blk-mq.c 50.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44 45
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79 80 81
}

static int blk_mq_queue_enter(struct request_queue *q)
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90 91 92 93 94
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
95 96 97 98
}

static void blk_mq_queue_exit(struct request_queue *q)
{
99 100 101 102 103 104 105 106 107
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
108 109
}

110
void blk_mq_freeze_queue_start(struct request_queue *q)
111
{
112 113
	bool freeze;

114
	spin_lock_irq(q->queue_lock);
115
	freeze = !q->mq_freeze_depth++;
116 117
	spin_unlock_irq(q->queue_lock);

118
	if (freeze) {
119
		percpu_ref_kill(&q->mq_usage_counter);
120 121
		blk_mq_run_queues(q, false);
	}
122
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124 125 126

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
127
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 129
}

130 131 132 133 134 135 136 137 138 139
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}

140
void blk_mq_unfreeze_queue(struct request_queue *q)
141
{
142
	bool wake;
143 144

	spin_lock_irq(q->queue_lock);
145 146
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
147
	spin_unlock_irq(q->queue_lock);
148 149
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
163 164 165 166 167 168 169

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
170 171
}

172 173 174 175 176 177
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

178 179
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
180
{
181 182 183
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

184 185 186
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
187
	rq->mq_ctx = ctx;
188
	rq->cmd_flags |= rw_flags;
189 190 191 192 193 194
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
195
	rq->start_time = jiffies;
196 197
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
198
	set_start_time_ns(rq);
199 200 201 202 203 204 205 206 207 208
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

209 210
	rq->cmd = rq->__cmd;

211 212 213 214 215 216
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223 224 225
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

226
static struct request *
227
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 229 230 231
{
	struct request *rq;
	unsigned int tag;

232
	tag = blk_mq_get_tag(data);
233
	if (tag != BLK_MQ_TAG_FAIL) {
234
		rq = data->hctx->tags->rqs[tag];
235

236
		if (blk_mq_tag_busy(data->hctx)) {
237
			rq->cmd_flags = REQ_MQ_INFLIGHT;
238
			atomic_inc(&data->hctx->nr_active);
239 240 241
		}

		rq->tag = tag;
242
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 244 245 246 247 248
		return rq;
	}

	return NULL;
}

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
251
{
252 253
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
254
	struct request *rq;
255
	struct blk_mq_alloc_data alloc_data;
256
	int ret;
257

258 259 260
	ret = blk_mq_queue_enter(q);
	if (ret)
		return ERR_PTR(ret);
261

262 263
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
266

267
	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 269 270 271 272 273
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 275 276 277
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
278 279
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
280 281
	if (!rq) {
		blk_mq_queue_exit(q);
282
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
283
	}
284 285
	return rq;
}
286
EXPORT_SYMBOL(blk_mq_alloc_request);
287 288 289 290 291 292 293

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
296
	rq->cmd_flags = 0;
297

298
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 301 302
	blk_mq_queue_exit(q);
}

303
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 305 306 307 308
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
309 310 311 312 313 314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
320
}
J
Jens Axboe 已提交
321
EXPORT_SYMBOL_GPL(blk_mq_free_request);
322

323
inline void __blk_mq_end_request(struct request *rq, int error)
324
{
M
Ming Lei 已提交
325 326
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
327
	if (rq->end_io) {
328
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
329 330 331
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
332
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
333
	}
334
}
335
EXPORT_SYMBOL(__blk_mq_end_request);
336

337
void blk_mq_end_request(struct request *rq, int error)
338 339 340
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
341
	__blk_mq_end_request(rq, error);
342
}
343
EXPORT_SYMBOL(blk_mq_end_request);
344

345
static void __blk_mq_complete_request_remote(void *data)
346
{
347
	struct request *rq = data;
348

349
	rq->q->softirq_done_fn(rq);
350 351
}

352
static void blk_mq_ipi_complete_request(struct request *rq)
353 354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
355
	bool shared = false;
356 357
	int cpu;

C
Christoph Hellwig 已提交
358
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 360 361
		rq->q->softirq_done_fn(rq);
		return;
	}
362 363

	cpu = get_cpu();
C
Christoph Hellwig 已提交
364 365 366 367
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368
		rq->csd.func = __blk_mq_complete_request_remote;
369 370
		rq->csd.info = rq;
		rq->csd.flags = 0;
371
		smp_call_function_single_async(ctx->cpu, &rq->csd);
372
	} else {
373
		rq->q->softirq_done_fn(rq);
374
	}
375 376
	put_cpu();
}
377

378 379 380 381 382
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
383
		blk_mq_end_request(rq, rq->errors);
384 385 386 387
	else
		blk_mq_ipi_complete_request(rq);
}

388 389 390 391 392 393 394 395 396 397
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
404 405
}
EXPORT_SYMBOL(blk_mq_complete_request);
406

407 408 409 410 411 412
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

413
void blk_mq_start_request(struct request *rq)
414 415 416 417 418
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
419
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
420 421
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
422

423
	blk_add_timer(rq);
424

425 426 427 428 429 430
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

431 432 433 434 435 436
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
437 438 439 440
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 442 443 444 445 446 447 448 449

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
450
}
451
EXPORT_SYMBOL(blk_mq_start_request);
452

453
static void __blk_mq_requeue_request(struct request *rq)
454 455 456 457
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
458

459 460 461 462
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
463 464
}

465 466 467 468 469
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
470
	blk_mq_add_to_requeue_list(rq, true);
471 472 473
}
EXPORT_SYMBOL(blk_mq_requeue_request);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

501 502 503 504 505
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

530 531 532 533 534 535
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

536 537 538 539 540 541
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

542 543
static inline bool is_flush_request(struct request *rq,
		struct blk_flush_queue *fq, unsigned int tag)
544
{
545
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
546
			fq->flush_rq->tag == tag);
547 548 549 550 551
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
552 553
	/* mq_ctx of flush rq is always cloned from the corresponding req */
	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
554

555
	if (!is_flush_request(rq, fq, tag))
556
		return rq;
557

558
	return fq->flush_rq;
559 560 561
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

562
struct blk_mq_timeout_data {
563 564
	unsigned long next;
	unsigned int next_set;
565 566
};

567
void blk_mq_rq_timed_out(struct request *req, bool reserved)
568
{
569 570
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
571 572 573 574 575 576 577 578 579 580

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
581 582
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
583

584
	if (ops->timeout)
585
		ret = ops->timeout(req, reserved);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
601
}
602 603 604 605 606
		
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
607

608 609
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;
610

611 612
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
613
			blk_mq_rq_timed_out(rq, reserved);
614 615 616 617
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
618 619
}

620
static void blk_mq_rq_timer(unsigned long priv)
621
{
622 623 624 625 626
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
627
	struct blk_mq_hw_ctx *hctx;
628
	int i;
629

630 631 632 633 634
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
635
		if (!blk_mq_hw_queue_mapped(hctx))
636 637
			continue;

638
		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
639
	}
640

641 642 643
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
644 645 646 647
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

723 724 725 726 727 728 729 730 731 732 733
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
734 735
	LIST_HEAD(driver_list);
	struct list_head *dptr;
736
	int queued;
737

738
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
739

740
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
741 742 743 744 745 746 747
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
748
	flush_busy_ctxs(hctx, &rq_list);
749 750 751 752 753 754 755 756 757 758 759 760

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

761 762 763 764 765 766
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

767 768 769
	/*
	 * Now process all the entries, sending them to the driver.
	 */
770
	queued = 0;
771
	while (!list_empty(&rq_list)) {
772
		struct blk_mq_queue_data bd;
773 774 775 776 777
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

778 779 780 781 782
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
783 784 785 786 787 788
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
789
			__blk_mq_requeue_request(rq);
790 791 792 793
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
794
			rq->errors = -EIO;
795
			blk_mq_end_request(rq, rq->errors);
796 797 798 799 800
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
801 802 803 804 805 806 807

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

826 827 828 829 830 831 832 833
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
834 835
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
836 837

	if (--hctx->next_cpu_batch <= 0) {
838
		int cpu = hctx->next_cpu, next_cpu;
839 840 841 842 843 844 845

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
846 847

		return cpu;
848 849
	}

850
	return hctx->next_cpu;
851 852
}

853 854
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
855 856
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
857 858
		return;

859
	if (!async) {
860 861
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
862
			__blk_mq_run_hw_queue(hctx);
863
			put_cpu();
864 865
			return;
		}
866

867
		put_cpu();
868
	}
869

870 871
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
872 873 874 875 876 877 878 879 880 881
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
882
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
883 884 885 886 887 888 889 890 891
			continue;

		blk_mq_run_hw_queue(hctx, async);
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
892 893
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
894 895 896 897
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

898 899 900 901 902 903 904 905 906 907
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

908 909 910
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
911

912
	blk_mq_run_hw_queue(hctx, false);
913 914 915
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

916 917 918 919 920 921 922 923 924 925 926
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


927
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
928 929 930 931 932 933 934 935 936
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
937
		blk_mq_run_hw_queue(hctx, async);
938 939 940 941
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

942
static void blk_mq_run_work_fn(struct work_struct *work)
943 944 945
{
	struct blk_mq_hw_ctx *hctx;

946
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
947

948 949 950
	__blk_mq_run_hw_queue(hctx);
}

951 952 953 954 955 956 957 958 959 960 961 962
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
963 964
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
965

966 967
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
968 969 970
}
EXPORT_SYMBOL(blk_mq_delay_queue);

971
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
972
				    struct request *rq, bool at_head)
973 974 975
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

976 977
	trace_block_rq_insert(hctx->queue, rq);

978 979 980 981
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
982

983 984 985
	blk_mq_hctx_mark_pending(hctx, ctx);
}

986 987
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
988
{
989
	struct request_queue *q = rq->q;
990
	struct blk_mq_hw_ctx *hctx;
991 992 993 994 995
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
996 997 998

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

999 1000 1001
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1002 1003 1004

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1005 1006

	blk_mq_put_ctx(current_ctx);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1038
		__blk_mq_insert_request(hctx, rq, false);
1039 1040 1041 1042
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1043
	blk_mq_put_ctx(current_ctx);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1106

1107
	if (blk_do_io_stat(rq))
1108
		blk_account_io_start(rq, 1);
1109 1110
}

1111 1112 1113 1114 1115 1116
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1117 1118 1119
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1120
{
1121
	if (!hctx_allow_merges(hctx)) {
1122 1123 1124 1125 1126 1127 1128
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1129 1130
		struct request_queue *q = hctx->queue;

1131 1132 1133 1134 1135
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1136

1137 1138 1139
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1140
	}
1141
}
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1156
	struct blk_mq_alloc_data alloc_data;
1157

1158
	if (unlikely(blk_mq_queue_enter(q))) {
1159
		bio_endio(bio, -EIO);
1160
		return NULL;
1161 1162 1163 1164 1165
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1166
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1167
		rw |= REQ_SYNC;
1168

1169
	trace_block_getrq(q, bio, rw);
1170 1171 1172
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1173
	if (unlikely(!rq)) {
1174
		__blk_mq_run_hw_queue(hctx);
1175 1176
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1177 1178

		ctx = blk_mq_get_ctx(q);
1179
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1180 1181 1182 1183 1184
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1185 1186 1187
	}

	hctx->queued++;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1222 1223 1224 1225 1226 1227
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1228 1229 1230 1231 1232
		struct blk_mq_queue_data bd = {
			.rq = rq,
			.list = NULL,
			.last = 1
		};
1233 1234 1235 1236 1237 1238 1239 1240 1241
		int ret;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
1242
		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1243 1244 1245 1246 1247 1248 1249
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
1250
				blk_mq_end_request(rq, rq->errors);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1300 1301
	if (unlikely(!rq))
		return;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1319
			if (list_empty(&plug->mq_list))
1320 1321 1322 1323 1324 1325
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1326
			blk_mq_put_ctx(data.ctx);
1327 1328 1329 1330
			return;
		}
	}

1331 1332 1333 1334 1335 1336 1337 1338 1339
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1340 1341
	}

1342
	blk_mq_put_ctx(data.ctx);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1354 1355
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1356
{
1357
	struct page *page;
1358

1359
	if (tags->rqs && set->ops->exit_request) {
1360
		int i;
1361

1362 1363
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1364
				continue;
1365 1366
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1367
			tags->rqs[i] = NULL;
1368
		}
1369 1370
	}

1371 1372
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1373
		list_del_init(&page->lru);
1374 1375 1376
		__free_pages(page, page->private);
	}

1377
	kfree(tags->rqs);
1378

1379
	blk_mq_free_tags(tags);
1380 1381 1382 1383
}

static size_t order_to_size(unsigned int order)
{
1384
	return (size_t)PAGE_SIZE << order;
1385 1386
}

1387 1388
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1389
{
1390
	struct blk_mq_tags *tags;
1391 1392 1393
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1394 1395 1396 1397
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1398

1399 1400
	INIT_LIST_HEAD(&tags->page_list);

1401 1402 1403
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1404 1405 1406 1407
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1408 1409 1410 1411 1412

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1413
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1414
				cache_line_size());
1415
	left = rq_size * set->queue_depth;
1416

1417
	for (i = 0; i < set->queue_depth; ) {
1418 1419 1420 1421 1422 1423 1424 1425 1426
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1427 1428 1429
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1430 1431 1432 1433 1434 1435 1436 1437 1438
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1439
			goto fail;
1440 1441

		page->private = this_order;
1442
		list_add_tail(&page->lru, &tags->page_list);
1443 1444 1445

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1446
		to_do = min(entries_per_page, set->queue_depth - i);
1447 1448
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1449
			tags->rqs[i] = p;
1450 1451
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1452 1453 1454
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1455 1456
						set->numa_node)) {
					tags->rqs[i] = NULL;
1457
					goto fail;
1458
				}
1459 1460
			}

1461 1462 1463 1464 1465
			p += rq_size;
			i++;
		}
	}

1466
	return tags;
1467

1468 1469 1470
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

1572 1573 1574 1575
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1576 1577
	unsigned flush_start_tag = set->queue_depth;

1578 1579
	blk_mq_tag_idle(hctx);

1580 1581 1582 1583 1584
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1585 1586 1587 1588
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1589
	blk_free_flush_queue(hctx->fq);
1590 1591 1592 1593
	kfree(hctx->ctxs);
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1603
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1615
		kfree(hctx);
M
Ming Lei 已提交
1616 1617 1618
	}
}

1619 1620 1621
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1622
{
1623
	int node;
1624
	unsigned flush_start_tag = set->queue_depth;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1643 1644

	/*
1645 1646
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1647
	 */
1648 1649 1650 1651
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1652

1653 1654
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1655

1656
	hctx->nr_ctx = 0;
1657

1658 1659 1660
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1661

1662 1663 1664
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1665

1666 1667 1668 1669 1670
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1671

1672
	return 0;
1673

1674 1675 1676 1677 1678
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1679 1680 1681 1682 1683 1684
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1685

1686 1687
	return -1;
}
1688

1689 1690 1691 1692 1693
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1694

1695 1696 1697 1698 1699
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1700 1701 1702 1703 1704 1705 1706 1707 1708
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1709
	blk_mq_exit_hw_queues(q, set, i);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1733 1734 1735 1736
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1753
		cpumask_clear(hctx->cpumask);
1754 1755 1756 1757 1758 1759 1760 1761
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1762 1763 1764
		if (!cpu_online(i))
			continue;

1765
		hctx = q->mq_ops->map_queue(q, i);
1766
		cpumask_set_cpu(i, hctx->cpumask);
1767 1768 1769
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1770 1771

	queue_for_each_hw_ctx(q, hctx, i) {
1772
		/*
1773 1774
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1790 1791 1792
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1841
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1842 1843
{
	struct blk_mq_hw_ctx **hctxs;
1844
	struct blk_mq_ctx __percpu *ctx;
1845
	struct request_queue *q;
1846
	unsigned int *map;
1847 1848 1849 1850 1851 1852
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1853 1854
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1855 1856 1857 1858

	if (!hctxs)
		goto err_percpu;

1859 1860 1861 1862
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1863
	for (i = 0; i < set->nr_hw_queues; i++) {
1864 1865
		int node = blk_mq_hw_queue_to_node(map, i);

1866 1867
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1868 1869 1870
		if (!hctxs[i])
			goto err_hctxs;

1871 1872
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1873 1874
			goto err_hctxs;

1875
		atomic_set(&hctxs[i]->nr_active, 0);
1876
		hctxs[i]->numa_node = node;
1877 1878 1879
		hctxs[i]->queue_num = i;
	}

1880
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1881 1882 1883
	if (!q)
		goto err_hctxs;

1884 1885 1886 1887
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1888
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1889
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1890 1891
		goto err_map;

1892 1893 1894 1895
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1896
	q->nr_hw_queues = set->nr_hw_queues;
1897
	q->mq_map = map;
1898 1899 1900 1901

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1902
	q->mq_ops = set->ops;
1903
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1904

1905 1906 1907
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1908 1909
	q->sg_reserved_size = INT_MAX;

1910 1911 1912 1913
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1914 1915 1916 1917 1918
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1919 1920
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1921

1922 1923 1924 1925 1926
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1927 1928
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1929

1930
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1931

1932
	if (blk_mq_init_hw_queues(q, set))
1933
		goto err_hw;
1934

1935 1936 1937 1938
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1939 1940
	blk_mq_add_queue_tag_set(set, q);

1941 1942
	blk_mq_map_swqueue(q);

1943
	return q;
1944

1945 1946 1947
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1948
	kfree(map);
1949
	for (i = 0; i < set->nr_hw_queues; i++) {
1950 1951
		if (!hctxs[i])
			break;
1952
		free_cpumask_var(hctxs[i]->cpumask);
1953
		kfree(hctxs[i]);
1954
	}
1955
err_map:
1956 1957 1958 1959 1960 1961 1962 1963 1964
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1965
	struct blk_mq_tag_set	*set = q->tag_set;
1966

1967 1968
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1969 1970
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1971

1972
	percpu_ref_exit(&q->mq_usage_counter);
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1988
static void blk_mq_queue_reinit(struct request_queue *q)
1989
{
1990
	WARN_ON_ONCE(!q->mq_freeze_depth);
1991

1992 1993
	blk_mq_sysfs_unregister(q);

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

2004
	blk_mq_sysfs_register(q);
2005 2006
}

2007 2008
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2009 2010 2011 2012
{
	struct request_queue *q;

	/*
2013 2014 2015 2016
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
2017 2018 2019 2020 2021 2022
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_wait(q);

2036 2037
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
2038 2039 2040 2041

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2042 2043 2044 2045
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2100 2101 2102 2103 2104 2105
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2106 2107
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2108 2109
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2110 2111
	if (!set->nr_hw_queues)
		return -EINVAL;
2112
	if (!set->queue_depth)
2113 2114 2115 2116
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2117
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2118 2119
		return -EINVAL;

2120 2121 2122 2123 2124
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2125

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2136 2137
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2138 2139
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2140
		return -ENOMEM;
2141

2142 2143
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2144

2145 2146 2147
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2148
	return 0;
2149
enomem:
2150 2151
	kfree(set->tags);
	set->tags = NULL;
2152 2153 2154 2155 2156 2157 2158 2159
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2160 2161 2162 2163 2164
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2165
	kfree(set->tags);
2166
	set->tags = NULL;
2167 2168 2169
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2202 2203 2204 2205
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2206
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2207 2208 2209 2210

	return 0;
}
subsys_initcall(blk_mq_init);