848 1849
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1850 1851
{
	struct regulator_dev *rdev;
1852
	struct regulator *regulator;
1853
	struct device_link *link;
1854
	int ret;
1855

1856 1857 1858 1859 1860
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1861
	if (id == NULL) {
1862
		pr_err("get() with no identifier\n");
1863
		return ERR_PTR(-EINVAL);
1864 1865
	}

1866
	rdev = regulator_dev_lookup(dev, id);
1867 1868
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1869

1870 1871 1872 1873 1874 1875
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1876

1877 1878 1879 1880 1881
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1882

1883 1884 1885 1886 1887 1888 1889
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1890
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1891 1892 1893
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1894

1895 1896 1897
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1898
			fallthrough;
1899

1900 1901 1902
		default:
			return ERR_PTR(-ENODEV);
		}
1903 1904
	}

1905 1906
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1907 1908
		put_device(&rdev->dev);
		return regulator;
1909 1910
	}

1911
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1912
		regulator = ERR_PTR(-EBUSY);
1913 1914
		put_device(&rdev->dev);
		return regulator;
1915 1916
	}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1927 1928 1929
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1930 1931
		put_device(&rdev->dev);
		return regulator;
1932 1933
	}

1934
	if (!try_module_get(rdev->owner)) {
1935
		regulator = ERR_PTR(-EPROBE_DEFER);
1936 1937 1938
		put_device(&rdev->dev);
		return regulator;
	}
1939

1940 1941 1942 1943
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1944
		put_device(&rdev->dev);
1945
		return regulator;
1946 1947
	}

1948
	rdev->open_count++;
1949
	if (get_type == EXCLUSIVE_GET) {
1950 1951 1952 1953 1954 1955 1956 1957 1958
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1959 1960 1961
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1962

1963 1964
	return regulator;
}
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1981
	return _regulator_get(dev, id, NORMAL_GET);
1982
}
1983 1984
EXPORT_SYMBOL_GPL(regulator_get);

1985 1986 1987 1988 1989 1990 1991
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1992 1993 1994
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2008
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2009 2010 2011
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2012 2013 2014 2015 2016 2017
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2018
 * or IS_ERR() condition containing errno.
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2034
	return _regulator_get(dev, id, OPTIONAL_GET);
2035 2036 2037
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2038
static void destroy_regulator(struct regulator *regulator)
2039
{
2040
	struct regulator_dev *rdev = regulator->rdev;
2041

2042 2043
	debugfs_remove_recursive(regulator->debugfs);

2044
	if (regulator->dev) {
2045 2046
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2047 2048

		/* remove any sysfs entries */
2049
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2050 2051
	}

2052
	regulator_lock(rdev);
2053 2054
	list_del(&regulator->list);

2055 2056
	rdev->open_count--;
	rdev->exclusive = 0;
2057
	regulator_unlock(rdev);
2058

2059
	kfree_const(regulator->supply_name);
2060
	kfree(regulator);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2079

2080
	module_put(rdev->owner);
W
Wen Yang 已提交
2081
	put_device(&rdev->dev);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2096 2097 2098 2099
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2177 2178
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2179
					 struct device *alias_dev,
2180
					 const char *const *alias_id,
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2218
					    const char *const *id,
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2229 2230 2231 2232 2233
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2234
	struct gpio_desc *gpiod;
2235

2236
	gpiod = config->ena_gpiod;
2237

2238
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2239
		if (pin->gpiod == gpiod) {
2240
			rdev_dbg(rdev, "GPIO is already used\n");
2241 2242 2243 2244 2245
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2246
	if (pin == NULL)
2247 2248
		return -ENOMEM;

2249
	pin->gpiod = gpiod;
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2267
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2268 2269
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2270
				gpiod_put(pin->gpiod);
2271 2272
				list_del(&pin->list);
				kfree(pin);
2273 2274
				rdev->ena_pin = NULL;
				return;
2275 2276 2277 2278 2279 2280 2281
			} else {
				pin->request_count--;
			}
		}
	}
}

2282
/**
2283 2284 2285 2286
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2300
			gpiod_set_value_cansleep(pin->gpiod, 1);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2311
			gpiod_set_value_cansleep(pin->gpiod, 0);
2312 2313 2314 2315 2316 2317 2318
			pin->enable_count = 0;
		}
	}

	return 0;
}

2319 2320 2321 2322 2323 2324
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2325
 *     Documentation/timers/timers-howto.rst
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2419
			 * detected and we get a penalty of
2420 2421 2422 2423 2424 2425 2426 2427 2428
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2429
	if (rdev->ena_pin) {
2430 2431 2432 2433 2434 2435
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2436
	} else if (rdev->desc->ops->enable) {
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2480 2481 2482 2483 2484 2485

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2545
/* locks held by regulator_enable() */
2546
static int _regulator_enable(struct regulator *regulator)
2547
{
2548
	struct regulator_dev *rdev = regulator->rdev;
2549
	int ret;
2550

2551 2552
	lockdep_assert_held_once(&rdev->mutex.base);

2553
	if (rdev->use_count == 0 && rdev->supply) {
2554
		ret = _regulator_enable(rdev->supply);
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2565

2566 2567 2568
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2569

2570 2571 2572 2573
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2574
			if (!regulator_ops_is_valid(rdev,
2575 2576
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2577
				goto err_consumer_disable;
2578
			}
2579

2580
			ret = _regulator_do_enable(rdev);
2581
			if (ret < 0)
2582
				goto err_consumer_disable;
2583

2584 2585
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2586
		} else if (ret < 0) {
2587
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2588
			goto err_consumer_disable;
2589
		}
2590
		/* Fallthrough on positive return values - already enabled */
2591 2592
	}

2593 2594 2595
	rdev->use_count++;

	return 0;
2596

2597 2598 2599
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2600
err_disable_supply:
2601
	if (rdev->use_count == 0 && rdev->supply)
2602
		_regulator_disable(rdev->supply);
2603 2604

	return ret;
2605 2606 2607 2608 2609 2610
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2611 2612 2613 2614
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2615
 * NOTE: the output value can be set by other drivers, boot loader or may be
2616
 * hardwired in the regulator.
2617 2618 2619
 */
int regulator_enable(struct regulator *regulator)
{
2620
	struct regulator_dev *rdev = regulator->rdev;
2621
	struct ww_acquire_ctx ww_ctx;
2622
	int ret;
2623

2624
	regulator_lock_dependent(rdev, &ww_ctx);
2625
	ret = _regulator_enable(regulator);
2626
	regulator_unlock_dependent(rdev, &ww_ctx);
2627

2628 2629 2630 2631
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2632 2633 2634 2635 2636 2637
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2638
	if (rdev->ena_pin) {
2639 2640 2641 2642 2643 2644
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2645 2646 2647 2648 2649 2650 2651

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2652 2653 2654 2655 2656 2657
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2658 2659 2660 2661 2662
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2663
/* locks held by regulator_disable() */
2664
static int _regulator_disable(struct regulator *regulator)
2665
{
2666
	struct regulator_dev *rdev = regulator->rdev;
2667 2668
	int ret = 0;

2669
	lockdep_assert_held_once(&rdev->mutex.base);
2670

D
David Brownell 已提交
2671
	if (WARN(rdev->use_count <= 0,
2672
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2673 2674
		return -EIO;

2675
	/* are we the last user and permitted to disable ? */
2676 2677
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2678 2679

		/* we are last user */
2680
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2681 2682 2683 2684 2685 2686
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2687
			ret = _regulator_do_disable(rdev);
2688
			if (ret < 0) {
2689
				rdev_err(rdev, "failed to disable\n");
2690 2691 2692
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2693 2694
				return ret;
			}
2695 2696
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2697 2698 2699 2700 2701 2702
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2703

2704 2705 2706
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2707 2708 2709
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2710
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2711
		ret = _regulator_disable(rdev->supply);
2712

2713 2714 2715 2716 2717 2718 2719
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2720 2721 2722
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2723
 *
2724
 * NOTE: this will only disable the regulator output if no other consumer
2725 2726
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2727 2728 2729
 */
int regulator_disable(struct regulator *regulator)
{
2730
	struct regulator_dev *rdev = regulator->rdev;
2731
	struct ww_acquire_ctx ww_ctx;
2732
	int ret;
2733

2734
	regulator_lock_dependent(rdev, &ww_ctx);
2735
	ret = _regulator_disable(regulator);
2736
	regulator_unlock_dependent(rdev, &ww_ctx);
2737

2738 2739 2740 2741 2742
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2743
static int _regulator_force_disable(struct regulator_dev *rdev)
2744 2745 2746
{
	int ret = 0;

2747
	lockdep_assert_held_once(&rdev->mutex.base);
2748

2749 2750 2751 2752 2753
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2754 2755 2756
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2757 2758
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2759
		return ret;
2760 2761
	}

2762 2763 2764 2765
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2779
	struct regulator_dev *rdev = regulator->rdev;
2780
	struct ww_acquire_ctx ww_ctx;
2781 2782
	int ret;

2783
	regulator_lock_dependent(rdev, &ww_ctx);
2784

2785
	ret = _regulator_force_disable(regulator->rdev);
2786

2787 2788
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789 2790 2791 2792 2793 2794

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2795 2796
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2797

2798
	regulator_unlock_dependent(rdev, &ww_ctx);
2799

2800 2801 2802 2803
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2804 2805 2806 2807
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2808
	struct ww_acquire_ctx ww_ctx;
2809
	int count, i, ret;
2810 2811
	struct regulator *regulator;
	int total_count = 0;
2812

2813
	regulator_lock_dependent(rdev, &ww_ctx);
2814

2815 2816 2817 2818 2819 2820 2821 2822
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2837
	}
2838
	WARN_ON(!total_count);
2839

2840 2841 2842 2843
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2844 2845 2846 2847 2848
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2849
 * @ms: milliseconds until the regulator is disabled
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2862 2863 2864
	if (!ms)
		return regulator_disable(regulator);

2865
	regulator_lock(rdev);
2866
	regulator->deferred_disables++;
2867 2868
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2869
	regulator_unlock(rdev);
2870

2871
	return 0;
2872 2873 2874
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2875 2876
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2877
	/* A GPIO control always takes precedence */
2878
	if (rdev->ena_pin)
2879 2880
		return rdev->ena_gpio_state;

2881
	/* If we don't know then assume that the regulator is always on */
2882
	if (!rdev->desc->ops->is_enabled)
2883
		return 1;
2884

2885
	return rdev->desc->ops->is_enabled(rdev);
2886 2887
}

2888 2889
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2901
			regulator_lock(rdev);
2902 2903
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2904
			regulator_unlock(rdev);
2905
	} else if (rdev->is_switch && rdev->supply) {
2906 2907
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2922 2923 2924 2925
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2926 2927 2928 2929 2930 2931 2932
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2933 2934 2935
 */
int regulator_is_enabled(struct regulator *regulator)
{
2936 2937
	int ret;

2938 2939 2940
	if (regulator->always_on)
		return 1;

2941
	regulator_lock(regulator->rdev);
2942
	ret = _regulator_is_enabled(regulator->rdev);
2943
	regulator_unlock(regulator->rdev);
2944 2945

	return ret;
2946 2947 2948
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2961 2962 2963
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2964
	if (!rdev->is_switch || !rdev->supply)
2965 2966 2967
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2978
 * zero if this selector code can't be used on this system, or a
2979 2980 2981 2982
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2983
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2984 2985 2986
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3019 3020
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3021 3022 3023 3024

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3025 3026
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3046 3047
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3073 3074 3075 3076 3077 3078 3079
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3080
 * Returns a boolean.
3081 3082 3083 3084
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3085
	struct regulator_dev *rdev = regulator->rdev;
3086 3087
	int i, voltages, ret;

3088
	/* If we can't change voltage check the current voltage */
3089
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3090 3091
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3092
			return min_uV <= ret && ret <= max_uV;
3093 3094 3095 3096
		else
			return ret;
	}

3097 3098 3099 3100 3101
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3102 3103
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3104
		return 0;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3116
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3132 3133 3134 3135 3136
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3137 3138 3139
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3140 3141 3142 3143 3144 3145 3146
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3147
	data.old_uV = regulator_get_voltage_rdev(rdev);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3171
	data.old_uV = regulator_get_voltage_rdev(rdev);
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3249 3250 3251 3252 3253 3254 3255 3256 3257
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3258 3259
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3260 3261 3262 3263 3264 3265
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3266 3267

	if (ramp_delay == 0) {
3268
		rdev_dbg(rdev, "ramp_delay not set\n");
3269 3270 3271 3272 3273 3274
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3275 3276 3277 3278
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3279
	int delay = 0;
3280
	int best_val = 0;
3281
	unsigned int selector;
3282
	int old_selector = -1;
3283
	const struct regulator_ops *ops = rdev->desc->ops;
3284
	int old_uV = regulator_get_voltage_rdev(rdev);
3285 3286 3287

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3288 3289 3290
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3291 3292 3293 3294
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3295
	if (_regulator_is_enabled(rdev) &&
3296 3297
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3298 3299 3300 3301
		if (old_selector < 0)
			return old_selector;
	}

3302
	if (ops->set_voltage) {
3303 3304
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3305 3306

		if (ret >= 0) {
3307 3308 3309
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3310
			else
3311
				best_val = regulator_get_voltage_rdev(rdev);
3312 3313
		}

3314
	} else if (ops->set_voltage_sel) {
3315
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3316
		if (ret >= 0) {
3317
			best_val = ops->list_voltage(rdev, ret);
3318 3319
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3320 3321
				if (old_selector == selector)
					ret = 0;
3322 3323 3324
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3325
				else
3326 3327
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3328 3329 3330
			} else {
				ret = -EINVAL;
			}
3331
		}
3332 3333 3334
	} else {
		ret = -EINVAL;
	}
3335

3336 3337
	if (ret)
		goto out;
3338

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3356
		}
3357
	}
3358

3359 3360 3361
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3362 3363
	}

3364 3365 3366 3367 3368 3369
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3370 3371
	}

3372
	if (best_val >= 0) {
3373 3374
		unsigned long data = best_val;

3375
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3376 3377
				     (void *)data);
	}
3378

3379
out:
3380
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3381 3382 3383 3384

	return ret;
}

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3411
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3412 3413
					  int min_uV, int max_uV,
					  suspend_state_t state)
3414 3415
{
	struct regulator_dev *rdev = regulator->rdev;
3416
	struct regulator_voltage *voltage = &regulator->voltage[state];
3417
	int ret = 0;
3418
	int old_min_uV, old_max_uV;
3419
	int current_uV;
3420

3421 3422 3423 3424
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3425
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3426 3427
		goto out;

3428
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3429
	 * return successfully even though the regulator does not support
3430 3431
	 * changing the voltage.
	 */
3432
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3433
		current_uV = regulator_get_voltage_rdev(rdev);
3434
		if (min_uV <= current_uV && current_uV <= max_uV) {
3435 3436
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3437 3438 3439 3440
			goto out;
		}
	}

3441
	/* sanity check */
3442 3443
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3444 3445 3446 3447 3448 3449 3450 3451
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3452

3453
	/* restore original values in case of error */
3454 3455 3456 3457
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3458

3459 3460
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3461 3462 3463 3464
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3465

3466 3467 3468 3469
out:
	return ret;
}

3470 3471
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3472 3473 3474 3475 3476
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3477 3478 3479
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3480 3481
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3482 3483 3484 3485 3486 3487
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3488
			goto out;
3489 3490
		}

M
Mark Brown 已提交
3491
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3492 3493
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3494
			goto out;
3495 3496 3497 3498
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3499
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3500 3501
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3502
			goto out;
3503 3504 3505 3506 3507 3508 3509
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3510
				best_supply_uV, INT_MAX, state);
3511 3512 3513
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3514
			goto out;
3515 3516 3517
		}
	}

3518 3519 3520 3521 3522
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3523
	if (ret < 0)
3524
		goto out;
3525

3526 3527
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3528
				best_supply_uV, INT_MAX, state);
3529 3530 3531 3532 3533 3534 3535
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3536
out:
3537
	return ret;
3538
}
3539
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3551
		*current_uV = regulator_get_voltage_rdev(rdev);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3583
	int i, ret, max_spread;
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3617
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3628

3629 3630 3631 3632 3633 3634 3635 3636
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3637 3638
	max_spread = constraints->max_spread[0];

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3656
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3694 3695 3696 3697
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3698
			ret = regulator_get_voltage_rdev(rdev);
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3714 3715
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3716 3717 3718 3719 3720 3721
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3722 3723
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3724 3725

	c_rdevs = c_desc->coupled_rdevs;
3726
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3753
			if (test_bit(i, &c_rdev_done))
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3781

3782 3783
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3784

3785 3786 3787
		if (ret < 0)
			goto out;

3788 3789
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3790 3791 3792 3793

	} while (n_coupled > 1);

out:
3794 3795 3796
	return ret;
}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3843 3844
	struct ww_acquire_ctx ww_ctx;
	int ret;
3845

3846
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3847

3848 3849
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3850

3851
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3852

3853 3854 3855 3856
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3869
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3923 3924
	struct ww_acquire_ctx ww_ctx;
	int ret;
3925 3926 3927 3928 3929

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3930
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3931 3932 3933 3934

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3935
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3936 3937 3938 3939 3940

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3954 3955
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3956 3957 3958 3959 3960
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3961 3962 3963 3964 3965
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3966
	/* Currently requires operations to do this */
3967
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3990
/**
3991 3992
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3993 3994 3995 3996 3997 3998
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3999
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4000
 * set_voltage_time_sel() operation.
4001 4002 4003 4004 4005
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4006
	int old_volt, new_volt;
4007

4008 4009 4010
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4011

4012 4013 4014
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4015 4016 4017 4018 4019
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4020
}
4021
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4034
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4035 4036
	int ret, min_uV, max_uV;

4037
	regulator_lock(rdev);
4038 4039 4040 4041 4042 4043 4044 4045

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4046
	if (!voltage->min_uV && !voltage->max_uV) {
4047 4048 4049 4050
		ret = -EINVAL;
		goto out;
	}

4051 4052
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4053 4054 4055 4056 4057 4058

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4059
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4060 4061 4062 4063 4064 4065
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4066
	regulator_unlock(rdev);
4067 4068 4069 4070
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4071
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4072
{
4073
	int sel, ret;
4074 4075 4076 4077 4078 4079 4080 4081
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4082 4083 4084 4085 4086
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4087

4088
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4089 4090
		}
	}
4091 4092 4093 4094 4095

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4096
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4097
	} else if (rdev->desc->ops->get_voltage) {
4098
		ret = rdev->desc->ops->get_voltage(rdev);
4099 4100
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4101 4102
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4103
	} else if (rdev->supply) {
4104
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4105
	} else {
4106
		return -EINVAL;
4107
	}
4108

4109 4110
	if (ret < 0)
		return ret;
4111
	return ret - rdev->constraints->uV_offset;
4112
}
4113
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4126
	struct ww_acquire_ctx ww_ctx;
4127 4128
	int ret;

4129
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4130
	ret = regulator_get_voltage_rdev(regulator->rdev);
4131
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4132 4133 4134 4135 4136 4137 4138 4139

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4140
 * @min_uA: Minimum supported current in uA
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4159
	regulator_lock(rdev);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4174
	regulator_unlock(rdev);
4175 4176 4177 4178
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4179 4180 4181 4182 4183 4184 4185 4186 4187
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4188 4189 4190 4191
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4192
	regulator_lock(rdev);
4193
	ret = _regulator_get_current_limit_unlocked(rdev);
4194
	regulator_unlock(rdev);
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4229
	int regulator_curr_mode;
4230

4231
	regulator_lock(rdev);
4232 4233 4234 4235 4236 4237 4238

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4239 4240 4241 4242 4243 4244 4245 4246 4247
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4248
	/* constraints check */
4249
	ret = regulator_mode_constrain(rdev, &mode);
4250 4251 4252 4253 4254
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4255
	regulator_unlock(rdev);
4256 4257 4258 4259
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4260 4261 4262 4263 4264 4265 4266 4267 4268
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4269 4270 4271 4272
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4273
	regulator_lock(rdev);
4274
	ret = _regulator_get_mode_unlocked(rdev);
4275
	regulator_unlock(rdev);
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4292 4293 4294 4295 4296
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4297
	regulator_lock(rdev);
4298 4299 4300 4301 4302 4303 4304 4305 4306

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4307
	regulator_unlock(rdev);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4325
/**
4326
 * regulator_set_load - set regulator load
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4349 4350 4351 4352 4353 4354 4355 4356
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4357
 * On error a negative errno is returned.
4358
 */
4359
int regulator_set_load(struct regulator *regulator, int uA_load)
4360 4361
{
	struct regulator_dev *rdev = regulator->rdev;
4362 4363
	int old_uA_load;
	int ret = 0;
4364

4365
	regulator_lock(rdev);
4366
	old_uA_load = regulator->uA_load;
4367
	regulator->uA_load = uA_load;
4368 4369 4370 4371 4372
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4373
	regulator_unlock(rdev);
4374

4375 4376
	return ret;
}
4377
EXPORT_SYMBOL_GPL(regulator_set_load);
4378

4379 4380 4381 4382
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4383
 * @enable: enable or disable bypass mode
4384 4385 4386 4387 4388 4389 4390 4391 4392
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4393
	const char *name = rdev_get_name(rdev);
4394 4395 4396 4397 4398
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4399
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4400 4401
		return 0;

4402
	regulator_lock(rdev);
4403 4404 4405 4406 4407

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4408 4409
			trace_regulator_bypass_enable(name);

4410 4411 4412
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4413 4414
			else
				trace_regulator_bypass_enable_complete(name);
4415 4416 4417 4418 4419 4420
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4421 4422
			trace_regulator_bypass_disable(name);

4423 4424 4425
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4426 4427
			else
				trace_regulator_bypass_disable_complete(name);
4428 4429 4430 4431 4432 4433
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4434
	regulator_unlock(rdev);
4435 4436 4437 4438 4439

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4440 4441 4442
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4443
 * @nb: notifier block
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4458
 * @nb: notifier block
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4470 4471 4472
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4473
static int _notifier_call_chain(struct regulator_dev *rdev,
4474 4475 4476
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4477
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4504 4505
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4516 4517 4518 4519 4520 4521 4522
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4523
	while (--i >= 0)
4524 4525 4526 4527 4528 4529
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4530 4531 4532 4533 4534 4535 4536
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4552
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4553
	int i;
4554
	int ret = 0;
4555

4556
	for (i = 0; i < num_consumers; i++) {
4557 4558
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4559
	}
4560 4561 4562 4563

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4564
	for (i = 0; i < num_consumers; i++) {
4565 4566
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4567
			goto err;
4568
		}
4569 4570 4571 4572 4573
	}

	return 0;

err:
4574 4575 4576 4577 4578 4579 4580
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4594 4595
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4596 4597 4598 4599 4600 4601
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4602
	int ret, r;
4603

4604
	for (i = num_consumers - 1; i >= 0; --i) {
4605 4606 4607 4608 4609 4610 4611 4612
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4613
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4614 4615 4616
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4617
			pr_err("Failed to re-enable %s: %d\n",
4618 4619
			       consumers[i].supply, r);
	}
4620 4621 4622 4623 4624

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4643
	int ret = 0;
4644

4645
	for (i = 0; i < num_consumers; i++) {
4646 4647 4648
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4649 4650
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4651 4652 4653 4654 4655 4656 4657
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4681
 * @rdev: regulator source
4682
 * @event: notifier block
4683
 * @data: callback-specific data.
4684 4685 4686
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4687
 * Note lock must be held by caller.
4688 4689 4690 4691
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4692
	lockdep_assert_held_once(&rdev->mutex.base);
4693

4694 4695 4696 4697 4698 4699
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4716
	case REGULATOR_MODE_STANDBY:
4717 4718
		return REGULATOR_STATUS_STANDBY;
	default:
4719
		return REGULATOR_STATUS_UNDEFINED;
4720 4721 4722 4723
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4751 4752 4753 4754
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4755 4756
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4757
{
4758
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4759
	struct regulator_dev *rdev = dev_to_rdev(dev);
4760
	const struct regulator_ops *ops = rdev->desc->ops;
4761 4762 4763 4764 4765 4766 4767
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4768 4769

	/* some attributes need specific methods to be displayed */
4770 4771 4772 4773 4774 4775 4776
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4777
	}
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4794
	/* constraints need specific supporting methods */
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4830

4831 4832 4833
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4834 4835 4836

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4837
	kfree(rdev);
4838 4839
}

4840 4841
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4854
	if (!rdev->debugfs) {
4855 4856 4857 4858 4859 4860 4861 4862
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4863 4864
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4865 4866
}

4867 4868
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4869 4870 4871 4872 4873 4874
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4875 4876
}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4928
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4929
{
4930
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4943 4944
		if (!c_rdev)
			continue;
4945

4946 4947 4948 4949 4950 4951
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4952
		regulator_lock(c_rdev);
4953

4954 4955
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4956

4957
		regulator_unlock(c_rdev);
4958

4959 4960
		regulator_resolve_coupling(c_rdev);
	}
4961 4962
}

4963
static void regulator_remove_coupling(struct regulator_dev *rdev)
4964
{
4965
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4966 4967 4968 4969
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4970
	int err;
4971

4972
	n_coupled = c_desc->n_coupled;
4973

4974 4975
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4976

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5010 5011
}

5012
static int regulator_init_coupling(struct regulator_dev *rdev)
5013
{
5014 5015
	int err, n_phandles;
	size_t alloc_size;
5016 5017 5018 5019 5020 5021

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5022 5023 5024 5025 5026
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5040
	if (!of_check_coupling_data(rdev))
5041 5042
		return -EPERM;

5043 5044 5045 5046 5047
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
5048 5049
	}

5050 5051 5052 5053 5054 5055 5056 5057 5058
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5059
		return -EPERM;
5060
	}
5061

5062 5063 5064 5065 5066 5067
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5068 5069 5070
	return 0;
}

5071 5072 5073 5074
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5075 5076
/**
 * regulator_register - register regulator
5077
 * @regulator_desc: regulator to register
5078
 * @cfg: runtime configuration for regulator
5079 5080
 *
 * Called by regulator drivers to register a regulator.
5081 5082
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5083
 */
5084 5085
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5086
		   const struct regulator_config *cfg)
5087
{
5088
	const struct regulation_constraints *constraints = NULL;
5089
	const struct regulator_init_data *init_data;
5090
	struct regulator_config *config = NULL;
5091
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5092
	struct regulator_dev *rdev;
5093 5094
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5095
	struct device *dev;
5096
	int ret, i;
5097

5098
	if (cfg == NULL)
5099
		return ERR_PTR(-EINVAL);
5100 5101 5102 5103 5104 5105
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5106

5107
	dev = cfg->dev;
5108
	WARN_ON(!dev);
5109

5110 5111 5112 5113
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5114

5115
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5116 5117 5118 5119
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5120

5121 5122 5123
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5124 5125
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5126 5127 5128 5129

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5130 5131
		ret = -EINVAL;
		goto rinse;
5132
	}
5133 5134
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5135 5136
		ret = -EINVAL;
		goto rinse;
5137
	}
5138

5139
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5140 5141 5142 5143
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5144

5145 5146 5147 5148 5149 5150 5151
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5152 5153
		ret = -ENOMEM;
		goto rinse;
5154 5155
	}

5156
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5157
					       &rdev->dev.of_node);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		kfree(config);
		kfree(rdev);
		ret = -EPROBE_DEFER;
		goto rinse;
	}

5171 5172 5173 5174 5175
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5176
	 * a descriptor, we definitely got one from parsing the device
5177 5178 5179 5180
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5181 5182 5183 5184 5185
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5186
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5187
	rdev->reg_data = config->driver_data;
5188 5189
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5190 5191
	if (config->regmap)
		rdev->regmap = config->regmap;
5192
	else if (dev_get_regmap(dev, NULL))
5193
		rdev->regmap = dev_get_regmap(dev, NULL);
5194 5195
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5196 5197 5198
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5199
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5200

5201
	/* preform any regulator specific init */
5202
	if (init_data && init_data->regulator_init) {
5203
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5204 5205
		if (ret < 0)
			goto clean;
5206 5207
	}

5208
	if (config->ena_gpiod) {
5209
		mutex_lock(&regulator_list_mutex);
5210
		ret = regulator_ena_gpio_request(rdev, config);
5211
		mutex_unlock(&regulator_list_mutex);
5212
		if (ret != 0) {
5213 5214
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5215
			goto clean;
5216
		}
5217 5218 5219
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5220 5221
	}

5222
	/* register with sysfs */
5223
	device_initialize(&rdev->dev);
5224
	rdev->dev.class = &regulator_class;
5225
	rdev->dev.parent = dev;
5226
	dev_set_name(&rdev->dev, "regulator.%lu",
5227
		    (unsigned long) atomic_inc_return(&regulator_no));
5228
	dev_set_drvdata(&rdev->dev, rdev);
5229

5230
	/* set regulator constraints */
5231 5232 5233 5234
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5235
		rdev->supply_name = init_data->supply_regulator;
5236
	else if (regulator_desc->supply_name)
5237
		rdev->supply_name = regulator_desc->supply_name;
5238

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5251
	mutex_lock(&regulator_list_mutex);
5252
	ret = regulator_init_coupling(rdev);
5253
	mutex_unlock(&regulator_list_mutex);
5254
	if (ret < 0)
5255 5256
		goto wash;

5257
	/* add consumers devices */
5258
	if (init_data) {
5259
		mutex_lock(&regulator_list_mutex);
5260 5261 5262
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5263
				init_data->consumer_supplies[i].supply);
5264
			if (ret < 0) {
5265
				mutex_unlock(&regulator_list_mutex);
5266 5267 5268 5269
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5270
		}
5271
		mutex_unlock(&regulator_list_mutex);
5272
	}
5273

5274 5275 5276 5277 5278
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5279 5280
	ret = device_add(&rdev->dev);
	if (ret != 0)
5281 5282
		goto unset_supplies;

5283
	rdev_init_debugfs(rdev);
5284

5285 5286 5287 5288 5289
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5290 5291 5292
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5293
	kfree(config);
5294
	return rdev;
D
David Brownell 已提交
5295

5296
unset_supplies:
5297
	mutex_lock(&regulator_list_mutex);
5298
	unset_regulator_supplies(rdev);
5299
	regulator_remove_coupling(rdev);
5300
	mutex_unlock(&regulator_list_mutex);
5301
wash:
5302
	kfree(rdev->coupling_desc.coupled_rdevs);
5303
	mutex_lock(&regulator_list_mutex);
5304
	regulator_ena_gpio_free(rdev);
5305
	mutex_unlock(&regulator_list_mutex);
5306 5307
	put_device(&rdev->dev);
	rdev = NULL;
D
David Brownell 已提交
5308
clean:
5309 5310
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5311
	kfree(rdev);
5312
	kfree(config);
5313 5314 5315
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5316
	return ERR_PTR(ret);
5317 5318 5319 5320 5321
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5322
 * @rdev: regulator to unregister
5323 5324 5325 5326 5327 5328 5329 5330
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5331 5332 5333
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5334
		regulator_put(rdev->supply);
5335
	}
5336

5337 5338
	flush_work(&rdev->disable_work.work);

5339
	mutex_lock(&regulator_list_mutex);
5340

5341
	debugfs_remove_recursive(rdev->debugfs);
5342
	WARN_ON(rdev->open_count);
5343
	regulator_remove_coupling(rdev);
5344
	unset_regulator_supplies(rdev);
5345
	list_del(&rdev->list);
5346
	regulator_ena_gpio_free(rdev);
5347
	device_unregister(&rdev->dev);
5348 5349

	mutex_unlock(&regulator_list_mutex);
5350 5351 5352
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5353
#ifdef CONFIG_SUSPEND
5354
/**
5355
 * regulator_suspend - prepare regulators for system wide suspend
5356
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5357 5358 5359
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5360
static int regulator_suspend(struct device *dev)
5361
{
5362
	struct regulator_dev *rdev = dev_to_rdev(dev);
5363
	suspend_state_t state = pm_suspend_target_state;
5364 5365 5366 5367 5368
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5369

5370
	return ret;
5371
}
5372

5373
static int regulator_resume(struct device *dev)
5374
{
5375
	suspend_state_t state = pm_suspend_target_state;
5376
	struct regulator_dev *rdev = dev_to_rdev(dev);
5377
	struct regulator_state *rstate;
5378
	int ret = 0;
5379

5380
	rstate = regulator_get_suspend_state(rdev, state);
5381
	if (rstate == NULL)
5382
		return 0;
5383

5384
	regulator_lock(rdev);
5385

5386
	if (rdev->desc->ops->resume &&
5387 5388
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5389
		ret = rdev->desc->ops->resume(rdev);
5390

5391
	regulator_unlock(rdev);
5392

5393
	return ret;
5394
}
5395 5396
#else /* !CONFIG_SUSPEND */

5397 5398
#define regulator_suspend	NULL
#define regulator_resume	NULL
5399 5400 5401 5402 5403

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5404 5405
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5406 5407 5408
};
#endif

M
Mark Brown 已提交
5409
struct class regulator_class = {
5410 5411 5412 5413 5414 5415 5416
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5434 5435
/**
 * rdev_get_drvdata - get rdev regulator driver data
5436
 * @rdev: regulator
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5473
 * @rdev: regulator
5474 5475 5476 5477 5478 5479 5480
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5481 5482 5483 5484 5485 5486
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5487 5488 5489 5490 5491 5492
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5493 5494 5495 5496 5497 5498
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5499
#ifdef CONFIG_DEBUG_FS
5500
static int supply_map_show(struct seq_file *sf, void *data)
5501 5502 5503 5504
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5505 5506 5507
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5508 5509
	}

5510 5511
	return 0;
}
5512
DEFINE_SHOW_ATTRIBUTE(supply_map);
5513

5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5536 5537 5538 5539 5540 5541
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5542
	struct summary_data summary_data;
5543
	unsigned int opmode;
5544 5545 5546 5547

	if (!rdev)
		return;

5548
	opmode = _regulator_get_mode_unlocked(rdev);
5549
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5550 5551
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5552
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5553
		   regulator_opmode_to_str(opmode));
5554

5555
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5556 5557
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5576
		if (consumer->dev && consumer->dev->class == &regulator_class)
5577 5578 5579 5580
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5581
			   30 - (level + 1) * 3,
5582
			   consumer->supply_name ? consumer->supply_name :
5583
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5584 5585 5586

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5587 5588
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5589
				   consumer->uA_load / 1000,
5590 5591
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5592 5593
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5594 5595 5596 5597 5598 5599 5600 5601
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5602 5603 5604
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5605

5606 5607
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5645 5646

	regulator_unlock(rdev);
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5677 5678
	mutex_lock(&regulator_list_mutex);

5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5705 5706

	mutex_unlock(&regulator_list_mutex);
5707 5708
}

5709
static int regulator_summary_show_roots(struct device *dev, void *data)
5710
{
5711 5712
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5713

5714 5715
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5716

5717 5718
	return 0;
}
5719

5720 5721
static int regulator_summary_show(struct seq_file *s, void *data)
{
5722 5723
	struct ww_acquire_ctx ww_ctx;

5724 5725
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5726

5727 5728
	regulator_summary_lock(&ww_ctx);

5729 5730
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5731

5732 5733
	regulator_summary_unlock(&ww_ctx);

5734 5735
	return 0;
}
5736 5737
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5738

5739 5740
static int __init regulator_init(void)
{
5741 5742 5743 5744
	int ret;

	ret = class_register(&regulator_class);

5745
	debugfs_root = debugfs_create_dir("regulator", NULL);
5746
	if (!debugfs_root)
5747
		pr_warn("regulator: Failed to create debugfs directory\n");
5748

5749
#ifdef CONFIG_DEBUG_FS
5750 5751
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5752

5753
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5754
			    NULL, &regulator_summary_fops);
5755
#endif
5756 5757
	regulator_dummy_init();

5758 5759
	regulator_coupler_register(&generic_regulator_coupler);

5760
	return ret;
5761 5762 5763 5764
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5765

5766
static int regulator_late_cleanup(struct device *dev, void *data)
5767
{
5768 5769 5770
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5771 5772
	int enabled, ret;

5773 5774 5775
	if (c && c->always_on)
		return 0;

5776
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5777 5778
		return 0;

5779
	regulator_lock(rdev);
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5810
	regulator_unlock(rdev);
5811 5812 5813 5814

	return 0;
}

5815
static void regulator_init_complete_work_function(struct work_struct *work)
5816
{
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5827
	/* If we have a full configuration then disable any regulators
5828 5829 5830
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5831
	 */
5832 5833
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5851 5852 5853 5854 5855 5856 5857 5858 5859
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5860
	 */
5861 5862
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5863 5864 5865

	return 0;
}
5866
late_initcall_sync(regulator_init_complete);