intel_engine_cs.c 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36
#include "intel_execlists_submission.h"
37 38
#include "intel_gt.h"
#include "intel_gt_requests.h"
39
#include "intel_gt_pm.h"
40
#include "intel_lrc_reg.h"
41
#include "intel_reset.h"
42
#include "intel_ring.h"
43
#include "uc/intel_guc_submission.h"
44

45 46 47 48 49 50 51 52 53
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

54
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 56
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
57
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
58
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
59 60 61

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

62
#define MAX_MMIO_BASES 3
63
struct engine_info {
64
	unsigned int hw_id;
65 66
	u8 class;
	u8 instance;
67 68 69 70 71
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
72 73 74
};

static const struct engine_info intel_engines[] = {
75 76
	[RCS0] = {
		.hw_id = RCS0_HW,
77 78
		.class = RENDER_CLASS,
		.instance = 0,
79 80 81
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
82
	},
83 84
	[BCS0] = {
		.hw_id = BCS0_HW,
85 86
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
87 88 89
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
90
	},
91 92
	[VCS0] = {
		.hw_id = VCS0_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
95 96 97 98 99
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
100
	},
101 102
	[VCS1] = {
		.hw_id = VCS1_HW,
103 104
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
105 106 107 108
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
109
	},
110 111
	[VCS2] = {
		.hw_id = VCS2_HW,
112 113
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
114 115 116
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
117
	},
118 119
	[VCS3] = {
		.hw_id = VCS3_HW,
120 121
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
125
	},
126 127
	[VECS0] = {
		.hw_id = VECS0_HW,
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130 131 132 133
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
134
	},
135 136
	[VECS1] = {
		.hw_id = VECS1_HW,
137 138
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
139 140 141
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
142
	},
143 144
};

145
/**
146
 * intel_engine_context_size() - return the size of the context for an engine
147
 * @gt: the gt
148 149 150 151 152 153 154 155 156 157 158
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
159
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
160
{
161
	struct intel_uncore *uncore = gt->uncore;
162 163 164 165 166 167
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
168
		switch (INTEL_GEN(gt->i915)) {
169
		default:
170
			MISSING_CASE(INTEL_GEN(gt->i915));
171
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
172
		case 12:
173 174
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
175
		case 10:
O
Oscar Mateo 已提交
176
			return GEN10_LR_CONTEXT_RENDER_SIZE;
177 178 179
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
180
			return GEN8_LR_CONTEXT_RENDER_SIZE;
181
		case 7:
182
			if (IS_HASWELL(gt->i915))
183 184
				return HSW_CXT_TOTAL_SIZE;

185
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
186 187 188
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
189
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
190 191 192
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
193
		case 4:
194 195 196 197 198 199 200 201 202 203
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
204
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
205 206 207 208
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
209
			return round_up(cxt_size * 64, PAGE_SIZE);
210 211 212 213 214 215 216 217 218
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
219
		fallthrough;
220 221 222
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
223
		if (INTEL_GEN(gt->i915) < 8)
224 225 226 227 228
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

244
static void __sprint_engine_name(struct intel_engine_cs *engine)
245
{
246 247 248 249 250 251 252 253
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
254 255
}

256 257 258 259 260 261
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
262
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
263 264
		return;

265 266
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
267
	else
268
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
269 270 271 272 273 274 275 276
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

277
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
278 279
{
	const struct engine_info *info = &intel_engines[id];
280
	struct drm_i915_private *i915 = gt->i915;
281 282
	struct intel_engine_cs *engine;

283 284 285
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

286 287 288
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
293 294
		return -EINVAL;

295
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
296 297
		return -EINVAL;

298 299 300
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
301

302 303
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

304
	engine->id = id;
305
	engine->legacy_idx = INVALID_ENGINE;
306
	engine->mask = BIT(id);
307
	engine->i915 = i915;
308 309
	engine->gt = gt;
	engine->uncore = gt->uncore;
310
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
311 312
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
313

314 315
	engine->class = info->class;
	engine->instance = info->instance;
316
	__sprint_engine_name(engine);
317

318 319
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
320 321
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
322 323
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
324 325
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
326 327
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
328

329 330 331 332
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

333 334
	engine->defaults = engine->props; /* never to change again */

335
	engine->context_size = intel_engine_context_size(gt, engine->class);
336 337
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
338
	if (engine->context_size)
339
		DRIVER_CAPS(i915)->has_logical_contexts = true;
340

341 342 343
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

344
	ewma__engine_latency_init(&engine->latency);
345
	seqcount_init(&engine->stats.lock);
346

347 348
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

349 350 351
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

352
	gt->engine_class[info->class][info->instance] = engine;
353
	gt->engine[id] = engine;
354

355
	return 0;
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
377 378
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
379 380 381 382 383 384 385 386 387 388
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

389
static void intel_setup_engine_capabilities(struct intel_gt *gt)
390 391 392 393
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

394
	for_each_engine(engine, gt, id)
395 396 397
		__setup_engine_capabilities(engine);
}

398
/**
399
 * intel_engines_release() - free the resources allocated for Command Streamers
400
 * @gt: pointer to struct intel_gt
401
 */
402
void intel_engines_release(struct intel_gt *gt)
403 404 405 406
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

407 408 409 410 411 412 413 414 415 416 417 418 419
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

420
	/* Decouple the backend; but keep the layout for late GPU resets */
421
	for_each_engine(engine, gt, id) {
422 423 424
		if (!engine->release)
			continue;

425 426 427
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

428 429 430 431
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
432 433 434
	}
}

435 436 437 438 439 440 441 442
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

443 444 445 446 447
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

448 449 450
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

451
	for_each_engine(engine, gt, id) {
452
		intel_engine_free_request_pool(engine);
453 454 455 456 457
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
471
	struct intel_gt_info *info = &gt->info;
472 473 474 475 476 477 478
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

479 480
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
508
			gt->info.vdbox_sfc_access |= BIT(i);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

532
/**
533
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
534
 * @gt: pointer to struct intel_gt
535 536 537
 *
 * Return: non-zero if the initialization failed.
 */
538
int intel_engines_init_mmio(struct intel_gt *gt)
539
{
540
	struct drm_i915_private *i915 = gt->i915;
541
	const unsigned int engine_mask = init_engine_mask(gt);
542
	unsigned int mask = 0;
543
	unsigned int i;
544
	int err;
545

546 547 548
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
549

550
	if (i915_inject_probe_failure(i915))
551 552
		return -ENODEV;

553
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
554
		if (!HAS_ENGINE(gt, i))
555 556
			continue;

557
		err = intel_engine_setup(gt, i);
558 559 560
		if (err)
			goto cleanup;

561
		mask |= BIT(i);
562 563 564 565 566 567 568
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
569
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
570
		gt->info.engine_mask = mask;
571

572
	gt->info.num_engines = hweight32(mask);
573

574
	intel_gt_check_and_clear_faults(gt);
575

576
	intel_setup_engine_capabilities(gt);
577

578 579
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

580 581 582
	return 0;

cleanup:
583
	intel_engines_free(gt);
584 585 586
	return err;
}

587
void intel_engine_init_execlists(struct intel_engine_cs *engine)
588 589 590
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

591
	execlists->port_mask = 1;
592
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
593 594
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

595 596 597 598
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

599
	execlists->queue_priority_hint = INT_MIN;
600
	execlists->queue = RB_ROOT_CACHED;
601 602
}

603
static void cleanup_status_page(struct intel_engine_cs *engine)
604
{
605 606
	struct i915_vma *vma;

607 608 609
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

610 611 612
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
613

614 615 616 617
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
618
	i915_gem_object_put(vma->obj);
619 620 621 622 623 624 625
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

626
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
627 628 629 630 631 632 633 634 635 636 637
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
638
		flags = PIN_MAPPABLE;
639
	else
640
		flags = PIN_HIGH;
641

642
	return i915_ggtt_pin(vma, NULL, 0, flags);
643 644 645 646 647 648 649 650 651
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

652 653
	INIT_LIST_HEAD(&engine->status_page.timelines);

654 655 656 657 658 659 660
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
661 662
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
663 664
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
665 666 667
		return PTR_ERR(obj);
	}

668
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
669

670
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
671 672 673 674 675 676 677 678
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
679
		goto err;
680 681
	}

682
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683
	engine->status_page.vma = vma;
684 685 686 687 688 689 690

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

691 692 693
	return 0;

err_unpin:
694
	i915_gem_object_unpin_map(obj);
695 696 697 698 699
err:
	i915_gem_object_put(obj);
	return ret;
}

700
static int engine_setup_common(struct intel_engine_cs *engine)
701 702 703
{
	int err;

704 705
	init_llist_head(&engine->barrier_tasks);

706 707 708 709
	err = init_status_page(engine);
	if (err)
		return err;

710 711 712 713 714 715
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

716 717 718 719
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

720
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
721 722
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
723
	intel_engine_init_retire(engine);
724

725 726
	/* Use the whole device by default */
	engine->sseu =
727
		intel_sseu_from_device_info(&engine->gt->info.sseu);
728

729 730 731 732
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

733 734 735
	if (INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

736
	return 0;
737

738 739
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
740 741 742
err_status:
	cleanup_status_page(engine);
	return err;
743 744
}

745 746 747
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
748
	u32 cs[2048];
749 750
};

751
static int measure_breadcrumb_dw(struct intel_context *ce)
752
{
753
	struct intel_engine_cs *engine = ce->engine;
754
	struct measure_breadcrumb *frame;
755
	int dw;
756

757
	GEM_BUG_ON(!engine->gt->scratch);
758 759 760 761 762

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

763 764 765
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
766

767 768
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
769 770
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
771 772 773
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
774

775
	mutex_lock(&ce->timeline->mutex);
776
	spin_lock_irq(&engine->active.lock);
777

778
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
779

780
	spin_unlock_irq(&engine->active.lock);
781
	mutex_unlock(&ce->timeline->mutex);
782

783
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
784

785
	kfree(frame);
786 787 788
	return dw;
}

789 790 791 792
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
793
	INIT_LIST_HEAD(&engine->active.hold);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

811
static struct intel_context *
812 813 814 815
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
816 817 818 819
{
	struct intel_context *ce;
	int err;

820
	ce = intel_context_create(engine);
821 822 823
	if (IS_ERR(ce))
		return ce;

824
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
825
	ce->timeline = page_pack_bits(NULL, hwsp);
826

827
	err = intel_context_pin(ce); /* perma-pin so it is always available */
828 829 830 831 832
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

833 834 835 836 837 838
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
839
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
840

841 842 843
	return ce;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

859 860 861 862 863 864 865 866 867
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

868 869 870 871 872 873 874 875 876 877 878
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
879
static int engine_init_common(struct intel_engine_cs *engine)
880
{
881
	struct intel_context *ce;
882 883
	int ret;

884 885
	engine->set_default_submission(engine);

886 887
	/*
	 * We may need to do things with the shrinker which
888 889 890 891 892 893
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
894 895 896 897
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

898 899 900 901 902
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
903
	engine->kernel_context = ce;
904

905
	return 0;
906 907 908 909

err_context:
	intel_context_put(ce);
	return ret;
910
}
911

912 913 914 915 916 917 918
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

919 920 921
	if (intel_uc_uses_guc_submission(&gt->uc))
		setup = intel_guc_submission_setup;
	else if (HAS_EXECLISTS(gt->i915))
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

945 946 947 948 949 950 951 952 953
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
954
	GEM_BUG_ON(!list_empty(&engine->active.requests));
955
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
956

957
	intel_breadcrumbs_free(engine->breadcrumbs);
958

959
	intel_engine_fini_retire(engine);
960
	intel_engine_cleanup_cmd_parser(engine);
961

962
	if (engine->default_state)
963
		fput(engine->default_state);
964

965 966 967
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

968
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
969
	cleanup_status_page(engine);
970

971
	intel_wa_list_free(&engine->ctx_wa_list);
972
	intel_wa_list_free(&engine->wa_list);
973
	intel_wa_list_free(&engine->whitelist);
974
}
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

990
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
991
{
992 993
	struct drm_i915_private *i915 = engine->i915;

994 995
	u64 acthd;

996 997 998 999
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
1000
	else
1001
		acthd = ENGINE_READ(engine, ACTHD);
1002 1003 1004 1005

	return acthd;
}

1006
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1007 1008 1009
{
	u64 bbaddr;

1010 1011
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1012
	else
1013
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1014 1015 1016

	return bbaddr;
}
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1033 1034 1035
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1036
{
1037
	struct intel_uncore *uncore = engine->uncore;
1038
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1039 1040
	int err;

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1057
	if (INTEL_GEN(engine->i915) < 3)
1058 1059
		return -ENODEV;

1060
	ENGINE_TRACE(engine, "\n");
1061
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1075 1076 1077 1078 1079
	}

	return err;
}

1080 1081
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1082
	ENGINE_TRACE(engine, "\n");
1083

1084
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1098
static u32
1099 1100
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1101
{
1102 1103
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1104
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1105 1106
	enum forcewake_domains fw_domains;

1107
	if (INTEL_GEN(i915) >= 11) {
1108 1109
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1110
	} else {
1111 1112
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1113 1114
	}

1115
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1116
						    FW_REG_READ);
1117
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1118 1119 1120
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1121 1122
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1123

1124
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1125

1126 1127
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1128
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1129

1130
	val = intel_uncore_read_fw(uncore, reg);
1131

1132 1133
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1134

1135
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1136

1137 1138
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1139

1140
	return val;
1141 1142 1143
}

/* NB: please notice the memset */
1144
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1145 1146
			       struct intel_instdone *instdone)
{
1147
	struct drm_i915_private *i915 = engine->i915;
1148
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1149
	struct intel_uncore *uncore = engine->uncore;
1150 1151 1152 1153 1154 1155
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1156
	switch (INTEL_GEN(i915)) {
1157
	default:
1158 1159
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1160

1161
		if (engine->id != RCS0)
1162 1163
			break;

1164 1165
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1166 1167 1168 1169 1170 1171
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1172
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1173
			instdone->sampler[slice][subslice] =
1174
				read_subslice_reg(engine, slice, subslice,
1175 1176
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1177
				read_subslice_reg(engine, slice, subslice,
1178 1179 1180 1181
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1182 1183
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1184

1185
		if (engine->id != RCS0)
1186 1187
			break;

1188 1189 1190 1191 1192 1193
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1194 1195 1196 1197 1198

		break;
	case 6:
	case 5:
	case 4:
1199 1200
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1201
		if (engine->id == RCS0)
1202
			/* HACK: Using the wrong struct member */
1203 1204
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1205 1206 1207
		break;
	case 3:
	case 2:
1208
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1209 1210 1211
		break;
	}
}
1212

1213 1214 1215 1216
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1217 1218 1219
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1220
	if (!intel_engine_pm_get_if_awake(engine))
1221
		return true;
1222

1223
	/* First check that no commands are left in the ring */
1224 1225
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1226
		idle = false;
1227

1228
	/* No bit for gen2, so assume the CS parser is idle */
1229
	if (INTEL_GEN(engine->i915) > 2 &&
1230
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1231 1232
		idle = false;

1233
	intel_engine_pm_put(engine);
1234 1235 1236 1237

	return idle;
}

1238
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1239 1240 1241
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1242 1243 1244
	if (!t->func)
		return;

1245 1246 1247 1248 1249 1250
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1251
	}
1252
	local_bh_enable();
1253 1254 1255 1256

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1257 1258
}

1259 1260 1261 1262 1263 1264 1265 1266 1267
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1268
	/* More white lies, if wedged, hw state is inconsistent */
1269
	if (intel_gt_is_wedged(engine->gt))
1270 1271
		return true;

1272
	if (!intel_engine_pm_is_awake(engine))
1273 1274
		return true;

1275
	/* Waiting to drain ELSP? */
1276
	if (execlists_active(&engine->execlists)) {
1277
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1278

1279
		intel_engine_flush_submission(engine);
1280

1281
		if (execlists_active(&engine->execlists))
1282 1283
			return false;
	}
1284

1285
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1286
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1287 1288
		return false;

1289
	/* Ring stopped? */
1290
	return ring_is_idle(engine);
1291 1292
}

1293
bool intel_engines_are_idle(struct intel_gt *gt)
1294 1295 1296 1297
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1298 1299
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1300 1301
	 * report that it is still busy, even though we have stopped using it.
	 */
1302
	if (intel_gt_is_wedged(gt))
1303 1304
		return true;

1305
	/* Already parked (and passed an idleness test); must still be idle */
1306
	if (!READ_ONCE(gt->awake))
1307 1308
		return true;

1309
	for_each_engine(engine, gt, id) {
1310 1311 1312 1313 1314 1315 1316
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1317
void intel_engines_reset_default_submission(struct intel_gt *gt)
1318 1319 1320 1321
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1322 1323 1324 1325
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1326
		engine->set_default_submission(engine);
1327
	}
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1338 1339
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1340 1341 1342 1343 1344 1345 1346
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1412
		drm_printf(m, "[%04zx] %s\n", pos, line);
1413 1414 1415 1416 1417 1418

		prev = buf + pos;
		skip = false;
	}
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1430
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1431
					 struct drm_printer *m)
1432 1433
{
	struct drm_i915_private *dev_priv = engine->i915;
1434
	struct intel_engine_execlists * const execlists = &engine->execlists;
1435 1436
	u64 addr;

1437
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1438
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1439 1440 1441 1442 1443 1444
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1445
	drm_printf(m, "\tRING_START: 0x%08x\n",
1446
		   ENGINE_READ(engine, RING_START));
1447
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1448
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1449
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1450
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1451
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1452 1453
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1454 1455
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1456 1457
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1458
	}
1459 1460

	if (INTEL_GEN(dev_priv) >= 6) {
1461
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1462
			   ENGINE_READ(engine, RING_IMR));
1463 1464 1465 1466 1467 1468
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1469 1470
	}

1471 1472 1473 1474 1475 1476
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1477
	if (INTEL_GEN(dev_priv) >= 8)
1478
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1479
	else if (INTEL_GEN(dev_priv) >= 4)
1480
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1481
	else
1482
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1483 1484 1485 1486
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1487
			   ENGINE_READ(engine, RING_IPEIR));
1488
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1489
			   ENGINE_READ(engine, RING_IPEHR));
1490
	} else {
1491 1492
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1493
	}
1494

1495 1496 1497
	if (intel_engine_in_guc_submission_mode(engine)) {
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1498
		struct i915_request * const *port, *rq;
1499 1500
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1501
		const u8 num_entries = execlists->csb_size;
1502
		unsigned int idx;
1503
		u8 read, write;
1504

1505
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1506 1507 1508
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1509
			   repr_timer(&engine->execlists.preempt),
1510
			   repr_timer(&engine->execlists.timer));
1511

1512 1513 1514
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1515 1516 1517 1518 1519
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1520
		if (read >= num_entries)
1521
			read = 0;
1522
		if (write >= num_entries)
1523 1524
			write = 0;
		if (read > write)
1525
			write += num_entries;
1526
		while (read < write) {
1527 1528 1529
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1530 1531
		}

1532
		execlists_active_lock_bh(execlists);
1533
		rcu_read_lock();
1534
		for (port = execlists->active; (rq = *port); port++) {
1535
			char hdr[160];
1536 1537
			int len;

1538
			len = scnprintf(hdr, sizeof(hdr),
1539
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1540
					(int)(port - execlists->active),
1541 1542 1543
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1544
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1545
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1546
			i915_request_show(m, rq, hdr, 0);
1547 1548
		}
		for (port = execlists->pending; (rq = *port); port++) {
1549 1550
			char hdr[160];
			int len;
1551

1552
			len = scnprintf(hdr, sizeof(hdr),
1553
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1554
					(int)(port - execlists->pending),
1555 1556 1557
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1558 1559
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1560
			i915_request_show(m, rq, hdr, 0);
1561
		}
1562
		rcu_read_unlock();
1563
		execlists_active_unlock_bh(execlists);
1564 1565
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1566
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1567
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1568
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1569
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1570
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1571
	}
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1653 1654 1655 1656 1657
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1658
	struct i915_request *rq;
1659
	intel_wakeref_t wakeref;
1660
	unsigned long flags;
1661
	ktime_t dummy;
1662 1663 1664 1665 1666 1667 1668 1669 1670

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1671
	if (intel_gt_is_wedged(engine->gt))
1672 1673
		drm_printf(m, "*** WEDGED ***\n");

1674
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1675 1676
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1677 1678
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1679 1680 1681 1682
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1683
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1684
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1685 1686 1687 1688 1689 1690 1691

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1692 1693 1694
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1695
	print_properties(engine, m);
1696 1697 1698

	drm_printf(m, "\tRequests:\n");

1699
	spin_lock_irqsave(&engine->active.lock, flags);
1700
	rq = intel_engine_find_active_request(engine);
1701
	if (rq) {
1702 1703
		struct intel_timeline *tl = get_timeline(rq);

1704
		i915_request_show(m, rq, "\t\tactive ", 0);
1705

1706
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1707
			   i915_ggtt_offset(rq->ring->vma));
1708
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1709
			   rq->ring->head);
1710
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1711
			   rq->ring->tail);
1712 1713 1714 1715
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1716 1717 1718 1719 1720 1721

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1722 1723

		print_request_ring(m, rq);
1724

1725
		if (rq->context->lrc_reg_state) {
1726
			drm_printf(m, "Logical Ring Context:\n");
1727
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1728
		}
1729
	}
1730
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1731
	spin_unlock_irqrestore(&engine->active.lock, flags);
1732

1733
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1734
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1735
	if (wakeref) {
1736
		intel_engine_print_registers(engine, m);
1737
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1738 1739 1740
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1741

C
Chris Wilson 已提交
1742
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1743

1744
	drm_printf(m, "HWSP:\n");
1745
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1746

1747
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1748 1749

	intel_engine_print_breadcrumbs(engine, m);
1750 1751
}

1752 1753
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1754 1755 1756 1757 1758 1759 1760
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1761
	*now = ktime_get();
1762
	if (READ_ONCE(engine->stats.active))
1763
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1764 1765 1766 1767 1768 1769 1770

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1771
 * @now: monotonic timestamp of sampling
1772 1773 1774
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1775
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1776
{
1777
	unsigned int seq;
1778 1779
	ktime_t total;

1780
	do {
1781
		seq = read_seqcount_begin(&engine->stats.lock);
1782
		total = __intel_engine_get_busy_time(engine, now);
1783
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1784 1785 1786 1787

	return total;
}

1788 1789
static bool match_ring(struct i915_request *rq)
{
1790
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1811
	lockdep_assert_held(&engine->active.lock);
1812 1813 1814 1815 1816 1817 1818

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1819
			if (__i915_request_is_complete(request))
1820 1821 1822 1823 1824 1825 1826 1827 1828
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1829
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1830
		if (__i915_request_is_complete(request))
1831 1832
			continue;

1833
		if (!__i915_request_has_started(request))
1834
			continue;
1835 1836 1837

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1838
			continue;
1839 1840 1841 1842 1843 1844 1845 1846

		active = request;
		break;
	}

	return active;
}

1847
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1848
#include "mock_engine.c"
1849
#include "selftest_engine.c"
1850
#include "selftest_engine_cs.c"
1851
#endif